
Inference of Transposable Element Ancestry
Aaron C. Wacholder1, Corey Cox1, Thomas J. Meyer2,3, Robert P. Ruggiero1, Vijetha Vemulapalli1¤,

Annette Damert4, Lucia Carbone2,3, David D. Pollock1*

1 Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America, 2 Department of Behavioural

Neuroscience, Oregon Health Sciences University, Portland, Oregon, United States of America, 3 Division of Neuroscience, Oregon National Primate Research Center,

Beaverton, Oregon, United States of America, 4 Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano Sciences, Babes-Bolyai-University, Cluj-

Napoca, Romania

Abstract

Most common methods for inferring transposable element (TE) evolutionary relationships are based on dividing TEs into
subfamilies using shared diagnostic nucleotides. Although originally justified based on the ‘‘master gene’’ model of TE
evolution, computational and experimental work indicates that many of the subfamilies generated by these methods
contain multiple source elements. This implies that subfamily-based methods give an incomplete picture of TE relationships.
Studies on selection, functional exaptation, and predictions of horizontal transfer may all be affected. Here, we develop a
Bayesian method for inferring TE ancestry that gives the probability that each sequence was replicative, its frequency of
replication, and the probability that each extant TE sequence came from each possible ancestral sequence. Applying our
method to 986 members of the newly-discovered LAVA family of TEs, we show that there were far more source elements in
the history of LAVA expansion than subfamilies identified using the CoSeg subfamily-classification program. We also identify
multiple replicative elements in the AluSc subfamily in humans. Our results strongly indicate that a reassessment of
subfamily structures is necessary to obtain accurate estimates of mutation processes, phylogenetic relationships and
historical times of activity.
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Introduction

Repetitive elements may comprise two-thirds or more of most

vertebrate genomes [1], and most repeat sequence is derived from

transposable elements (TEs). To obtain an accurate picture of the

structure and evolutionary history of vertebrate genomes, it is

therefore necessary to have a good understanding of the origins and

expansion histories of TEs. Early studies attempted to reconstruct

the relationships among TEs by dividing extant TE sequences into

subfamilies on the basis of shared high-frequency diagnostic

nucleotide variants [2–7]. Many of these early studies, particularly

in primates, were interpreted as supporting a ‘‘master gene model’’,

in which one or a few source elements produce large numbers of

inert copy elements that are incapable of replication [8,9].

According to this model, each subfamily represents the descendants

of a particular master gene, the sequence of which is assumed to be

the subfamily consensus. Later studies found evidence for multiple

source elements within subfamilies [10–12], however, and recent

empirical studies have shown that up to hundreds of elements are

capable of replication when placed in a laboratory system [13]. This

research suggests that subfamily classification based on diagnostic

nucleotides provides only a coarse picture of what may be an

intricate web of familial relationships among the TEs in the genome.

However, no previously established method can accurately recon-

struct relationships among thousands of TE sequences.

Our group is particularly interested in utilizing TEs to

understand the genomic mutation process. In theory, TEs are

extremely useful for this purpose, as mutations that accumulate

after a duplication occurs should typically be almost entirely

neutral, and therefore serve as an accurate reflection of the

mutation process unfiltered by selection [14]. However, in the

course of using TEs to investigate evolutionary processes, we

discovered inconsistencies that suggested that subfamily consensus

sequences produced by CoSeg, a popular program for TE

subfamily classification, are not reliable for use as ancestral

sequences. The main problem is that at many positions in TE

alignments, far more sequences than expected differ from the

subfamily consensus sequence. This leads to high apparent

mutation rates at these positions if the subfamily consensus is

assumed to be the ancestor of all elements in the subfamily.

Instead, we inferred that many of the elements in the subfamily

were produced by source elements that already differed from the

subfamily consensus at one or more sites but were not identified by

CoSeg. An additional limitation of CoSeg and all other current

subfamily-classification methods is that they assign elements to

subfamilies deterministically, without accounting for inference

uncertainty. This is especially problematic for TE evolutionary

studies because similarities between ancestral TEs may make it

impossible to precisely determine the ancestry of any given

element. These problems limit the utility of TEs for investigating
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evolutionary processes, and thus strongly motivate the develop-

ment of a new approach.

Here, we propose a novel Bayesian Markov chain Monte Carlo

(MCMC) method that predicts which sequences replicated during

a TE family’s evolutionary history, and reconstructs the ancestral

relationships among replicating and non-replicative sequences.

The method returns the posterior probability that each TE

sequence was replicated from each of a set of plausible ancestral

sequences, as well as the probability that each candidate ancestral

sequence replicated at all. To our knowledge, the only other

method specifically designed to reconstruct ancestral TE relation-

ships that is not based on heuristic subfamily classification is that of

Cordaux and colleagues [10]. These authors build a median

joining network [15] of the extant elements, a maximum-

parsimony based method. Although this method was an important

contribution, it is deterministic, only applicable to a small number

of sequences, and shares the general problems [16] of maximum-

parsimony phylogenetic methods. Some authors apply phyloge-

netic techniques designed for inferring species relationships, such

as neighbor joining methods, to reconstruct TE relationships

[17,18]. These methods implausibly assume bifurcating trees,

though a single source TE may replicate itself many times.

We applied our approach to two TE families: the gibbon-

specific LAVA TEs [19] and the Sc subfamily of Alu. The gibbon

LAVAs are a novel class of element found exclusively in gibbon

(Hylobatidae) species, and are composed of portions of other TEs

usually found in primate genomes: L1ME5, AluSz6, and SVA_A

[19]. The LAVA elements are an attractive system for under-

standing the evolution of TEs because their recent origin

(sometime after the Gibbon divergence from other hominids 15–

18 million years ago) and limited diversification [19] make the

analysis of their relationships more tractable. In contrast, the

AluSc family is an older inactive Alu subfamily (estimated to be at

least 35 million years old [20]). Using our new method, we

evaluated whether the likely number of replicating ancestral

sequences in each TE family or subfamily differed from the

number of subfamilies returned by CoSeg, whether the subfamilies

previously identified are compatible with predicted ancestral

relationships, and whether our method solved the problem of

unrealistically high implied mutation rates at some sites. Finally,

we suggest new subfamily designations in the gibbon LAVA TE

family based on their probable relationships.

