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5-hydroxymethylcytosine represses the activity of
enhancers in embryonic stem cells: a new
epigenetic signature for gene regulation
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Abstract

Background: Recent mapping of 5-hydroxymethylcytosine (5hmC) provides a genome-wide view of the distribution
of this important chromatin mark. However, the role of 5hmC in specific regulatory regions is not clear, especially
at enhancers.

Results: We found a group of distal transcription factor binding sites highly enriched for 5-hdroxymethylcytosine
(5hmC), but lacking any known activating histone marks and being depleted for nascent transcripts, suggesting a
repressive role for 5hmC in mouse embryonic stem cells (mESCs). 5-formylcytosine (5fC), which is known to mark
poised enhancers where H3K4me1 is enriched, is also observed at these sites. Furthermore, the 5hmC levels were
inversely correlated with RNA polymerase II (PolII) occupancy in mESCs as well as in fully differentiated adipocytes.
Interestingly, activating H3K4me1/2 histone marks were enriched at these sites when the associated genes
become activated following lineage specification. These putative enhancers were shown to be functional in
embryonic stem cells when unmethylated. Together, these data suggest that 5hmC suppresses the activity of this
group of enhancers, which we termed “silenced enhancers”.

Conclusions: Our findings indicate that 5hmC has a repressive role at specific proximal and distal regulatory
regions in mESCs, and suggest that 5hmC is a new epigenetic mark for silenced enhancers.
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Background
5-hydroxymethylcytosine (5hmC) is an epigenetic mark
that arises from oxidation of 5-methylcytosine (5mC) by
Ten-eleven translocation (Tet) enzymes [1,2]. The 5hmC
mark has been studied in several cell types, such as mouse
embryonic stem cells (mESCs) [2,3], neuronal cells [4-6]
and adipocytes [7]. 5hmC is enriched at promoters marked
bivalently by H3K4me3 and H3K27me3 in mESCs [8],
but depleted at promoters in the brain [9]. 5hmC is also
enriched at specific transcription factor binding sites
(TFBSs) in human and mouse ESCs [1,9-14]. Specifically,
in mESCs, 5hmC is depleted at Sox2 and Oct4 binding
sites, but enriched for Esrrb and Tcfcp2l1 occupancy [12].
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In human embryonic stem cells (hESCs), 5hmC is highly
enriched at CTCF, Nanog, and Oct4 binding sites [11].
Another study in hESC observed that the 5hmC profile
showed a bimodal distribution at Oct4, Sox2, TAF1 and
p300 binding sites [9]. While these studies suggest a pos-
sible regulatory role for 5hmC at promoters and TFBSs,
its function at these regulatory regions remains unclear.
Here, we report on a new repressive role for 5hmC at

specific regulatory regions in mESCs. We show that 5hmC
negatively correlates with nascent transcripts, especially at
TFBSs. Interestingly, we discovered that a group of distal
TFBSs displays a new epigenetic signature; these sites are
exclusively enriched for 5hmC, depleted for activating his-
tone modification marks (H3K4me1 and H3K27ac), and
significantly reduced for nascent transcripts or enhancer
RNAs (eRNAs). The expression of the genes close to these
TFBSs was significantly lower than that of genes close
to other classes of TFBSs. In addition, we found that a
fraction of these TFBSs becomes enriched for activating
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histone marks (H3K4me1/2) in neural progenitor cells
(NPCs) or endomesoderm cells. RNA polymerase II
(PolII) chromatin interaction analysis with paired-end
tagging (ChIA-PET) [15] showed that the target genes
of these regulatory regions were indeed significantly up-
regulated in NPCs. Enhancer/luciferase reporter assays
demonstrated that these regions function as in gene acti-
vation when 5hmC is removed for these sites. Together,
our findings suggest that 5hmC is as a novel marker for
transcriptional silent enhancers in mESCs for regulatory
regions that are activated during development.

