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Abstract

Upstream Binding Factor (UBF) is a unique multi-HMGB-box protein first identified as a co-factor in RNA polymerase I (RPI/
PolI) transcription. However, its poor DNA sequence selectivity and its ability to generate nucleosome-like nucleoprotein
complexes suggest a more generalized role in chromatin structure. We previously showed that extensive depletion of UBF
reduced the number of actively transcribed ribosomal RNA (rRNA) genes, but had little effect on rRNA synthesis rates or cell
proliferation, leaving open the question of its requirement for RPI transcription. Using gene deletion in mouse, we now
show that UBF is essential for embryo development beyond morula. Conditional deletion in cell cultures reveals that UBF is
also essential for transcription of the rRNA genes and that it defines the active chromatin conformation of both gene and
enhancer sequences. Loss of UBF prevents formation of the SL1/TIF1B pre-initiation complex and recruitment of the RPI-
Rrn3/TIF1A complex. It is also accompanied by recruitment of H3K9me3, canonical histone H1 and HP1a, but not by de novo
DNA methylation. Further, genes retain penta-acetyl H4 and H2A.Z, suggesting that even in the absence of UBF the rRNA
genes can maintain a potentially active state. In contrast to canonical histone H1, binding of H1.4 is dependent on UBF,
strongly suggesting that it plays a positive role in gene activity. Unexpectedly, arrest of rRNA synthesis does not suppress
transcription of the 5S, tRNA or snRNA genes, nor expression of the several hundred mRNA genes implicated in ribosome
biogenesis. Thus, rRNA gene activity does not coordinate global gene expression for ribosome biogenesis. Loss of UBF also
unexpectedly induced the formation in cells of a large sub-nuclear structure resembling the nucleolar precursor body (NPB)
of oocytes and early embryos. These somatic NPBs contain rRNA synthesis and processing factors but do not associate with
the rRNA gene loci (NORs).
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Introduction

The nucleolus is the largest visible structure in the mammalian

cell nucleus and the site of ribosome biogenesis. As such, its activity

is a key determinant of a cell’s capacity to grow and proliferate,

and its size and morphology are used as clinical markers of cancer

[1]. In addition, the nucleolus is the site of assembly of

ribonucleoprotein (RNP) complexes ranging from spliceosomes

to telomerase, and is of key importance in mounting cellular

responses to oncogenic stress [2]. The formation of the nucleolus is

the result of transcription of the genes for the major ribosomal

RNAs (rRNAs), the 18S, 5.8S and 28S rRNAs, which are encoded

as part of the 47S precursor RNA. In mouse and human around

200 haploid copies of these genes exist as tandem repeats, the

Nucleolar Organisers (NORs), at 5 chromosomal loci. Transcrip-

tion of the rRNA genes is highly responsive to nutrient availability

and growth factors [3] as well as the actions of oncogenes such as

Myc [4] and tumour suppressors such as ARF [5]. Hence,

knowledge of how the activity of these genes is determined and

controlled is of fundamental importance to an understanding of

cell growth, oncogenic transformation and tumour suppression.

The rRNA genes, also known as the rDNA, are transcribed by

RNA polymerase I (RPI or Pol1) with the aid of the pre-initiation

factors SL1/TIF1B and Rrn3/TIF1A. Recruitment of SL1 to the

RPI promoter in vitro was originally shown to require Upstream

Binding Factor (UBF), a multi-HMGB-box protein found in all
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vertebrates [3]. However, UBF is not essential for RPI transcrip-

tion in vitro, and its role in the recruitment of SL1 has more

recently been questioned [6,7]. Further, UBF displays almost no

DNA sequence selectivity [8–10] and is found widely dispersed

throughout the rDNA repeat, suggesting that, rather than

functioning as a pre-initiation factor, it may play an epigenetic

role in the formation and maintenance of active rRNA gene

chromatin [11,12]. Consistent with this, UBF binding is

maintained during metaphase only at NORs that were active in

the previous cell cycle, and this binding predicts their continued

transcriptional activity in subsequent cell cycles [13–16]. In vitro,

UBF binds DNA as a dimer and uses its HMGB-boxes to induce

six in-phase bends, generating a single 360 deg. loop of DNA of

about 140 bp in length, a structure we refer to as the rDNA

Enhancesome [8,17,18]. The Enhancesome resembles the histone

nucleosome in both its size and protein-DNA composition, but the

two structures are fundamentally different and could not co-exist

at the same site. On the other hand, UBF can bind to core

nucleosomes in vitro without disrupting them [19]. This said,

enhanced recruitment of UBF to the endogenous human rRNA

genes correlates with a proportionate reduction in core histone

binding at the same sequences, suggesting that in vivo UBF

predominantly replaces nucleosomes [20]. Further, Hmo1, the

ortholog of UBF [21], was shown to fully replace the core histones

on active yeast rRNA genes [3,22].

MAP-kinase phosphorylation of the UBF was found to regulate

RPI transcription elongation rates in vitro and in vivo in the

response to growth factors [23–26]. Despite this, the requirement

for UBF in rRNA gene activity is still uncertain, and partial

depletion of mouse UBF did not significantly affect rRNA

synthesis rates [12]. Further, the yeast UBF ortholog Hmo1 is

encoded on a non-essential gene [21,27], suggesting that it plays

an assisting rather than a key role in RPI transcription. To

definitively determine the in vivo requirements for UBF, we have

studied conditional inactivation of the mouse Ubf gene, and in so

doing have made several unexpected findings. We find that the

mouse Ubf gene is indeed essential for rRNA gene activity, cell

proliferation and embryo development. Elimination of UBF causes

large-scale changes in rRNA gene chromatin consistent with a

transition from the active state to a potentially active resting state,

but not heterochromatinization. Unexpectedly, inactivation of

rRNA gene activity has no effect on the activity of the hundreds of

RPII and RPIII genes implicated in ribosome biogenesis, showing

that rRNA gene activity does not coordinate the gene expression

required for ribosome assembly. Finally, elimination of UBF

reveals somatic nucleolar precursor bodies that are spatially

distinct from chromosomal rDNA loci.