Results

Identification of CoSeg subfamilies and the problem of
excess mutations

Most methods to characterize TE relationships first divide a TE

family into subfamilies. Subfamily-classification methods group

sequences on the basis of their nucleotide identity at ‘‘diagnostic’’

sites [21,22], for example by recursively splitting subfamilies that

fail a test of homogeneity [22]. By far the most popular automated

subfamily classification method is CoSeg [23], a wrapper for the

AluCode program [24] that is integrated with the widely-used

RepeatMasker TE identification program [25]. The CoSeg/

AluCode method tends to identify more subfamily structure than

previous approaches, so we decided to compare results from our

new program exclusively to CoSeg results. The AluCode

algorithm used by CoSeg iteratively identifies sequences in a

family or proposed subfamily that contains pairs of sites with

nucleotide variants that co-occur more frequently than would be

expected by random mutation from the subfamily consensus

sequence. This pair of sites is then used to divide sequences into

two new subfamilies, which may be further split by the same

criteria, and so on to completion. The observation of overrepre-

sented nucleotides at a pair of sites suggests that some sequences

currently assigned to a subfamily were produced by a progenitor

sequence that diverged at these sites prior to replicating. This

justifies introducing a new subfamily to contain the descendants of

that progenitor. After generating subfamilies, CoSeg links them

using a minimum spanning tree of the subfamily consensus

sequences, which is intended to represent the subfamily phylogeny.

The CoSeg algorithm was applied to 986 aligned LAVA elements

(401 bp) to obtain 14 subfamilies. We noticed that some sites showed

higher levels of divergence from the CoSeg-defined subfamily

consensus sequences than might be expected due to mutation alone.

In earlier work on human Alu and opossum SINE1 TEs, we had

observed similarly aberrant sites [26]. These sites suggest the

existence of undiscovered replicative sequences that carry the

divergent variant, so we hypothesized that CoSeg subfamily

classification might be too conservative about adding new subfam-

ilies to give a realistic picture of ancestral replicative sequence

structure in LAVA. CoSeg implements a number of conservative

measures that guide the splitting. For example, it only allows each

site to be used once to split subfamilies. Additionally, split decisions

are only made on the basis of a strict significance test, which means

that subfamilies with high support for existing may still be rejected.

To determine the plausibility that the CoSeg subfamily

consensus sequences represent all of the ancestral sequences of

the TEs in the data, we developed a re-sampling test. Null

expectations were obtained by resampling substitutions from the

consensus sequence of each subfamily, accounting for variation in

mutation rates among sites and mutation types. The substitution

resampling process was replicated 1000 times to get a predicted

distribution of each nucleotide at each site for each subfamily

under the assumption that all differences between ancestors and

descendants are due to mutation. The expected sums of deviations

from these expectations were compared to the observed deviations

from expectation among the real by-site nucleotide distributions in

each CoSeg-inferred subfamily.

Applying this test to the LAVA CoSeg subfamilies, we found

that, in 12 of the 14 CoSeg subfamilies, deviation from

Author Summary

The most common entities in vertebrate genomes are
transposable elements (TEs), DNA sequences that have
been repeatedly copied and inserted into new locations
throughout the genome. Some TEs have been replicated
hundreds of thousands of times, and their ecology and
evolutionary history within a genome is thus critical to
understanding how genome structure evolves. It was once
thought that only a few ‘‘master gene’’ copies could
replicate, while the rest were inactive (dead on arrival), but
recent computational and laboratory studies have indicat-
ed that this is not the case. However, previous methods for
reconstructing TE evolutionary history were not designed
to solve the problem of determining the ancestral source
sequence for large numbers of elements. Here, we present
a new method that is. Our method surveys all likely TE
ancestors and determines the probability that each
modern element arose from each of its plausible ancestors.
We applied our method to the gibbon-derived LAVA TE
family and to the human AluSc subfamily and inferred
many more source elements than indicated by previous
methods. This new method will help us better understand
TE evolution, including both the impact of sequence on
replication and the substitution process after replication.

Ancestral Transposable Elements
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expectations exceeded the deviation among any of the 1000

resampling replicates (Figure 1). Thus, we can reject the hypoth-

esis that the sequence data can be explained solely by substitutions

from the subfamily consensuses, and infer that there are likely to

be many more ancestrally-replicative sequences than identified by

CoSeg.

A Bayesian approach to TE ancestral reconstruction
To better understand the evolution of TEs, what is needed is a

method that directly addresses which sequences were historically

replicative and which sequences descended from each replicative

element. To achieve this, we developed a novel Bayesian Markov

chain Monte Carlo (MCMC) approach that jointly considers the

evidence for replication of all plausible ancestral TE sequences in a

family. We will refer to this method as AnTE. The first step in this

method is to identify plausible discriminatory sites that separate

ancestral replicative elements. We call them ‘‘discriminatory’’ sites

to distinguish them from ‘‘diagnostic’’ sites that are used to

deterministically classify sequences in subfamily-based methods.

Discriminatory sites will tend to vary more than other sites,

because replicative sequences that differ from the consensus at

such sites will increase the frequency of the variant as they

proliferate. Initially, the plausible discriminatory sites were

identified as those sites with variant frequencies more than three

standard deviations greater than the mean frequency of that

variant among all sites with the same consensus base (see Methods

for a full description of discriminatory site identification).

The next step of the AnTE algorithm is to construct a pool of

candidate replicating ancestors; the probability that each candi-

date is a true ancestor can then be evaluated using the MCMC. By

definition, ancestors differ from the consensus only at discrimina-

tory sites, so only the discriminatory site sequence needs to be

considered. Initially, the set of candidate ancestor discriminatory

site sequences was constructed to be the set of all discriminatory

site sequences observed in the sequence data. During the burn-in

period of the chain, discriminatory site combinations outside the

initial set of candidate ancestors were added if their inclusion

improved the likelihood of the model.