Results
A group of 5hmC-enriched distal TFBSs is lacking activating
histone marks and nascent RNA transcription
A recent survey had found 5hmC enriched at TFBSs in
hESC [11], mouse neuronal cells, and adipocytes [7].
Therefore, we investigated 5hmC levels [13] at the binding
sites of 13 key transcription factors (TFs) (Nanog, Oct4,
STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Esrrb,
Tcfcp2l1, E2f1 and CTCF) in mESC [16]. We confirmed
previous results [11,12] that 5hmC was generally depleted
at the core of the proximal (within 2 kb to transcription
start sites (TSSs)) TFBSs, but relatively high in the regions
neighboring (±2 kb) the core (Additional file 1: Figure S1A).
We also confirmed that 5hmC is highly enriched at the
core of distal binding sites of many TFs, such as Zfx and
Esrrb (Additional file 1: Figure S1B) [11,12].
To further investigate the role of 5hmC in gene regula-

tion in conjunction with other epigenetic marks, we per-
formed an integrative analysis using 5hmC, 5mC [13], Tet1
[10], H3K4me1/2/3, H3K27me3, RNA polymerase (Pol) II
Figure 1 5hmC and other epigenetic modifications in ESCs. (A) Correla
on the 5hmC levels in ±2 K regions relative to the center of the binding si
with H327me3 levels and inversely correlated with GROseq and PolII levels
calculated using GROseq . In the sorted list, we averaged the transcription
other epigenomic data at distal (>2kbp from known TSSs) TFBSs. Cluster 1,
of promoters. Cluster 5 and 9 display high levels of H3K27ac, indicative of act
GROseq levels, and lacks all investigated histone marks.
occupancy [17] and nascent RNAs from global run-on se-
quencing (GROseq) [18] data. We found that 5hmC levels
were inversely correlated with nascent RNA transcription
and Pol II occupancy at proximal TFBSs (Figure 1). We
confirmed the levels of 5hmC positively correlated with the
levels of the repressive H3K27me3 histone mark at prox-
imal TFBSs [8,12].
To study the epigenetic landscapes surrounding distal

TFBSs, we applied the K-means algorithm (K = 10) and
found clusters marked by various epigenetic modifications
(Figure 1B). Clusters 1, 8 and 10 showed the properties of
active promoters: H3K4me2/3 enrichment with relatively
low levels of H3K4me1 and the presence of nascent RNA
transcripts. These clusters thus likely represent the pro-
moters of long intergenic non-coding RNAs [19] or un-
annotated promoters of protein-coding genes. Clusters 5
and 9 showed H3K4me1 and H3K27ac enrichment, indi-
cating active enhancers. These clusters, as well as clusters
3, 4, 6, and 7, showed only a small amount of nascent
transcripts or enhancer RNAs (eRNAs), which have been
known to correlate with the gene transcription levels of
adjacent genes [20,21]. The presence of eRNAs in these
clusters suggest that the TFBS at these clusters have an ac-
tivating role.
We were especially interested in cluster 2, which was

enriched for 5hmC, but was depleted of eRNAs. Strikingly,
this cluster had no activating histone marks such as
H3K4me1 or H3K27ac [22-24], even though TFs bind at
these sites (Figure 1B and Additional file 1: Figure S2).
5mC was depleted at the core of the TFBS, consistent with
the previous observation in hESCs [25]. Compared with
other clusters, cluster 2 was characterized by low levels of
tion between 5hmC and various marks. The TFBSs were sorted based
tes. 5hmC levels at promoter-proximal TFBSs were positively correlated
. Transcription levels of the genes associated with the promoter were
levels of the adjacent 100 genes. (B) Clustering results of 5hmC with
8 and 10 are enriched for H3K4me3 and GROseq, showing the properties
ive enhancers. Cluster 2 is enriched for 5hmC and 5fC, has very low
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eRNAs and low PolII occupancy. To confirm the enrich-
ment for 5hmC, we investigated the profile of sequencing
data from other independent studies [1,12-14,26,27]. Clus-
ter 2 was enriched for 5hmC consistently for all four inde-
pendently measured datasets (Additional file 1: Figure S3).
We also examined TAB-seq, which provides base-
resolution sequencing of 5hmC in mESC [3]. The TAB-
seq profile also confirmed enrichment for 5hmC at the
core of TFBSs for cluster 2 regions for both strands
(Additional file 1: Figure S4). Together, these data suggest
that 5hmC combined with absence of H3K4me1 at distal
TFBSs marks inactive enhancers.
Surprisingly, cluster 2 is also highly enriched for