Results

UBF is essential for mouse development
To establish the in vivo requirements for UBF, we generated

mouse embryonic stem (ES) cells carrying a potentially conditional

‘‘flox-neo’’ Ubf allele in which Lox recombination sites were

placed in intron 2 and intron 5, and a neo selective marker gene

flanked by FRT sites was inserted within intron 5 (Figure S1A &

B). Mice from two independent ES cell lines heterozygous for the

Ubffl-neo allele were used to generate two mouse lines that

subsequently displayed indistinguishable phenotypes. Mice het-

erozygous for the Ubffl-neo allele were viable, but no mice

homozygous for this allele were identified (data not shown),

suggesting that the Ubf gene was inactivated by the insertion and

hence was essential. The mice were then crossed with FLPeR

(Flipper) and Cre expressing mice to generate both Ubffl and UbfD

alleles, and subsequently Cre and Flipper transgenes removed by

backcrossing (Figure 1A and S1B). While Ubffl/fl mice appeared

normal and were fully viable, no Ubf-null pups were identified

(Figure 1B). Analysis of embryos at prenatal 9.5 dpc and 8.5 dpc

also failed to detect UbfD/D embryos, though UbfD/wt heterozygotes

were detected at a near Mendelian ratio. At 3.5 dpc UbfD/D

embryos were detected, but were systematically arrested at morula

(,2.5 dpc), at or during the compaction phase (Figure 1C and

S1E). By contrast, UbfD/wt and Ubfwt/wt litter-mates displayed a

normal trophectoderm (TE) layer, inner cell mass (ICM) and

blastocoel cavity. When the UbfD/D embryos were cultured in vitro
they failed to develop further, while UbfD/wt and Ubfwt/wt litter-

mates developed to form late blastocysts (Figure 1D and S1F).

Thus, the UBF gene is required for embryo development beyond

the morula stage, that is, very soon after the normal onset of rRNA

gene transcription [28].

UBF is essential for transcription of the rRNA genes in
vivo

To determine whether or not UBF was required for transcrip-

tion of the rRNA genes, we derived cell lines conditional for UBF

expression from Ubffl/fl mice (Figure 1A) carrying a Tamoxifen (4-

HT) inducible ER-Cre recombinase [29]. Mouse embryonic

fibroblasts (MEFs) were then isolated from homozygous Ubffl/fl/
Er-cre+/+ mice and from isogenic Ubfwt/wt/Er-cre+/+ control mice

and immortalized by transfection with an SV40-Tt expression

vectors (iMEFs). Short-term, induction of ER-Cre activity by a 4 h

treatment with 50 nM 4-HT induced near complete excision of

the floxed UBF exons by 12 h, and excision was complete by 24 h

post 4-HT (pHT) (Figure 2A and S2A). Though UBF protein

levels were already significantly reduced by 24 h pHT, metabolic

pulse labeling and Northern blot both revealed only a small effect

on rRNA synthesis (Figure 2B to E), as observed for siRNA

knockdown [12]. However, by 48 h pHT UBF protein was

practically eliminated and this corresponded to near complete

arrest of rRNA synthesis, and by 72 h pHT synthesis was no

longer detected. UBF elimination had no significant effect on the

levels of other proteins believed to be essential for rRNA synthesis

or processing (RPI(A194), Rrn3/TIF1A, TBP, TAF1B & -C,

TTF1 & fibrillarin), or on processing of the 47S rRNA (to be

discussed later) and cells also did not display signs of stress such as

enhanced p53 or MDM-2 levels (Figure S2B and C). Inhibition of

rRNA synthesis was therefore the direct result of the elimination of

UBF. It is important to underline that this is the first

Author Summary

Upstream Binding Factor (UBF) is multi-HMGB-box protein
found in all vertebrates. Although this protein has been
implicated in transcription of the ribosomal RNA (rRNA)
gene in vitro, little is known of its function in vivo. We
previously found that UBF creates a nucleosome-like
structure on DNA, and that this structure is remodeled
by MAP-kinase phosphorylation. Using conditional gene
deletion in mouse and mouse cells we show that UBF
defines the active chromatin domains of the rRNA genes
and is essential for transcription of these genes. Using this
system we show that, contrary to expectation, rRNA gene
activity does not coordinate ribosome production. We
further show that in the complete absence of rRNA
synthesis a somatic nucleolar precursor body is formed.
Our data show that UBF determines a dynamic transition
between the active and inactive rRNA gene states that is
independent of changes in DNA methylation.

UBF Is an Essential Epigenetic Factor
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demonstration of a strict requirement for UBF in the transcription

of the rRNA genes.

UBF associates specifically with the rRNA gene enhancer
and 47S transcribed regions

To investigate the reasons for the arrest of rRNA synthesis on

UBF loss, we analyzed the association of RPI and RPI pre-

initiation factors with the rRNA genes (the rDNA). As expected, in

the untreated Ubffl/fl/Er-cre+/+ cells, UBF associated with the

rDNA at the 47S promoter (T0/Pr), throughout the transcribed

region and at the Spacer Promoter (SpPr) and Spacer Terminator

(Tsp) lying ,2 kbp upstream of the 47S promoter, but not across

the rest of the Intergenic Spacer (IGS) (Figure 3A and B). By 48 h

pHT, only a residual level of UBF remained associated with the

rDNA and by 72 and 96 h pHT UBF association was

undetectable. This confirmed that UBF association is limited to

the transcribed and enhancer regions of the mouse rDNA and

therefore parallels the localization of Hmo1 within the yeast rDNA

[30].

UBF is necessary for the formation of the RPI initiation
complex and RPI recruitment

Consistent with the near complete shutdown of rRNA synthesis

(Figure 2C), by 48 h pHT association of RPI with the rDNA was

hardly detected, and by 72 h pHT it was eliminated (Figure 3B).