The MCMC estimates posterior distributions for three sets of

parameters: the relative rates of replication for each candidate (a

rate of 0 indicates that the candidate is not ancestral), the times at

which each candidate with non-zero replicative rate was actively

replicating, and rate parameters for a nucleotide substitution rate

matrix that determines the probability of transitioning between

any pair of nucleotides over a time period. For any step in the

MCMC procedure, the likelihood of generating the sequence data

was calculated based on the inferred ancestors (i.e., sequences with

non-zero replicative frequency), their replicative frequencies and

times of activity at that step, and the substitution rate matrix. A

prior was set on the total number of replicative sequences by giving

a likelihood penalty for each candidate with non-zero replicative

rate. The likelihood of each sequence observed in the data or

inferred by the model was calculated based on summing the

probability (see Methods, Equation 2) that it was produced by

mutation from each inferred ancestral sequence, weighted by the

replicative frequency of that candidate ancestor. The posterior

probability distributions of the replicative frequency for each

candidate sequence, whether it replicated at all, and which

ancestors it was derived from, were then calculated by averaging

these probabilities over all steps in the post convergence portion of

the MCMC.

Support for a large number of replicative LAVA
sequences

Separate chains were run on the LAVA and AluSc datasets for

five different prior distributions of the total number of replicative

sequences, set by applying a penalty on each additional ancestor

inferred by the model. These penalties consisted of 0, 2, 4, 6, or 8

log points per ancestor. In LAVA, 38–43 (99% credible region)

replicative sequences were inferred even under the harsh 8 log

penalty, many more than the 14 subfamilies identified by the

CoSeg program (Table 1 and Figure 2a). More replicative

sequences were also identified for AluSc than the three subfamilies

given by CoSeg, though the total number was much less than for

LAVA, with 6–11 replicative sequences inferred among all priors

considered (Figure 2b).

The same substitution resampling method applied to the CoSeg

subfamilies earlier was applied to the results from each AnTE run,

testing whether mutation alone can explain the differences

between inferred ancestral sequences and their descendants

(Table 1). Based on this analysis, we reject the mutation-only

hypothesis for the LAVA runs with 8 (p,0.001), 6 (p = 0.004), or 4

(p,0.001) log penalty, inferring that these runs fail to identify

some true ancestral sequences. We fail to reject the mutation-only

hypothesis for the 2 log penalty run (p = .064) and the 0 log penalty

run (p = .090). Thus, we select the results from the 2 log penalty

chain as a conservative estimate of the number of replicative

sequences in the history of LAVA, and use it in all further analyses

of LAVA. Results for this chain are given in Supplementary

Tables 1 and 2. The 99% credible region for the number of

replicative elements in the 2 log penalty run is 50–60, suggesting

50 as a reasonable lower bound for the total number of replicative

sequences. For AluSc, mutation appears to be a sufficient

explanation for the differences from the inferred ancestors for all

priors considered (Table 1). Since the number of sequences

identified in AluSc was relatively insensitive to the prior, we

Figure 1. Deviation from expectation in randomly sampled
CoSeg subfamilies. For each CoSeg subfamily, the 99% confidence
interval is given for the deviation from expectations among 1000
substitution redraws under the hypothesis that all differences between
subfamily members and the subfamily consensus are due to mutation,
rather than replication. Diamonds indicate the deviation from
expectation in the observed substitution data.
doi:10.1371/journal.pgen.1004482.g001
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present results for the same 2 log penalty as used for LAVA to

facilitate comparison (Supplementary Table 3).

A bushy network of related ancestral sequences
Network representations of the relationships among the

elements of the LAVA and AluSc families are shown in

Figures 3–5. These networks show the predicted ancestral

relationships among all sequences with more than 50% probability

of being replicative (shown most clearly in Figure 3a and 5a). The

arrows on the graph indicate the predicted original source of each

replicative sequence, with cycles representing uncertainty about

the direction of original descendancy. Note that later copies of that

sequence may have arisen from other ancestors, including possible

back mutation from one of its descendants. Each node in the graph

represents a particular sequence, with the diameter of the node

proportional to its estimated frequency of replication.

There are four sequences inferred to have at least a 5%

probability of being the LAVA root according to the AnTE

algorithm. We compared these sequences to the segment of the

human genome homologous to the 39 end of LAVA [19]. One of

these four plausible root sequences (Figure 3 and 4, marked with

an arrow) has only 2 differences from the human sequence among

73 discriminatory sites; among all other candidates with .50%

probability of being replicative, there are 4–28 differences (mean

12.1). Thus, the marked sequence is the probable ancestral LAVA,

and the inferred root from AnTE is consistent with the homology

data.

Revised LAVA subfamilies
The assignment of CoSeg subfamilies to nodes in the ancestry

networks of LAVA (Figure 3) and AluSc (Figure 5) indicates that

most CoSeg subfamilies are represented by multiple ancestral

replicative sequences. Although CoSeg subfamilies tend to cluster

together in the network, replicative sequences from three LAVA

subfamilies (colored in, purple, magenta and light blue in the

graph) are disjointed, with intervening replicative sequences from

other subfamilies (or that are not assigned to a subfamily at all).

Additional discrepancies can be found when considering the

CoSeg subfamily assignments of all sequences, not just replicative

sequences (Figure 3b). Among descendants of all ancestors with

CoSeg subfamily assignment, 57 LAVA sequences (6.5%) and 19

Alu sequences (2%) are assigned to different subfamilies than their

most probable ancestor.

Based on this result, and considering the ancestral relationships

inferred by the AnTE MCMC, we propose a subfamily

organization for LAVA with 9 new subfamilies (Figure 4; see

Figure 2. Posterior distribution of the number of replicative sequences. The Posterior distribution of the number of replicative sequences in
A)LAVA and B)AluSc is given for MCMC runs with different penalties applied to each additional replicative sequence. Higher penalties indicate a prior
distribution favoring fewer replicative sequences. Each distribution is an average over 10 replicates.
doi:10.1371/journal.pgen.1004482.g002

Table 1. Number of replicative sequences identified for different prior penalties in LAVA and AluSc.