5-formylcytosine (5fC) compared with other clusters
(Figure 1B). Both 5fC and 5hmC are involved in the active
demethylation pathway [28,29]. Previous genome-wide
study using 5fC revealed that 5fC is enriched at enhancers,
especially at poised enhancers marked by H3K4me1 with-
out H3K27ac [30]. However, the properties of the cluster
2 regions are novel, as they lack the H3K4me1 mark. This
strongly suggests that 5hmC as well as 5fC mark a novel
type of “poised” or silenced enhancer at distal regulatory
regions where active histone modification marks are absent.
Next, we interrogated the state of the 5hmC mark in

other cell types. In hESCs, we also identified a cluster
enriched for 5hmC [3] but depleted for both H3K4me1
and H3K27ac at distal DNaseI hypersensitive sites (DHSs)
[31] (Additional file 1: Figure S5). As in mESCs, GROseq
levels in hESCs [32] were significantly weaker in this clus-
ter (p-value = 1.7e-14). In mature adipocytes, we observed
5hmC [7] enriched at over 20% of PPARγ binding sites
[33] (Additional file 1: Figure S6). Surprisingly, PolII oc-
cupancy [33] was depleted when 5hmC was enriched
(Additional file 1: Figure S6). These data indicate that
5hmC can be a repressive mark at distal regulatory regions
regardless of cell type or differentiation state.
Additional file 1: Table S1 lists the number of binding

sites for each TF in cluster 2 in mESCs. The majority of
the cluster 2 regions were bound by CTCF, Tcfcp2l1 or
Esrrb. Fewer binding sites for Oct4, Sox2, and Nanog,
the master regulators for self-renewal and pluripotency
in ESCs, were observed in cluster 2 [34]. This is consist-
ent with the observation that 5hmC is depleted at highly
active enhancers in ESCs. We further investigated if
ChIP intensity is lower for the TFBSs in cluster 2. We did
not find statistical differences, even though the average
profiles of the TFBSs in cluster 2 were slightly lower com-
pared with the TFBSs in other clusters (Additional file 1:
Figure S7).

5hmC-enriched distal TFBSs are associated with
developmental genes
Next, we analyzed the correlation between 5hmC levels
and transcriptional activity of the genes closest to the
TFBSs for each cluster. To calculate gene transcription
levels, we calculated the reads per kilobase per million
mapped reads (RPKM) from GROseq (see Methods).
The genes mapping to the TFBSs in cluster 2 had strik-
ingly reduced transcription levels compared to the genes
in all other clusters (p-value <1.3e-20), even compared
to clusters 8 and 10, where the repressive H3K27me3
mark was relatively enriched (Figure 1B).
GO analysis of the genes closest to the TFBSs in clus-

ter 2 using GREAT [35] revealed that the genes in this
cluster were enriched for developmental functions, such
as “muscle cell development” (p-value = 3.4e-14)” and
“foregut morphogenesis” (p-value = 5.8e-9) (Figure 2D).
This is consistent with the fact that these genes are si-
lent in ESCs and are only activated once differentiation
commences.
A snapshot in Figure 3 shows the enrichment for

5hmC at the Klf4 and the Esrrb binding sites located in
the first intron of Sorcs2. Sorcs2 is highly expressed in
the developing and mature murine central nervous system
[36]. We observed that Sorcs2 is silent in mESC, and its
promoter is bivalently marked by H3K4me3 and
H3K27me3 [17]. In mouse neural progenitor cells (NPCs),
however, Sorcs2 is highly expressed [17]. The Klf4 and the
Esrrb binding sites are marked by H3K4me1 in NPCs,
suggesting an active role of this region as an enhancer
during neural development.

5hmC-enriched distal TFBSs become activated during
development in a lineage-specific way
Because of the coordination of high 5hmC levels with
low expression of genes in cluster 2, we hypothesized that
5hmC may attenuate enhancer activity in mESCs, which
becomes activated later during development. Therefore,
we analyzed H3K4me1/2 data in NPCs [17] and endome-
soderm cells [37]. H3K4me1 and H3K4me2 are known to
mark enhancers [22]. While H3K4me1/2 enhancer marks
were depleted in mESCs, around 9% of distal TFBSs (out
of 5,278 TFBSs) showed enriched H3K4me1/2 occupancy
in NPCs, and an additional 20% of TFBSs were enriched
for H3K4me1/2 in endomesoderm cells (Figure 4A). Over-
all, 5hmC levels were significantly decreased in cluster 2
regions after differentiation into NPCs [27]. This suggests
that a group of 5hmC-enriched enhancers are repressed in
mESCs, but selectively become activated during develop-
ment towards the neuronal or endomesoderm lineage.
This implies that other regions in cluster 2 might be acti-
vated when ESCs are differentiated into other lineages
such as primordial germ cells.
To further determine if the TFBSs in cluster 2 have acti-

vating roles in a lineage-specific way, we used chromatin
connectivity maps from chromatin interaction analysis
with paired-end tagging (ChIA-PET) associated with PolII
in ESCs and NPCs [15]. By using the chromatin interaction