Thus, RPI and UBF levels on the rDNA reduced in step with each

Figure 1. The Ubf gene is essential for mouse development beyond morula. A) Structure of the wild type Ubf (WT), the conditional Ubf2fl

(Floxed), and the deleted Ubf2D (D) alleles. B) Survival statistics for Ubfwt/wt, UbfD/wt and UbfD/D mouse embryos and offspring. Note that no embryos
were detected at or after 8.5 dpc. C) Examples of mouse embryos and genotyping at the equivalent of 3.5 dpc. Ubf null embryos arrest at the morula
stage. D) In vitro development of 3.5 dpc embryos to late blastocysts (equivalent to 4.5 dpc). Ubf null embryos do not develop further and necrose.
doi:10.1371/journal.pgen.1004505.g001
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other. Rrn3/TIF1A, an essential factor associated with the

initiation competent RPI, colocalized with RPI at the 47S

promoter in untreated cells and was also completely eliminated

along with UBF, as were the subunits of the SL1 pre-initiation

complex, (TBP, TAF1B/TAFI68 and TAF1C/TAFI95), (Fig-

ure 3B and S3B). Thus, UBF was not only essential for

recruitment of initiation competent RPI, but also for the formation

and/or maintenance of the pre-initiation complex. Our data,

therefore support the notion that UBF is required for the

recruitment of SL1 to the 47S promoter in vivo, and underline

UBF’s fundamental importance in determining rRNA gene

activity.

Association of the transcription termination TTF1 with
the rDNA is independent of UBF

In contrast to the other RPI transcription factors, association of

the Transcription Termination Factor (TTF1) with the rDNA was

clearly not dependent on UBF (Figure 3B). However, elimination

of UBF did cause a decrease in TTF1 association with the Spacer

Promoter (SpPr), Spacer Terminator (Tsp) and 47S promoter

proximal terminator (T0). In contrast, its association with the 47S

termination sites (T1–3) was strongly enhanced. This suggests that

TTF1 is predominantly a constitutive factor, found on both active

and inactive genes. Its partial displacement from the binding sites

upstream of the 47S transcribed region to the downstream

termination sites may be related to its function in looping the

rDNA [31], but other scenarios are possible.

Recruitment of RPI to the Enhancer (Spacer) Promoter
and 47S promoter are distinctly different

The rDNA sequences between the Spacer Promoter and the

47S promoter act in cis as enhancers of gene transcription [32–

36]. However, the mechanism underlying their action is still not

understood. We noted that UBF elimination abrogated binding of

RPI, Rrn3/TIF1A and SL1 to the Spacer Promoter, as it did to

the 47S promoter. However, comparison of the binding profiles of

RPI and Rrn3/TIF1A at the Spacer and 47S promoters showed

distinct differences. RPI was 5 times less likely to be associated

with Rrn3 at the Spacer Promoter than at the 47S promoter (see

Rrn3/RPI in Figure 3B). Further, the major peak of RPI within

the spacer mapped to the Spacer Terminator (Tsp) and not to the

Spacer Promoter (SpPr). In contrast, SL1 preferentially mapped to

Figure 2. UBF is essential for the synthesis of the major rRNAs in cell culture. A) to E) Ubffl/fl/Er-cre+/+ and Ubfwt/wt Er-cre+/+ cells were treated
with 4-HT to induce recombination in the Ubf gene and at the indicated time points, A) genotyped for Ubf recombination, B) analyzed by Western
blot for UBF levels, and C) metabolically labelled with [3H]-uridine to follow rRNA synthesis of the rRNAs and their precursors. D) Northern blot
analysis of the 47S and 34S rRNA pools. The upper diagram shows the organisation of the larger rRNA precursors and the probe used. In C) ‘‘Bulk’’
refers to the EtBr stained total RNA fractionation. E) Quantitative analyses of rRNA synthesis rates and pool sizes.
doi:10.1371/journal.pgen.1004505.g002
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Figure 3. UBF elimination causes release of the RPI and all RPI initiation factors, but not of the termination factor TTF1. A) Map of the
rDNA repeat showing above; the coding and Enhancer regions, and below; the amplicons sampled by ChIP analysis. B) Association of UBF, RPI, TTF1,
SL1 (TIF1B) and Rrn3 (TIF1A) and of initiation competent RPI (Rrn3/RPI) determined by ChIP/Q-PCR assays of chromatin from Ubffl/fl/Er-cre+/+ cells

UBF Is an Essential Epigenetic Factor
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the SpPr and its ChIP signal was low at the Tsp, this can be seen

more clearly in Figure 3C. Since, after initiating transcription RPI

releases Rrn3, the data suggest that most RPI in the spacer is

engaged in transcription but arrested at the Spacer Terminator. In

fact, more RPI maps to the Tsp than to either the SpPr or the 47S

promoter, suggesting that a majority of genes have RPI arrested at

the upstream edge of the enhancer repeats. Why this should be so

is unclear, but is possibly related to DNA looping between Tsp and

T0 or the formation of an upstream barrier to the spread of

repressive chromatin.

Loss of UBF induces changes in the rDNA chromatin, but
not CpG methylation

The mouse genome contains about 200 rRNA genes, only a

fraction of which are actively transcribed. This active fraction is

characterized by its enhanced accessibility to psoralen crosslinking

[37,38]. As expected, the active gene fraction was found to parallel

the level of UBF and RPI association, and by 48 h pHT very few

genes remained active (Figure 4A). UBF elimination also corre-

sponded with an abrupt reduction in the association of the active

chromatin marker H4ac5, (H4ac) and an increase in the repressed

chromatin marker H3K9me3, particularly over the transcribed

region of the rDNA, changes that were not detected at the actively

RPII-transcribed gene Camk2b (Figure 4B and S4B & D). UBF

elimination further induced a significant increase in the recruit-

ment of the linker histone H1 throughout the rDNA repeat, but

especially at the 47S promoter (T0/Pr) and within the IGS.