Prior penalty
(log)

Number replicative LAVA sequences (99%
credible region)

Mutation-only hypothesis p-
value

Number replicative AluSc Sequences (99%
credible region)

0 60–72 .090 8–11

2 50–60 .064 8–11

4 44–52 ,.001 7–9

6 41–47 .004 7

8 38–43 ,.001 7

doi:10.1371/journal.pgen.1004482.t001
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Figure S1 for legend). This subfamily scheme was designed based on

the desiderata of a) relatively few subfamilies; 2) matching the

CoSeg subfamilies where possible, to facilitate comparison; and 3)

minimizing the number of sequences with uncertain subfamily

assignment. The low mixing of colors in Figure 4b indicates that we

have largely achieved our goal, although there is unavoidable

uncertainty at most boundaries between subfamily groups. We want

to emphasize here that the utility of the subfamilies is entirely

organizational and aesthetic. We recommend that any analytical

inference be carried out on the full ancestral probability network,

and that it should sum over all ancestral uncertainty rather than

arbitrarily assigning uncertain sequences to one ancestor or another

and subsequently treating the assignment as though it were data.

Many discriminatory sites are used multiple times in
LAVA

We estimated the number and rate of substitutions between

ancestral and descendent sequences at each site. This analysis

Figure 3. Ancestral relationships among LAVA elements. The predicted network of LAVA ancestral relationships is shown. A) All sequences
that replicated with probability .30% are represented as nodes in the network. Arrows are drawn between sequences if there was at least 5%
probability that an ancestral relationship existed between those sequences, with the direction of the ancestor-descendant relationships indicated by
the arrows. Sequences are colored based on their CoSeg subfamily assignments (Table S2). Sequences colored white do not exist in the data, but are
inferred to have existed ancestrally. B) The network in A is modified by the addition of all extant TEs in the data added to the network as nodes
represented by small dots. Edges are drawn between an element and an ancestral sequence if there was at least 5% probability the element
descended from the ancestral sequence. Nodes are colored based on CoSeg subfamily assignment.
doi:10.1371/journal.pgen.1004482.g003
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indicates that, contrary to the assumption of the CoSeg algorithm,

substitutions at individual sites repeatedly discriminate among

replicative sequences. In LAVA, there are multiple substitutions

among replicative sequences at between 38%–45% (95% credible

region) of the discriminatory sites.

The CoSeg algorithm does not allow sites to discriminate

between subfamilies more than once; this is intended to prevent

the creation of new subfamilies from elements formed by

recombination between sequences from separate subfamilies.

However, it is reasonable to expect that substitutions that create

new replicative sequences may occur multiple times. From a

mechanistic perspective, discriminatory sites may be less likely to

affect replicative function, whereas non-discriminatory sites may

be more likely to affect replicative function. If there are only a

limited number of sites that don’t affect function, all of the

mutations among replicative sequences will be focused on those

sites. To test whether all sites are equally likely to be discrimina-

tory, we considered a null model in which the probability of

substitution between ancestral replicative sequences is proportion-

al to the probability of substitution to extant sequences at that site.

We randomly re-sampled all substitutions on the tree of replicative

LAVA sequences to obtain a null distribution for the number of

Figure 4. New AnTE subfamily assignments for LAVA elements. The predicted network of LAVA TE ancestral relationships is shown, as in
Figure 3. A) All sequences that replicated with probability .30% are represented as nodes in the network, exactly as in Figure 3A except that nodes
are colored based on their new AnTE-based subfamily assignments. B) As in Figure 4A, all TEs in the data are added to the network as nodes,
represented by small dots, and using the coloring scheme of the new AnTE-based subfamily assignments.
doi:10.1371/journal.pgen.1004482.g004
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substitutions per site. Although 33–42 sites (MCMC 95% credible

region) had exactly one substitution among the actual replicative

sequences, 51–93 sites had a single substitution in 1000 draws of

the null model. Thus, there is an excess of sites with multiple

substitutions among ancestors in the observed data compared to

the null hypothesis of no constraint. We conclude that, as

expected, some variants are not neutral with regard to replication.

To further explore this question, we created a simple model of

constraint on replicative elements that allows for two types of sites:

constrained sites, which eliminate replicative capacity entirely if

mutated, and unconstrained sites, which have no effect on

replicative capacity. We tested this model for different m, the

number of constrained sites among the 330 sites analyzed

(microsatellites, CpG sites, and large insertions were removed

prior to MCMC analysis and therefore were not considered). As

before, substitutions were drawn to match the number among

replicative sequences, but no substitution was allowed at m
random sites separately selected for each draw. Taking the upper

bound inference of 42 sites with single substitutions, the lowest m
for which at least 5% of 1000 draws had 42 or fewer sites with one

Figure 5. Ancestry networks of AluSc sequences. The predicted network of AluSc ancestral relationships is shown. A) All sequences that
replicated with probability .30% are represented as nodes in the network. Arrows are drawn between sequences if there was at least 5% probability
that an ancestral relationship existed between those sequences, with the direction of the ancestor-descendant relationships indicated by the arrows.
Sequences are colored based on their CoSeg subfamily assignments. B) The network in A is modified by the addition of all extant TEs in the data
added to the network as nodes represented by small dots. Edges are drawn between an element and an ancestral sequence if there was at least 5%
probability the element descended from the ancestral sequence. Nodes are colored based on CoSeg subfamily assignment.
doi:10.1371/journal.pgen.1004482.g005

Ancestral Transposable Elements
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substitutions was 163, leaving 167 sites unconstrained. This

analysis suggests that only around half the tested sites are

effectively neutral to replicative function.

Analysis of 59 region of LAVA
The LAVA sequence is divided by a VNTR (variable number of

tandem repeats) region of up to 2000 bp. Our main analysis focused

on the region 39 from the VNTR, as many LAVA loci lack all or part

of the VNTR and 59 region. The full-length 59 region is around

350 bp, and we found 337 loci with intact 59 regions. Analysis of

these sequences revealed three separate clusters defined by presence

or absence of two large interior segments of around 100 bp each. We

used AnTE to reconstruct the ancestral relationships separately

within each of these three clusters. These ancestral networks largely

agree with the analysis of the 39 region: the first cluster consists mostly

of sequences from the adjacent green, purple, and brown subfamilies

from Figure 4 (Figure S2A); the second cluster consists mostly of

green and grey subfamilies (Figure S2B), and the third cluster is

composed mostly of the older red, yellow, pink, and blue subfamilies

(Figure S2C). However, 26 sequences (7.7%) are assigned ancestors

on the 59 network that are distantly related to ancestors in the 39

network. A probable explanation for this discrepancy in placement

between the 39 and 59 ancestral networks is recombination across the

VNTR. Aside from these putative recombinants, the network

structure within the three 59 clusters is largely in agreement with

the structure of the 39 network (compare Figure 4 and Figure S2).