Figure 2 Functional analysis for TFBSs with 5hmC. (A) Comparison of the transcription levels of the nearest genes between cluster 2 and the
other 9 clusters of distal TFBSs identified in Figure 1B. The transcription levels (RPKM) were calculated using GROseq data. (B) GO analysis for the
genes close to TFBSs in cluster 2. Organ development terms are enriched.
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information, we mapped the target genes of the TFBSs in
cluster 2 that were only selectively activated in NPCs. The
target genes in ESCs were slightly downregulated in NPC
(as well as in mouse embryo fibroblasts (MEFs)) because
only a small portion of them become activated in a lineage-
specific manner as shown in Figure 4A. In contrast, the tar-
get genes in NPCs become significantly upregulated during
the transition from ESCs to NPCs (p-value <0.05). More-
over, the changes were significant compared with the target
Figure 3 Chromatin organization at the Sorcs2 gene in mESCs. The Kl
for 5hmC. These binding sites are depleted with H3K4me1 in mESCs, but a
genes for clusters (all p-values were <0.02) (Additional file 1:
Figure S9). This further supports the notion that TFBSs in
cluster 2 become activated in a lineage specific way follow-
ing embryonic stem cell differentiation.

Cluster 2 regions show enhancer activity in mESCs when
devoid of 5hmC
Next, we directly determined if lack of 5hmC activates
enhancer activity of the distal TFBSs in mESCs. We
f4 and the Esrrb binding sites in the intron of Sorcs2 gene are enriched
re enriched in NPCs.



Figure 4 Lineage specific activation of distal TFBSs in cluster 2. (A) The enriched H3K4me1/2 in NPCs or endomesoderm cells suggests the
potential lineage specific enhancer activation of the TFBSs in cluster 2 after differentiation. (B) The target genes of cluster 2 in NPCs identified
using ChIA-PET become significantly upregulated (p-value:0.04) when they gained interactions. The expression change in MEF is compared as a
control (p-value:0.12).
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selected five highly 5-hydroxymethylated distal TFBSs re-
gions from cluster 2, including the site in Sorcs2 (TFBS1).
This site is also enriched for ChIA-PET [15] reads. We
amplified these sequences (±600 bp) by PCR and subcloned
them into luciferase reporter plasmids containing a minimal
promoter. We found that these DNA sequences indeed
possess enhancer activity in mESCs when lacking 5hmC,
showing on average 3-fold increased luciferase activity
compared to control (Figure 5). This in vitro study suggests
Figure 5 Enhancer activity of distal TFBSs lacking 5hmC in mESCs. (A
assay for 5hmC-enriched putative enhancer regions (about 600 bp) includin
Klf4/Esrrb binding site (Figure 3), TFBS2: 5hmC-enriched Esrrb/Tcfcp2I1 binding
E2f1 binding site, TFBS5: 5hmC-enriched Nanog/Sox2. The normalized lucifera
that 5hmC-enriched distal TFBSs are bona fide enhancers,
which are silent in mESCs when marked with 5hmC.
We also investigated if 5hmC at distal regulatory regions

has a repressive role using the Tet1 shRNA suppression
experiments in mESCs [38]. We found that the target genes
of cluster 2 were significantly upregulated (p-value < 0.01)
after Tet1 gene suppression, suggestive of repressive
roles of 5hmC (Additional file 1: Figure S9). We did not
find a similar pattern in Tet2 shRNA-treated mESCs,
) Schematic diagram of the experimental setup. (B) Luciferase reporter
g distal TFBSs in mESCs. Control: empty vector, TFBS1: 5hmC-enriched
site, TFBS3: 5hmC-enriched Tcfcp2I1 binding site, TFBS4: 5hmC-enriched

se activity of control is set as 1. *p-value < 0.05.
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possibly due to the fact that Tet2 is dominantly associated
with the 5hmC present in gene bodies [38].