Association of the heterochromatic HP1a with the rDNA was also

enhanced but unlike H1 this occurred over the enhancer and

transcribed regions previously occupied by UBF (Figure 4B and

S4C). However, no corresponding change in the CpG methylation

status of the rDNA was detected (Figure S4A), suggesting that UBF

elimination did not induce a more permanent heterochromatin-

ization. Consistent with this, the level of H4ac remained high over

the spacer promoter, spacer terminator and the immediately

adjacent IGS sequences (IGS3), (see again Figure 4B and S4B),

and corresponded with the enhanced recruitment of H2A.Z and

the maintenance of TTF1 binding to these regions (Figures 3B

and 4B). H2A.Z is known to mark promoters of potentially active

genes [39–42]. Thus, the lack of enhanced DNA methylation and

the maintenance of TTF1, H2A.Z and H4ac over the rRNA gene

enhancer indicates that the rRNA genes can remain in a poised

state even in the absence of UBF. This suggests that one function

of the enhancer region is to define or maintain a pool of potentially

active genes.

H1 variant H1.4 associates with the active rDNA in a UBF-
dependent manner

H1.4-S187p, a phosphorylated form of the H1 variant H1.4,

was previously shown to be enriched on the human rDNA during

interphase, suggesting that unlike the canonical H1 it may be

permissive to rRNA transcription [43]. We found that H1.4 also

bound throughout the mouse rDNA, and contrary to canonical

H1, this binding was strongly suppressed by UBF elimination

(Figure 4C). Further, phospho-H1.4 (H1.4-S187p) mapped spe-

cifically to the enhancer and transcribed regions and was lost on

UBF elimination (Figure 4C and S4C). Thus, H1.4 and especially

H1.4-S187p selectively bind to the transcriptionally active rRNA

genes.

UBF is not required for 47S rRNA processing nor for 5S
rRNA or U3 RNA synthesis

Ribosome biogenesis is a highly coordinated process that

depends on the expression of many hundreds of genes and on a

complex series of assembly and processing events [44]. The

expression of the ribosomal proteins (r-proteins) is coordinately

regulated with rRNA synthesis in yeast [45], and the rate of

synthesis of the pre-rRNA is the determinant regulatory factor in

the expression of r-proteins in E. coli [46,47]. We, therefore,

expected that shutdown of de novo rRNA synthesis following UBF

elimination would affect the expression of a broad range of genes.

The first indication that this might not be so came from the

observation that processing of residual 47S rRNA appeared to

continue normally as determined by 32/34S levels in metabolic

labeling and Northern analysis (Figure 2C–E). In particular, at

48 h pHT, when UBF was essentially absent, the residual pre-

rRNA still being synthesized was processed into the 18S and 28S

and 32/34S in the same proportions as at 0 h pHT (Figure 2C &

E). This argued that UBF might not play such a significant role in

rRNA processing as previously suggested [48,49]. More impor-

tantly, it suggested that transcription of the major rRNA genes

might not in fact be implicated in regulating other products

needed for ribosome biogenesis.

The 5S rRNA is an essential component of the ribosome, and

hence its expression would be expected to be coordinated with that

of the major rRNAs. However, neither 5S rRNA nor indeed

tRNA synthesis was suppressed by the shut-down of major rRNA

synthesis (Figure 5A). Metabolic labeling showed that both 5S

rRNA and tRNA synthesis was maintained and indeed enhanced

for at least 48 h after the complete shutdown of 18S (and 28S)

production. By comparison, synthesis of 5.8S rRNA, which is

processed from the 47S pre-rRNA, followed that of the other

major rRNAs. Consistent with continued pre-rRNA processing in

the absence of UBF, metabolic labeling also showed that the U3

processome RNA continued to be synthesized, as did the U1 and

U2 splicing RNAs. Thus, quite unexpectedly synthesis of these

small RNAs by RPII and RPIII was not affected by UBF

elimination, nor by the shut-down of major rRNA synthesis.

UBF elimination does not significantly affect expression
of ribosome biogenesis genes

Unbiased expression-microarray analysis of Ubffl/fl/Er-cre+/+

and control Ubfwt/wt/Er-cre+/+ cells at 0, 48, 72 and 96 h pHT

showed that UBF elimination caused no significant changes in

mRNA levels, e.g. see data for 72 h pHT (Figure 5B and S5). In

particular, we detected no significant changes in r-protein gene

expression, or in the expression of the majority of other genes

implicated in ribosome biogenesis. Even the genes encoding

components of the RPI transcription machinery (RPI and SL1

subunits, Rrn3/TIF1A and TTF1) displayed no significant change

in expression, the sole exception being TAF1D (TAFI41) [50],

whose mRNA was enhanced about 3 fold at 72 h pHT. In

contrast, the levels of the snoRNAs, responsible for directing

rRNA modifications, increased very significantly, as did the

prepared at the indicated times pHT. C) Relative distribution of RPI, SL1, Rrn3 and UBF at 0 h pHT, i.e. before Ubf recombination. Left panel shows
data on an enlarged horizontal scale. In B and C the horizontal axes indicate the position of amplicons, and the grey bars the positions of known
binding sites for TTF1. Ubf gene recombination and UBF protein levels were assayed in parallel with ChIP analyses and followed those shown in
Figure 2A and B. The data shown in B and C are given after subtraction of the parallel preimmune Control ChIP data. They are derived from single
ChIP preparations analyzed in triplicate, but are representative of the data from biological replicates, see Materials and Methods.
doi:10.1371/journal.pgen.1004505.g003
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snRNAs including the U3 processome RNA and the U1 and U2

splicing RNAs, in agreement with the metabolic labeling data

(Figure 5A). To a lesser extent some miRNAs including the X-

linked Mir-18, -19 [51] and Mir-337 [52] also showed a small

increase. Together with the findings of continued rRNA process-

ing and the observation of active synthesis of 5S, tRNA and other

small RNAs by both RPII and RPIII, these data argue strongly

against a role for 47S rRNA synthesis in coordinating the

expression of genes implicated in ribosome biogenesis.