Validation of AluSc ancestry network using rhesus
macaque homologues to human elements

Ancestral inference of TEs that inserted prior to a speciation

event can be validated by comparing homologous elements between

two species. To see this, consider that if the ancestor is correct, then

the number of shared differences from the ancestor at each site will

be approximately proportional to the time between insertion and

speciation (T0). The number of unique differences in each branch

will be approximately proportional to the time between speciation

and the present (T1). Sequences that differ from the predicted

ancestor upon insertion will have an inflated number of shared

differences from the predicted ancestor. This will lead to a higher

estimate of T0=T1 than at non-discriminatory sites.

Taking the AluSc consensus sequence as the presumed ancestor,

we found that five of the six discriminatory sites inferred by our

method exceeded the mean T0=T1 ratio by 3-fold or greater

(Figure S3), whereas all of the non-discriminatory sites have lower

ratios. To validate each branch on the tree in Figure 5b, we

separately considered the descendants of each predicted ancestral

sequence (the ‘‘test’’ ancestor) along with all of the descendants of

its ancestor (the ‘‘parent’’). Considering the T0=T1 ratios assuming

the parent sequence was the true ancestral sequence, a positive

validation result would consist of a high ratio (exceeding the 3x

threshold) for the site that discriminated the test ancestor from the

parent. All predicted ancestors were validated by this test. No non-

discriminatory sites exceeded the 3-fold threshold except a single

CpG site (position 1), which is possibly a true discriminatory site

that was undetected because we eliminated CpG sites in the AnTE

analysis. It is also notable that in this branch-validation analysis,

the discriminatory site with the lowest ratio in the overall

consensus analysis (Figure S3) was validated, but the two non-

discriminatory sites that had higher ratios were not.

Discussion

We have confirmed here that the CoSeg subfamily classification

method fails to identify many highly-probable ancestral sequences

in both LAVA and AluSc, and therefore that CoSeg subfamily

consensus sequences are problematic for use as presumed

ancestors in divergence and substitution analysis. In contrast, the

AnTE method we developed and describe here provides a detailed

picture of TE evolutionary history, providing ancestral sequences,

the times of replicative activity of these sequences, and their

replication frequency. The AnTE method is fast and enables the

probabilistic evaluation of relationships between thousands of

elements within subfamilies and between subfamilies. The AnTE

program, relevant datasets, and user instructions are available at

www.EvolutionaryGenomics.com.

Though the AnTE method identifies more sequences than

previous approaches in both subfamilies studied, many more

ancestrally-replicative sequences were identified for LAVA (50–60)

than for AluSc (6–7) from similar-sized sequence datasets. Our

analysis suggests that most AluSc sequences derive from a single

ancestor, while the most successful LAVA source sequence is

responsible for only 13% of extant LAVA elements. The two

datasets are not directly comparable, as most of the LAVA

sequences identified in the Gibbon genome were used for our

analysis of LAVA, while only a small subset of AluSc was used,

and AluSc itself is a subfamily of the much larger Alu TE family.

Nevertheless, this large difference between families suggests

differing evolutionary dynamics.

The method presented in this paper has some limitations that

should be addressed in future work. Firstly, it assumes that all

differences between sequences and their ancestors are the result of

mutation, rather than recombination or gene conversion. We

found strong evidence of recombination across the large VNTR

region in LAVA in 7.7% of full sequences, but no obvious

evidence of recombination between distant ancestral sequences

within the regions either 59 or 39 from the VNTR. However, we

cannot rule out the possibility that some sequences are a result of

recombination events between closely-related subfamilies. Second,

our method, like most phylogenetic methods, assumes site-

independence. We excluded CpG sites from our analysis because

their elevated mutation rate violates site independence. CpG sites

are common in both LAVA and Alu, and it is possible that some

are discriminatory sites that can help distinguish true ancestral

sequences. Methods that allow the relaxation of site-independence

assumptions would also allow large deletions and microsatellites to

be used as TE subfamily markers. Here, we had to analyze the

clusters separated by large deletions in independent analyses.

Third, our method accounts for the activity periods of transpos-

able elements in a simplistic way, assuming a single time point of

activity rather than representing a distribution of replication rates

across time. One obvious but non-trivial improvement that could

be made would be to better estimate the distribution of replication

times for each ancestral subfamily, such as has been done for Alu
subfamilies [26].

Despite the assumptions made in creating subfamilies using

previous approaches, they have often been used in studies of TE

evolution. For example, most methods for estimating the age of

subfamilies are based on some measure of divergence between

subfamily consensus sequences and the members of the subfamily

[27–30]. Our findings suggest that this prior widespread use of

subfamily consensus sequences as the single ancestral subfamily

source sequence to analyze TE mutation patterns [14] has led to

over-estimation of substitution rates and TE divergence times, and

to incorrect inference of substitution patterns. AnTE can be used

to improve such analyses, and may be useful to revise existing

subfamily nomenclature based on more realistic estimates of

ancestral replication patterns, as we have done with the gibbon

LAVA elements. Overall, we expect that such approaches will be
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central for evaluating genome structural evolution and using TEs

to understand genome-wide mutation processes.

Methods

AluSc sequence filtering and alignment
The human genome was downloaded from the RepeatMasker

[25] website. The 2006 build of the human genome was masked

based on Repbase [31] version 20090604 using version Repeat-

MaskerOpen-3.2.8 of RepeatMasker. The annotated Alu se-

quences were extracted from the genome and sorted by subfamily

classification. A total of 34,515 AluSc sequences were identified in

this way. Of these, 1200 were selected at random for ancestry

determination and manually aligned.

For all human Alu elements, the corresponding Alu elements

from rhesus macaque were obtained using Galaxy [32]. The

‘‘extract pair wise MAF blocks’’ tool from Galaxy was used to get

the sequence matches of each of macaque to human Alu elements.

The ‘‘Stitch MAF blocks’’ tool was used to obtain the correspon-

dence between matches among genomes to the human Alu
coordinates. To ensure accurate alignment, macaque AluSc

sequences with less than 80% identity to their human homologue

were removed from analysis.