Discussion
The field of DNA methylation has expanded recently,
with the identification of multiple cytosine variants; 5hmC,
5fC, and 5-carboxylcytosine (5-caC) [28,39]. Among the
cytosine variants, 5hmC has been most extensively studies
[1,3,9-14]. Although there are genome-wide 5hmC maps
in several cell types, our understanding about the func-
tional role of 5hmC remains limited.
The contribution of the 5hmC modification to gene

regulation is actively debated. Recent studies found that
5hmC gain is accompanied by H3K27me3 loss at pro-
moters and in the gene body during neurogenesis, sug-
gesting an activating role of 5hmC [40]. On the other
hand, the presence of 5hmC at the promoter of biva-
lently marked genes [8,12,14] and in vitro transcription
studies revealed a repressive role of 5hmC at promoter
regions [41]. However, the role of 5hmC at enhancers
has not been investigated thus far.
We observed that enrichment of 5hmC corresponds

with the depletion of eRNAs at distal TFBSs. Consider-
ing that eRNAs correlate with gene transcription [20,21],
we suggest that low levels of 5hmC at enhancers are re-
quired for gene expression. Importantly, we found that a
subset of distal TFBSs that carry the 5hmC mark in em-
bryonic stem cells become enriched for the activating
histone mark (H3K4me1/2) following differentiation into
neural progenitors or endomesoderm, suggesting that
distal TFBSs with 5hmC are repressed in mESC but be-
come active enhancers in a lineage-specific manner. In-
deed, using ChIA-PET interaction information [15], we
found that those regions that gained connections to their
target genes were significantly upregulated during differ-
entiation compared with the target genes in other clus-
ters. This suggests that their target genes were repressed
in ESCs and become selectively activated in a lineage-
specific way.
To ascertain if the proposed “silent enhancers” identified

above can indeed function as enhancers we employed lu-
ciferase reporter assays. We demonstrated that the novel
distal elements, characterized by TF binding, high levels
of 5hmC, and absence of the H3K4me1 “enhancer” mark,
can indeed function as enhancers in mESCs if they are de-
void of the 5hmC modification. This experiment is con-
sistent with the notion that 5hmC could inhibit enhancer
activity at a subset of distal TFBSs in mESCs.
Our findings are different from the work of Sérandour

and colleagues [7], who had suggested an activating role
for 5hmC at distal regulatory regions. They identified
5hmC peaks after differentiation which were surrounded
by the activating H3K4me2 mark. However, more than
50% the 5hmC peaks they identified were located at genic
regions, where they are known to be associated with gene
activation [10,12,38,40,42]. It is also possible that the
5hmC peaks at distal regions are associated with non-
coding RNAs such as long non-coding RNAs (lincRNAs)
[43]. Sérandour and colleagues also identified 5hmC at
distal PPARγ binding sites [33]. Even though Sérandour
and colleagues proposed an activating role of 5hmC at
these master regulator in adipocytes, only a portion of
PPARγ binding sites were enriched for 5hmC [7]. We
revisited their data and found that 5hmC was only
present at sited lacking PolII occupancy (Additional file 1:
Figure S6), indicating that 5hmC at PPARγ binding sites
bears repressive roles in mature adipocytes.
In hESCs, we also identified a group of distal DHSs

with strong 5hmC but weak H3K4me1 and H3K27ac
(Additional file 1: Figure S5). The GROseq levels were sig-
nificantly weak for the group with 5hmC (Additional file 1:
Figure S5). These lines of evidences suggest a general
repressive role of 5hmC at distal regulatory regions.
In ESCs, poised enhancers have been suggested to exist

at sites where both activating marks (H3K4me1) and re-
pressive marks (H3K27me3) are enriched, but H3K27ac is
depleted [23,24]. 5fC is enriched in this type of poised en-
hancers (H3K4me1[+] and H3K27ac[−]) [30]. In contrast
to these poised enhancers, we identify a novel group of
enhancers with no activating histone marks (H3K4me1[−]
and H3K27ac[−]) but enrichment only for 5hmC. Further-
more, this group is strongly enriched for 5fC, even though
cluster 2 lacks the H3K4me1 mark (Figure 1). Our results
strongly suggest that 5hmC and 5fC can be epigenetic
mark for poised or silent enhancers. As shown in our re-
sults, many of these enhancers display activating histone
marks only after differentiation has occurred (Figure 4).
The existence of 5hmC and 5fC also show the active oxi-
dation dynamics at these sites.
We found that 5hmC was enriched at distal PPARγ

binding sites in fully differentiated adipocytes. These find-
ings suggest 5hmC as a new marker for poised enhancers
even in absence of H3K4me1 and H3K27me3. Addition-
ally, we also found enriched 5hmC in NPC at the subset
of the active TFBSs (except for cluster 2) in mESCs
(Additional file 1: Figure S10). This may suggest that
active enhancers in mESCs are repressed by 5hmC in
NPC to remove the enhancer activities in mESCs.
The majority of cluster 2 regions are CTCF binding sites

(Additional file 1: Table S2). In general, 5hmC levels
negatively correlated with CTCF occupancy in cluster 2
(Additional file 1: Figure S11). After differentiation into
NPCs, 5hmC became depleted at these sites even though
the binding CTCF remained. At these sites, we did not ob-
serve activating H3K4me1 and H3K4me2 marks. How-
ever, it is difficult to discuss the role of 5hmCs at these
sites, because CTCF takes part in various regulatory roles
including transcriptional activation, repression, as well as
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the formation of higher order chromatin structure [44].
The function of 5hmC in mESCs at CTCF binding sites
warrants further study.