Nucleolar factors congregate in large nucleolar bodies
after UBF elimination

The spatial localization of the nucleolar factors RPI, Rrn3/

TIF1A, TTF and Fibrillarin was followed in Ubffl/fl/Er-cre+/+cells

at various time points after 4-HT treatment. All these factors

coalesced into dense nucleolar bodies (Figure 6A–C and S6A–D).

This nucleolar reorganization was complete by 72 h pHT, just

24 h after complete arrest of rDNA transcription, but was not

observed in 4-HT treated Ubfwt/wt/Er-cre+/+ control cells. Analysis

of 3D image stacks showed that the number of distinct nucleoli or

nucleolar bodies reduced in step with UBF depletion, such that by

72 h pHT, when UBF was no longer detected, an average of two

nucleolar bodies per nucleus remained (Figure 6D). Each of these

nucleolar bodies was significantly larger and more intensely

labeled than the original nucleoli (Figure 6D), suggesting that they

were each formed by the coalescence of several nucleoli. However,

interphase nucleoli are highly visible as large sub-nuclear

structures even in bright-field contrast images, while these

nucleolar bodies were not visible in bright-field (Figure 7),

suggesting that, in agreement with the complete depletion of

rRNA processing intermediates, they no longer contained pre-

ribosomal particles (Figure 2D). A similar situation pertains during

mitosis, when the ‘‘bright-field’’ nucleolus appears to disperse, and

in mammalian oocytes and early embryos in which the extremely

large nucleolar precursor body is not evident in bright-field, e.g.

[28,53].

Nucleolar bodies are not associated with the rRNA gene
loci

Surprisingly, 3D immuno-FISH revealed that the nucleolar

bodies forming on UBF elimination did not in fact contain the

rRNA genes at all. Rather the rRNA genes existed in small,

discrete nuclear foci (Figure 8A & B and S7B to D) whose number

suggested that they represented individual NORs (e.g. compare

72 h images in Figure 8A & B with the mitotic spread in Figure

S7A). Quantitative analysis of the rRNA gene FISH signal and the

TTF1 and Fibrillarin immunofluorescence in 3D image stacks

(Figure 8C) confirmed that by 72 h pHT there was essentially no

co-localization of the rRNA genes with the nucleolar bodies. The

separation of rRNA genes from the nucleolar bodies also agreed

with the complete loss of RPI and TIF1A interaction with the

rDNA after UBF elimination, as shown by ChIP (Figure 3).

Though TTF1 was both in the nucleolar bodies (Figures 8, S6 and

S7) and on the rRNA genes (Figure 3B) at 72 h pHT, it is the only

RPI factor that targets specific DNA sequences with high affinity

[31], and is in large excess over its rDNA binding sites [5]. To our

knowledge, these data are the first to identify the existence in

somatic cells of large sub-nuclear structures able to sequester

nucleolar proteins independently of rDNA loci or the rRNA genes.

Discussion

UBF has been termed an ‘‘architectural’’ protein due to its

unique ability to induce a complex similar in size and protein-

DNA content to the nucleosome of histone chromatin [54]. The

discovery of this structure, its modulation by ERK phosphoryla-

tion, and the finding that UBF is broadly distributed across the

rDNA repeat [8,11,24,25], have provided a potential explanation

for growth factor regulation of RPI elongation rates in vivo [3].

However, knockdown of UBF by some 80% failed to significantly

affect rRNA synthesis [12] and its role in vitro as a RPI

transcription factor has also been questioned. Using conditional

deletion mutation in MEFs we have now demonstrated that UBF

is indeed essential for rRNA gene transcription, as well as for the

formation of the RPI pre-initiation complex and the active

epigenetic state of these genes. Our data further show that

nucleolar proteins congregate in large Nucleolar Precursor Bodies

that are spatially distinct from rDNA loci.

We found that homozygous deletion of the Ubf gene in mouse

embryos arrested development at morula. This is soon after the

onset of rDNA transcription and suggests that the maternal

ribosome pool is limiting for development beyond this stage.

Consistent with this, embryos carrying homozygous deletions of

the genes encoding the second largest subunit of RPI [55] and the

processome component Fibrillarin [56] also arrest development at

this stage. In stark contrast, homozygous deletion of the gene for

RPI initiation factor Rrn3/TIF1A was found to arrest develop-

ment at 7.5–9.5 dpc [57], by which stage the ribosome content of

the embryo is many thousands of times the maternal component.

It is unclear why this should be so and we are presently trying to

understand this discrepancy.

Elimination of UBF in cell culture caused the complete arrest of

RPI transcription and disruption of the RPI preinitiation complex.

It also induced partial heterochromatinization of the rDNA, as

indicated by enhanced K9 tri-methylation of histone H3, and a

degree of recruitment of HP1a and of canonical histone H1.