Gibbon LAVA sequence filtering and alignment
We identified LAVA sequences in the Gibbon genome using the

probability-based oligonucleotide clustering method P-clouds [33].

The published LAVA consensus sequence, which contains only

the region 39 of the VNTR [19], was segmented into regions

which were used to form clouds. We then searched the genome for

locations that matched the cloud data. Identified locations were

merged if the distance between them was less than the length of

the region in the consensus sequence. This resulted in 1136

sequences will full 39 regions. Sequence for the region 59 of the

VNTR was obtained by building clouds from the region upstream

of the VNTR in these sequences. Locations matching these clouds

were then merged to the 59 sequences to obtain full length

sequences. This process identified 338 sequences with complete 59

regions. Alignments for both the 39 and 59 regions were

constructed manually.

Sequence processing
An assumption of our model is that the substitution process at

each site is independent of all other sites. This assumption is clearly

violated by large insertions/deletions, CpG sites, and microsatel-

lites. Therefore, CpG and gap sites within the consensus, as well as

microsatellite regions, were excluded from all analyses. All

sequences with gaps larger than four nucleotides in their alignment

to the consensus were also excluded from analysis. This left 986

LAVA and 972 AluSc sequences for the main analysis. Alignments

before and after processing are provided in Supplementary Data

Files S1–S10.

Identifying discriminatory sites and candidate ancestral
element sequences

We define ‘‘discriminatory sites’’ as those sites which differ

among historically replicative sequences. Since only discriminatory

sites are informative in ancestry determination, our first goal is to

predict these sites. Two features distinguish discriminatory from

non-discriminatory sites. First, discriminatory sites will tend to

have a higher frequency of a particular variant than expected by

mutation alone. At non-discriminatory sites, all variation is due to

substitution; at discriminatory sites, replication of a sequence that

already differs at that position will also increase the frequency of

the variant. Second, discriminatory sites will show association with

each other, because discriminatory variants arise in particular

backgrounds of variation at other discriminatory sites.

We predicted which sites are discriminatory as follows: First, a

nucleotide substitution probability matrix P was derived by

counting the number of differences from the consensus sequence

U to each of the Ns elements in the sequence database S. Each

nucleotide difference count cab between each pair of bases or gaps,

was used to obtain relative substitution probabilities from a to b,

Pab~cab=
X

i,j

cij ð1Þ

Sites with mutations exceeding the mean rate of any type of

mutation by more than three standard deviations were then

identified as an initial set of predicted discriminatory sites. For

each predicted discriminatory site, we then tested for association

with all other sites using a Monte Carlo chi-square test. All sites

with p-values ,.01 for association with any of the initially-

predicted site were added to the pool of discriminatory sites. Note

that, as described below, each candidate ancestral sequence is

evaluated by MCMC for the probability it is a true ancestor.

Therefore, we are not concerned with including some false

discriminatory sites, as the strength of evidence for each site will be

reflected in the final results.

A set of candidate ancestral sequences was constructed based on

the predicted discriminatory sites. By definition, ancestral

sequences do not differ at non-discriminatory sites, so all ancestors

were assumed to agree with the consensus except at discriminatory

sites. For AluSc, the small number of discriminatory sites allowed

inclusion of all possible discriminatory site combinations as

ancestral sequences. For LAVA, all discriminatory site combina-

tions observed in the data were included as an initial set of

candidate ancestral sequences. Since some ancestors may have had

combinations of discriminatory site which no longer exist, we

added new plausible candidates during the burn-in phase of the

MCMC, as described below.

The ancestry model
The TE ancestry model consists of three sets of parameters: A,

the replicative frequency of each candidate ancestor; T, the

estimated time of replicative activity of each ancestor, and rate

parameters for a nucleotide substitution rate matrix Q. The

ancestral frequencies were modeled as discrete variables with

constant sum equal to the total number of sequences in the data.

The parameters Tj approximate the time of replicative activity for

each candidate j as a single time point, in which that candidate

produced all descendants. For computational efficiency, these time

parameters were restricted to 1001 equally-spaced points between

0 and 1, with 0 defined as the present and 1 as the time of activity

of the root sequence. Flat priors were assumed for all parameters

except A, for which a penalty is applied for each candidate with

nonzero replicative frequency. The size of this penalty was varied

across runs to reflect different beliefs about the prior probability

any given sequence is replicative. The likelihood of generating any

TE sequence Si in the dataset S, given all parameters, is defined

as:

L(Si DA,T,Q)~
XNc

j~1

Aj � P(Cj?Si DTj) ð2Þ

where Nc is the number of ancestral candidates, Cj is the jth
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candidate ancestral sequence, Aj is the replicative frequency of

candidate j, and P(Cj?Si DTj) is the probability of transitioning

from sequence Cj to sequence Si in time period Tj . This sequence

transition probability is the product of the transition probabilities

at each site between the base in Cj and the base in Si at that site.

The transition probabilities between each pair of nucleotides over

time Tj are obtained from the matrix exponential eQTj .

The overall likelihood of the data, L(SDA,T,Q), is the product of

the likelihood of all sequences which exist according to these

parameters, both current and ancestral. Note that for any i such that

Ai~0, there is no implication that candidate Ci ever existed, so we

need only consider the likelihood all candidate ancestors i for which

Aiw0. For any such sequence, other than the root of the family:

L(Ci DA,T ,Q)~
XNc

j~1

Aj � P(Cj?Ci DTj{Ti) ð3Þ

For TivTj , the sequence transition probability

P(Cj?Ci DTj{Ti) is the probability of transitioning from sequence

Cj to sequence Ci over time period Tj{Ti, calculated, as described

above, by taking the product of nucleotide transition probabilities

over all sites. For TiwTj , this probability is zero, since ancestral

sequences cannot produce descendants which were active earlier

than they were. The root sequence is defined to have likelihood 1.

The substitution rate matrix Q is defined by 10 rate parameters

according to a general strand-symmetric model, giving the

substitution rates between all pairs of nucleotides and single-

nucleotide insertion/deletions.