Conclusions
We report a new repressive role for 5hmC in gene regula-
tory regions in mESCs. The TFBSs enriched for 5hmCs
were depleted for nascent transcripts and activating histone
modification marks in human and mouse ESCs. Further-
more, the 5hmC levels were inversely correlated with PolII
occupancy in mESCs as well as in fully differentiated adipo-
cytes. Our findings indicate that 5hmC has a repressive role
at specific distal regulatory regions and suggest that 5hmC
is a new epigenetic mark for silenced enhancers.

Methods
Experimental crocedures
We used genome-wide GROseq maps [18] and ChIP-seq
data for chromatin status [17,45], PolII occupancy [17],
5mC [10], and Tet1 occupancy [10] in mESCs for our
integrated analysis. We employed H3K4me1/2 data from
NPC [17] and endomesoderm cells [37] to analyze the
fate of our novel 5hmC regions after differentiation. We
also included 5hmC from various independent studies
[1,12-14,26,27] for our analysis. Additional file 1: Table S1
summarizes all genome-wide datasets we used in our study.
All ChIP-seq data were normalized to 10 reads per kilo-

base per million mapped reads (RPKM) [46]. For clustering
analysis we used Mev V4.8 [47] and applied the K-means
clustering algorithm using the Pearson correlation with
absolute distance as a metric. To cluster distal TFBs in
mESCs, we used the H3K4me1/2/3, H3K27ac, H3K27me
and 5hmC levels and generated applied clustering (K = 10).
We showed other epigenetic marks and GROseq and PolII
next to the identified clusters.
To study the functional roles of 5hmC in various regu-

latory regions, we employed binding site data of 13 TFs
(Nanog, Oct4, STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc,
Klf4, Esrrb, Tcfcp2l1, E2f1 and CTCF) in mESC [16].
To investigate 5hmC and nascent RNA levels across

genes, we divided the genes into promoter (from -1Kbp to
500 bp around the annotated start site), 3′ end (from −500 bp
to 500 bp around the annotated termination site), and
gene body regions (500 bp from the annotated start site
to −500 bp from the annotated termination site). For
transcription levels, we calculated RPKM using GROseq
reads from 500 bp of the annotated start site to the anno-
tated termination site in order not to include transcrip-
tional pausing at promoters [20,48].

Luciferase reporter assay
Genomic DNA was prepared from R1 mouse embryonic
stem cells [49]. About 600 bp genomic fragments for five
distal TFBSs in cluster 2 were amplified by PCR with
dNTPs and the PCR products ligated into the pGL3-SV40
luciferase vector (Promega). Empty vector (control) or
cloned vectors were transfected directly into R1 mESC, to-
gether with the pRL-tk vector (Promega) as internal con-
trol, using Lipofectamine LTX (Life Technologies). At
24 h after transfection, cells were harvested and lysates
subjected to the dual-luciferase reporter assay (Promega).
Firefly luciferase activity was measured and normalized to
the internal control, Renilla luciferase activity.

Additional file

Additional file 1: Figure S1. 5hmC profile at promoters and enhancers.
Figure S2. Comparison of the characteristics of each cluster. Figure S3.
Comparison of the 5hmC patterns for each cluster. Figure S4. The 5hmC
profile of cluster 2 using TAB-Seq. Figure S5. The 5hmC clusters in hESCs.
Figure S6. The 5hmC clusters in mature adipocytes [10]. Figure S7.2 The
average profiles of TFs at cluster 2. Figure S8. The gene expression
change for the target genes for each cluster. Figure S9. The gene expression
changes of the target genes after Tet1 knockdown for each cluster. Figure S10.
The 5hmC in mESC and NPC at the TFBSs in mESCs. Figure S11. 5hmC at
CTCF binding sites in cluster 2. Table S1. Datasets. Table S2. The frequency
of transcription factor occupancy in cluster 2.
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