However, certain markers of potential gene activity were

maintained. Penta-acetyl H4 levels remained significant over the

RPI promoter and the upstream Enhancer and the H2A.Z level

over these regions was enhanced. Consistent with this, no increase

in CpG methylation of the rDNA was detected despite continued

binding of the chromatin remodeller TTF1, known to recruit

remodeling complexes containing DNA methyltransferases. UBF

was previously shown to displace H1 from nucleosomes in vitro

[19]. We were, therefore, surprised to find that binding the

Figure 4. The rDNA chromatin is extensively remodelled during UBF elimination. A) Psoralen crosslinking analysis of the rRNA genes in
Ubffl/fl/Er-cre+/+ and Ubfwt/wt/Er-cre+/+ cells at the indicated times pHT. The probe position is indicated in the upper diagram, and the lower panel
shows a typical electrophoretic separation of actively transcribed ‘‘a’’ and inactive ‘‘i’’ genes. The right-hand panel displays a quantitation of the
fraction of transcriptionally active and inactive genes at each time point. Elimination of UBF at 48 h pHT correlates with full inactivation of the rRNA
genes. B) and C) Changes in histone modifications penta-acetyl H4 (H4ac) and H3K9me3, and relative Histone H1, H2AZ, H1.4, H1.4-S187p and
chromosomal protein HP1a levels associated with the rDNA during UBF elimination (hours pHT). The grey band indicates the extent of the rRNA gene
Enhancer sequences. Mapping of amplicons is as in Figure 3A. Again here Ubf gene recombination and UBF protein levels were assayed in parallel
and closely followed those shown in Figure 2A and B. The data shown in B and C are given after subtraction of the parallel preimmune Control ChIP
data. They are derived from single ChIP preparations analyzed in triplicate, but are representative of the data from biological replicates, see Materials
and Methods.
doi:10.1371/journal.pgen.1004505.g004
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phosphorylated form of the H1 variant H1.4 (H1.4-S187p) was

dependent on UBF and colocalized with it and with the

polymerase. In the light of this and the previous data from the

Mizzen group showing the correlation of H1.4-S187p with rRNA

transcription in human [43], the classification of H1 variants as

heterochromatin proteins clearly requires some re-evaluation.

The ,200 haploid rRNA genes exist in one of three states

dependent on their activity and methylation status [20,58]. Our

previous data suggest that over 50% of genes display no DNA

(CpG) methylation, and these unmethylated genes exist in two

states, either actively transcribed or silent. A third group of genes is

heavily CpG methylated and probably correspond to the

constitutively silenced NORs. Since UBF elimination does not

enhance CpG methylation, but shuts down all transcription, the

ChIP data (Figures 3 & 4) provide a window on the chromatin

status on the unmethylated silent genes and suggest that they exist

in a potentially active state (Figure 9). Active genes are engaged by

UBF and H1.4-S187p throughout the enhancer and 47S coding

regions, the preinitiation complex SL1/TIF1B is bound at both

47S (Pr) and Spacer (SpPr) Promoters, RPI is engaged in ternary

(elongating) complexes throughout the 47S region, and a ternary

RPI complex is arrested at or near the Spacer Terminator (Tsp).

The unmethylated inactive genes have no UBF, H1.4S-187p, SL1

or RPI, but retain H4ac5 and H2AZ over the SpPr/Enhancer

region, and accumulate both H3K9me3 and HP1a over the

downstream 47S region. Interestingly, our unpublished as well as

published alignments of public ChIP data sets also identify the

SpPr region as a site of H3K4me3 and CTCF binding [59],

suggesting that this region defines a boundary between upstream

repressive chromatin and the Enhancer/47S region. We cannot

directly address the state of the methylated genes, but published

data suggest they lie in the inheritably silenced NORs and are in a

classical heterochromatin state [20,58]. Our data then suggest that

UBF is in greater part responsible for the dynamic transition

between a potentially active and an actively transcribed rRNA

gene state.

Ribosome biogenesis depends directly on the rate of rRNA

synthesis, which is itself subject to stringent growth and nutrient

dependent controls in both microorganisms and higher eukaryotes

[60–62]. Levels of the many hundreds of components required for

ribosome assembly are coordinated with the rate of rRNA

synthesis. In bacteria, 5S rRNA is generally co-expressed with

the other rRNAs, while excess ribosomal protein inhibits further

translation of the corresponding mRNAs [46,47]. If such feedback

controls exist in mammals, shut down of rRNA synthesis by UBF

elimination would be expected to suppress the expression of the

other ribosome components. In contrast, we observed no

significant change in the levels of the mRNAs required for

ribosome biogenesis, suggesting that, as in microorganisms,

regulation is exclusively translational or posttranslational. We also

failed to observe any inhibition of de novo 5S rRNA, tRNAs, U3

processome RNA, and U1 and U2 splicing RNA synthesis.

Conditional inactivation of Rrn3 in yeast also had little effect on

5S synthesis despite it shutting-down major rRNA transcription

[63]. Thus, the level of pre-rRNA synthesis in mouse clearly does

not feedback on gene expression by either RPII or RPIII, at least

for the genes required for ribosome biogenesis. This suggests that

coordination of ribosome biogenesis with growth and nutrient

availability is achieved in a ‘‘top-down’’ manner via signaling

networks, e.g. see [64] and/or by degradation of excess product, as

appears to be the case in yeast, e.g. see [46].

Elimination of UBF caused key nucleolar proteins to coalesce

into a dense nuclear body. In contrast, the rDNA dispersed into

nuclear foci similar in number to the expected number of

chromosomal rDNA loci and similar in size to metaphase NORs.

Since it is generally believed that nucleolar components disperse

during cellular stresses that shut-down rRNA synthesis [2,65], the

formation of a well-defined nucleolar body independent of the

rDNA was quite unexpected. The formation of these nucleolar

bodies reveals the existence of storage sites for nucleolar

components within the mammalian cell nucleus. They are clearly

distinct from the pseudo-NORs since these form around large

synthetic arrays of rDNA repeats [66], while the nucleolar bodies

do not depend on an underlying rDNA locus. However, our data

strongly support the view that UBF is indeed the key factor in

recruiting nucleolar proteins to the rDNA [67]. The nucleolar

bodies are probably related to the nucleolar precursor bodies of

pre-implantation embryos, which also exist independently of the

rDNA loci, and may be related to subnuclear structures such as the

Cajal, Coiled, PML and Nuclear bodies [68], several of which

have been implicated in aspects of nucleolar function. They could

also play important roles during normal cell division, when rRNA

synthesis is shutdown and active nucleoli are no longer evident.