Details of the Markov chain analysis
The Markov chain was run using the Metropolis-Hastings method

[34] to sample all parameters. The chain was initialized by randomly

selecting half of the candidate sequences as replicative, and their

initial frequencies were assigned according to a multinomial

distribution with equal prior probabilities for each selected candidate.

Two types of proposals were used to efficiently sample A, the

replicative frequencies of the candidate ancestors. In the first proposal

type, two candidate ancestors are selected at random; the frequency

of the first is increased by one and the frequency of the second is

reduced by one. Proposals are always rejected if acceptance would

lead to negative values. In the second proposal type, the frequency of

two randomly-chosen candidate ancestors is swapped.

The T parameters were also sampled by two proposal types. In

the first, a candidate ancestor j was selected at random. A random

integer n was drawn from 0 to 1000, and Tj is set to n/1000. In

the second, candidate ancestors i and j were selected at random,

and their associated parameters Ti and Tj were swapped. The

substitution rate parameters were sampled by a single proposal, in

which the current rate was added to a draw from a normal

distribution with mean 0 and standard deviation .01.

As all proposals are symmetric, the chain satisfies detailed

balance if the acceptance probability A(x,x0) for the moves from x
to x0 follows the Metropolis-Hastings [34] acceptance proposal,

where p(x) p(x) is the likelihood of the set of all parameters x.

A(x,x0)~ min 1,
p(x0)

p(x)

� �
ð4Þ

The first 10 million generations of the Markov chain were

considered a burn-in stage, used to obtain an equilibrium sample

of parameters prior to sampling the posterior. For the LAVA

sequences, this stage was also used to add plausible candidates to

the pool of candidate ancestral sequences for inclusion in the

model. The initial set of candidate ancestral sequences was the set

of discriminatory site sequences observed in the data. However, it

was necessary to account for the possibility that some ancestral

sequences were not represented; for every candidate sequence in

the pool at any sampling point, every possible nucleotide change in

the sequence was evaluated for whether the overall likelihood of

the data would increase if that change were made, keeping

everything else constant. If the likelihood increased for a given

nucleotide change, a new candidate sequence, differing only by

that nucleotide change, was added to the ancestral pool. New

candidates were tested for addition every 100,000 steps from step

2.5 million to step 7.5 million in the burn-in.

After burn-in, the Markov chains were run for 10 million

generations and sampled every 10,000 generations. Good mixing

was verified by running three replicates with each replicate starting

from a random parameter set, and confirming that the within-

replicate variance was at least 99% of the overall variance.

Validating the number of ancestral replicating sequences
Given a proposed ancestral reconstruction for a set of TE

sequences, we developed a test of the hypothesis that mutation

alone can explain the variation between descendants and their

proposed ancestors. If the mutation hypothesis is true, we expect

the substitution process at a given site to be independent of the

ancestral sequence once the ancestral nucleotide and the site

position are accounted for. Therefore, we can reject the mutation-

only hypothesis if the descendants of a proposed ancestor have a

higher frequency of a variant than can be explained by mutation

alone. Such a result suggests the existence of one or more

intermediate sequences between the ancestor and some of its

proposed descendants that vary from the proposed ancestor at the

high-frequency variant sites.

The basis of the test is to ‘‘redraw’’ the substitutions of each

sequence in the data. First, the number of substitutions of each

type at each site between all proposed ancestors and descendants

were counted. For each sequence Si in the data, a new sequence

Ri was constructed from its proposed ancestral sequence Ci by

adding a number of substitutions equal to the number of

differences between Ci and Si. These substitutions were drawn

randomly according to the following process. First, a site is selected

for substitution. The probability of selecting any site k which was

in nucleotide state m in Ci is weighted by the fraction of sequences

which has a substitution at site k from an ancestor in state m out of

all sequences whose ancestor was in state m at site k. Then, the

particular substitution is selected, with the probability of each

substitution type weighted by the frequency of that substitution

from the ancestral nucleotide m at that site according to the

proposed ancestral reconstruction. This process is repeated until

Ri has a number of differences from Ci equal to the number of

differences between Si and Ci. Note that this redraw process

accounts for differences in substitution probability at a site based

on ancestral nucleotide at that site and position.

The redraw process is conducted 1000 times. For each redraw,

a 3-dimensional matrix is constructed giving the number of each

variant at each site among descendants of each ancestor. The

entries in these matrices are averaged among redraws to give a

matrix of expected values. For each redraw r, the sum Dr of

absolute differences between observed and expected values is

computed over the entire matrix. Finally, the sum D0 is computed

by the same calculation based on the actual substitutions according

to the proposed ancestral reconstruction. If the mutation
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hypothesis is true, D0 should fall within the distribution of the Dr

values.

This redraw test was run on both the CoSeg-inferred ancestors

and the ancestors inferred from the AnTE algorithm. To draw a

deterministic ancestral reconstruction from the probabilistic

output of AnTE, a step of the MCMC after convergence was

selected at random, and all sequences were assigned ancestors

based on their probability of descendance according to the

parameters at that step.

Models of replicative sequence constraint
A relevant question in understanding TE ancestry is whether

only a limited number of sequences can be successful in the

replication process. If so, it is expected that mutations at

constrained sites will lead to inactive copies that will not replicate

further. Such sites will be non-discriminatory, while sites that do

allow substitutions among ancestral replicators may become

discriminatory sites. To assess whether there was support for

constraint at some sites, we tested whether the substitution patterns

matched either of two models of sequence constraint in replicative

TEs. In the null model, no constraint was assumed, so the

expected relative frequency of substitutions at a site among

replicative elements equaled the relative frequency overall. In the

test model, it was assumed that m sites were completely

constrained, so that any differences from consensus at that site

prevented replication.

A random tree of ancestral relationships was drawn from the

MCMC data by selecting a step of the MCMC at random, and

assigning ancestors to all data sequences and inferred ancestral

sequences randomly, with the probability of assignment to each

ancestor weighted by the probability of descendence from that

ancestor according to the parameters at that step. As this tree gives the

ancestral sequence for all sequences in the data, we can use it to derive

the substitutions between ancestors and descendants, distinguishing

between substitutions to replicative and non-replicative sequences.

The test statistic X0 was the number of sites with no

substitutions among replicative sequences; i.e., the number of

discriminatory sites. We generated distributions of X0 according to

the assumptions of each model, and then compared these to the

posterior distribution of X0 implied by the MCMC results. First,

1000 trees of TE relationships were drawn randomly. For each

tree, the number of substitutions at each site was calculated, both

for all elements and restricting to replicative elements. Addition-

ally, the number of sites with no substitutions was calculated to get

the distribution of X0 according to the MCMC results. Then, to

generate a distribution of X0 according to each model, for each

tree we drew from a multinomial distribution with number of trials

equal to the total number of substitutions among replicative

elements according to that tree. For the first model, the vector of

probabilities in the multinomial distribution is the relative

frequency of substitution at each site. For the second model, m

sites were selected from the sites for which no substitutions

occurred among replicative elements according to the tree. These

sites were assigned a substitution probability of zero, and the other

probabilities were normalized to sum to 1 before drawing from the

multinomial distribution. Thus, from 1000 draws of a tree, we

obtain distributions of X0 according to the MCMC results, the no-

constraint model, and models for each possible value ofm, from 1

to the total number of sites. We reject a model if fewer than 5% of

X0 values fell within the 95% confidence region for X0 from the

MCMC. The best fit m for the second model was defined as the m

that minimized the absolute difference of the ordered X0 values

from the MCMC and the model.

Validation of AluSc ancestry relationships using
homologous macaque sequences

The AluSc subfamily predates the split between human and

rhesus macaque. We used the homologous AluSc sequence to

validate the ancestors inferred by AnTE. We define T0 as the time

between insertion of an AluSc sequence and the split between

macaque and human, and T1 as the time between the split and the

present. Given that the ancestral nucleotide at a position is X , we

can estimate the probability that neither, one, or both of the

macaque and human sequence have substituted away from X .

Assuming low rates of substitution, and no back-mutation, the

probability of substitution is approximately proportional to time.

The probability that both descendant sequences are still X is then:

P(N1~X ,N2~X DN0~X )~(1{mT0)(1{mT1)2 ð5Þ

where N1 and N2 are the present-day bases in human and

macaque, respectively, N0 is the base the TE has upon insertion,

and m is the mutation rate. Similarly, the probability that one of

the two descendant sequences has substituted away is:

P(N1~X ,N2=X DN0~X )~2(1{mT0)(1{mT1)mT1 ð6Þ

By inserting the proportion of sequences with 0 or 1

substitutions into the above equations and solving for mT0 and

mT1, we can obtain an estimate for mT0 and mT1 at every site,

under the hypothesis that all sequences are descended from the

consensus. Though we expect m to differ between sites, estimates of

the ratio T0=T1 should be similar if the hypothesis holds. If the

hypothesis is false, then at sites where some of the sequences

already differed from the consensus when they were inserted, we

expect estimates of this ratio to be higher than at other positions,

to account for the greater number of sequences for which macaque

and human share a difference from the consensus. Thus, a

relatively high estimate T0=T1 indicates a discriminatory site.

Given a tree of relationships among AluSc sequences, we

estimate T0=T1 for every position among all descendants

(immediate or distant) of each ancestor. We consider a branch

in the tree validated if the sites which distinguish the descendant

node from the ancestral node all have T0=T1 ratios at least 3-fold

greater than the mean ratio.

Supporting Information

Figure S1 Subfamily color legend. Subfamilies as defined by

CoSeg are shown divided into two groups: those that correspond

to a new AnTE subfamily (shared subfamilies #1–9), and those

which are not classified as AnTE subfamilies (ancestral CoSeg-

only subfamilies #10–14). The subfamily colors correspond to

coloration in the main figures, and numbering corresponds to

information in the tables.

(TIF)

Figure S2 LAVA ancestry network based on 59 region. The

predicted network of LAVA ancestry relationships, as described in

Figure 4, but based on the region 59 of the VNTR rather than the

39 region. A) Cluster 1 network B) Cluster 2 network C) Cluster 3

network. Colors of sequences are based on the subfamily

assignments shown in Figure 4.

(TIF)

Figure S3 T0/T1 ratios for all sites, assuming AluSc consensus is

ancestral. Estimated T0/T1 ratios are plotted for every position,
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assuming that AluSc is ancestral to all sequences in the data. The

two horizontal lines are the mean ratio and 3x the mean ratio.

Sites are categorized based on whether they are discriminatory

and whether they are CpG sites.

(TIF)

Table S1 Discriminatory site sequence for all LAVA candidate

ancestors.

(DOCX)

Table S2 MCMC results for LAVA candidate ancestors.

(DOCX)

Table S3 MCMC results for AluSc candidate ancestors.

(DOCX)

File S1 Unprocessed alignment files for LAVA 39 region

sequences. Aligned sequences from the 39 end of LAVA, before

processing.

(FASTA)

File S2 Processed alignment files for LAVA 39 region sequences.

Aligned sequences from the 39 end of LAVA, after processing, as

described in methods.

(FASTA)

File S3 Unprocessed alignment files for LAVA 59 cluster 1

sequences. Aligned sequences from cluster 1 in the 59 end of

LAVA, before processing.

(FASTA)

File S4 Processed alignment files for LAVA 59 cluster 1

sequences. Aligned sequences from cluster 1 in the 59 end of

LAVA, after processing.

(FASTA)

File S5 Unprocessed alignment files for LAVA 59 cluster 2

sequences. Aligned sequences from cluster 2 in the 59 end of

LAVA, before processing.

(FASTA)

File S6 Processed alignment files for LAVA 59 cluster 2

sequences. Aligned sequences from cluster 2 in the 59 end of

LAVA, after processing.

(FASTA)

File S7 Unprocessed alignment files for LAVA 59 cluster 3

sequences. Aligned sequences from cluster 3 in the 59 end of

LAVA, before processing.

(FASTA)

File S8 Processed alignment files for LAVA 59 cluster 3

sequences. Aligned sequences from cluster 3 in the 59 end of

LAVA, after processing.

(FASTA)

File S9 Unprocessed alignment files for AluSc sequences.

Aligned sequences from AluSc, before processing.

(FASTA)

File S10 Processed alignment files for AluSc sequences. Aligned

sequences from the 39 end of LAVA, after processing.

(FASTA)
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