Materials and Methods

Generation of UBF conditional mutations
Fragments from the Ubf gene (Ensembl EN-

SMUSG00000020923 (GRCm38:11:102303960:102320342:-1))

covering exon 2 (coordinates 102307100–102308992), exons 3, 4

and 5 (102308989–102310581), and exons 6 and 7 (102310611–

102313115) were isolated from isogenic ES cells (WW6 [69]) and

inserted into the recombination vector pGKneoF2L2DTA [70] as

indicated in Figure S1A. The resulting construct (pGK3’Del5’c2)

was linearized and used to electroporate WW6 ES cells, which

were then selected with G418. Resistant clones were amplified and

analyzed by Southern blotting to identify correctly recombined

clones. These clones were then used to generate two independent

mouse lines using the services of the McGill and CRCUL

Transgenic Core Facilities. Subsequent crossing to induce

recombination of FRT and Lox sites and introduction of an ER-

Cre used the following mouse strains from Jackson Laboratory;

FLPeR (#003946), Sox2-Cre (#004783) and ER-Cre (#004847).

Embryo collection, culture and genotyping
Heterozygous UbfD/wt mice were inter-crossed and embryos

isolated from pregnant female at 3.5 dpc by flushing uterine horns

with DMEM. For in vitro development, embryos were incubated

in ES cell media ((DMEM, 10% fetal bovine serum, 1% L-

Glutamine, 1% Penicillin/Streptomycin, 0.1 mM b-MeOH) and

cultured for one day in 5% CO2 at 37uC. Embryos were collected

in 8-wells plate (Ibidi) and imaged by bright-field microscopy.

DNA from the individual blastocysts was then amplified using the

REPLI-g Mini kit (QIAGEN) and individual embryos were

Figure 5. UBF elimination has only minor effects on global gene expression. A) Metabolic labeling of Ubffl/fl/Er-cre+/+ and Ubfwt/wt/Er-cre+/+

cells with [3H]-uridine to follow synthesis of U2 and U3 snRNAs, 5.8S rRNA, 5S rRNA, tRNAs and 18S at the given time points pHT. ‘‘Bulk 18S’’ refers to
the EtBr input control. The ratio of incorporation into 5.8S relative to 5S (5.8S/5S) is given below each track of the upper panel. B) Boxplot of unbiased
expression microarray data for various gene classes. The plots indicate the relative gene expression levels for Ubffl/fl/Er-cre+/+ cells at 72 h pHT relative
to levels for Ubfwt/wt/Er-cre+/+ at the same time point. The original data can be found in the GEO databank under the accession number GSE55450.
doi:10.1371/journal.pgen.1004505.g005
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genotyped by PCR using the primers: A; 59TGATCCC-

TCCCTTTCTGATG, E; 59ATCTAACCCCGCTTTCCTGT,

C; 59CACGGGAAAACAAGGTCACT, see Figure 1A and S1A.

Isolation of UBF-conditional MEFs
Primary mouse embryo fibroblasts (MEFs) from E14.5 Ubffl/fl/

Er-cre+/+ and isogenetic Ubfwt/wtEr-cre+/+ embryos were prepared

as previously described [71]. They were cultured in Dulbecco’s

modified Eagle medium (DMEM)-high glucose (Invitrogen),

supplemented with 10% fetal calf serum (Wisent), L-glutamine

(Invitrogen) and Antibiotic/Antimycotic (Wisent). MEFs were

immortalized by the introduction of the SV40 Tt antigens via

transfection using the pBSV0.3T/t, a modification of the pBSV-

early vector [72] kindly provided by E. W. Khandjian.

Inactivation of Ubf in cell culture, and analysis of
genotype, RNA and proteins

Cells were grown in 6 cm petri dishes (0.86106 cells each) for

18 hours in DMEM, high glucose, 10% fetal bovine serum. To

activate ER-Cre, 4-hydroxytamoxifen (4-HT) was added to a final

concentration of 50 nM, and after 4 hr incubation the medium

replaced with fresh medium without 4-HT and cells harvested for

analysis at various time points. This minimal 4 h ER-Cre

induction generates full recombination of Lox sites while avoiding

the non-specific effects of more common treatments with 0.6–

2 mM 4-HT for 24–48 h [73]. Analyses of RNA, protein and

genotype were systematically carried out on parallel cell cultures.

Cells were genotyped by PCR before and after 4-HT treatment

using the primers: A; 59TGATCCCTCCCTTTCTGATG, B;

59TGGGGATAGGCCTTAGAGAGA, C; 59CACGGGAAAA-

CAAGGTCACT, (Figure 1A). Metabolic labelling of RNA was

carried out just before cell harvesting by addition of 10 mCi [3H]-

uridine (PerkinElmer) to the culture medium and incubation for a

further 3 h. RNA was extracted with Trizol (Invitrogen) according

to the manufacturer’s protocol and analyzed by gel electropho-

resis, fluoroimaging (ENHance, PerkinElmer) and RNA species

quantitated by scintillation counting as previously described

[25,26]. For total protein, cells were washed with cold PBS,

scraped into PBS, centrifuged 30 s at 14 000 r.p.m., then

resuspended in sodium dodecyl sulphate (SDS) loading buffer.

After fractionation on 8%, 12% or 5–15% gradient SDS–

polyacrylamide gel electrophoresis (SDS-PAGE [74]), cell extracts

were analysed by standard Western blotting procedures.

Antibodies for western, immunofluorescence and ChIP
analyses

Rabbit antibodies against UBF, RNA Polymerase I (RPI) large

subunit (A194) and TTF1 were generated in the laboratory, anti-

Rrn3/TIFIA, -TAF1C and –TAF1B were kindly provided by

Ingrid Grummt and anti-H1.4 and -H1.4-S187phospho kindly

provided by Craig Mizzen. All other antibodies were obtained

commercially; Anti-TBP, -H2A.Z, -H3 and -H4 (Abcam), anti-

H1, -H3K9met3, -H4ac5 and -HP1a (Millipore), anti-Tubulin

(Sigma), and anti-Fibrillarin (Covance). The pre-immune (PI)

serum was from the rabbit in which the UBF antibody was

generated.

Chromatin Immunoprecipitations (ChIP)
ChIP was performed essentially as previously described [75].

Cells were fixed with 1% formaldehyde for 10 min at room

temperature. Nuclei were isolated using Lysis Buffer (10 mM Tris

pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.5% NP-40), the resulting

Figure 6. UBF elimination reveals that nucleolar protein bodies exist independently of rRNA gene activity. A) to C) 3D IF analysis of
respectively UBF, RPI (large subunit, A194) and Rrn3/TIF1A relative to Fibrillarin and DNA stained with DAPI. The subnuclear volumes of the indicated
proteins are indicated as surfaces of constant fluorescence intensity (isosurface) with directional pseudo-illumination to indicate their 3D form. D)
Left; quantitation of the mean number of (Fibrillarin positive) nucleoli or nucleolar bodies per nucleus, and right; mean (Fibrillarin) volume of
individual nucleoli. Data were the mean of three independent series of IF analyses, and ,20 nuclei were analyzed per time point.
doi:10.1371/journal.pgen.1004505.g006

Figure 7. Somatic Nucleolar Precursor Bodies are distinguished from nucleoli by not being visible in bright field. IF and bright field
images of Ubffl/fl/Er-cre+/+ cells at 0 and 72 h pHT counterstained with DAPI and showing the location of RPI (red) and fibrillarin (green).
doi:10.1371/journal.pgen.1004505.g007
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chromatin sonicated (Bioruptor, Diagenode) for 25 min in IP

Buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 5 mM EDTA,

0.5% NP-40, 1% Triton X-100), and used immediately without

freezing. Each immunoprecipitation was carried out on the

equivalent of 166106 cells. Immunoprecipitated DNA was

analysed by qPCR/SYBR Green. Reactions (20 ml) were per-

formed in triplicate with 2.5 ml of sample DNA, 20 pmol of each

primer, and 10 ml of Quantitect SYBR Green PCR Master Mix

(QIAGEN). Forty-five reaction cycles of 30 s at 94uC, 30 s at

58uC, and 30 s at 72uC were carried out on a Multiplex 3005 Plus

(Stratagene/Agilent). The amplicon coordinates relative to the 47S

rRNA initiation site (BK000964) were as follows: IGS3, 42646–

42903; SpPr, 43089–43253; Tsp, 43267–43421; T0/Pr, 45133–

40; ETS, 3078–3221; ITS1, 6258–6432; 28S, 10215–10411; T1–

3, 13412–13607; IGS2, 25552–25783. Two to five biological

replicates were analysed by ChIP for each antibody; UBF, TTF,

H4 and H4ac 5 times each, RPI, H3, H3K9me3 and H1 3 times

each, TIFIA, TAF1C, TAF1B, TBP, H1.4, H1.4-p187, HP1a and

H2Az 2 times each. Though it was not possible to perform all

ChIP analyses in parallel on all chromatin preparations, all

analyses included both UBF and TTF ChIPs as reference

standards.

Data was analysed using the MxPro software (Agilent). The

relative occupancy of each factor at each amplicon is given as %

immunoprecipitation of the DNA input prior to ChIP. It was

determined by comparison with a standard curve of amplification

efficiency for each amplicon using a range of input DNA amounts

and generated in parallel with each Q-PCR run. All primer pairs

gave the similar amplification efficiencies (90–105%) as deter-

mined from the gradient of the curve fit. The curve fit correlation

coefficient R2 was systematically between 0.99 and 1.0, demon-

strating a near perfect fit.

Analysis of rDNA methylation
The methylation assay was developed by Anne Rascle and

Joachim Griesenbeck and kindly made available to us before

publication. Briefly, the assay is based on the fact that rDNA is in

greater part fully methylated or unmethylated. 20 mg genomic

DNA was digested with BamHI and subsequently with either

SmaI or XmaI, and then analyzed by Southern blotting using the

PflMI/BamHI rDNA fragment (Figure S4) labelled by random

priming.
Psoralen crosslinking analysis. Psoralen crosslinking was

performed and analyzed as described previously [37,38].

Expression microarray analysis
RNA for expression microarray analysis was extracted by the

acid phenol/guanidinium thiocyanate method [76], and subse-

quently purified using the RNeasy Plus Mini kit (QIAGEN).

Expression analysis was carried out using Affymetrix Mouse Gene

2.0 ST microarrays by the Genome Québec Innovation Centre

(Montréal). Data analysis was performed using the Affymetrix

Power tools version 1.14.4 and R (www.r-project.org) version

2.14.0. Firstly, data were normalized using RMA-sketch. Ubfwt/wt/
Er-cre+/+ normalized gene expression was then subtracted from

the corresponding Ubffl/fl/Er-cre+/+ timepoint before all the

expressions were placed relative to time T0. We required a gene

to be detected in at least one time point using a cutoff of 0.001 on

the detection p-values obtained from the DABG algorithm

(Affymetrix Power tools) to be used in the analysis.

3D immunofluorescence and FISH
Cells were washed with PBS, fixed in 4% PFA for 15 minutes and

permeabilized with 0.5% PBS/Triton for 5 minutes. Incubation

with primary antibody was performed for 1 h in PBS-5% BSA and

cells were stained with AlexaFluor 488/568 conjugated anti-

rabbit or -mouse secondary antibodies (Molecular Probes) and

Figure 8. Nucleolar bodies are spatially distinct from the rDNA
and NORs. A) and B) 3D Immuno-FISH analysis of the spatial
distribution of rDNA relative to Fibrillarin and TTF1 at the indicated
times pHT treatment. The subnuclear volumes of the indicated proteins
and DNA are indicated as surfaces of constant fluorescence intensity
(isosurface) with directional pseudo-illumination to indicate their 3D
form. C) Quantitative analysis of the 3D spatial correlation of rDNA FISH
fluorescence with Fibrillarin and with TTF1 fluorescence. Data were the
mean of two independent Immuno-FISH analyses in which .20 nuclei
were analyzed.
doi:10.1371/journal.pgen.1004505.g008
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counterstained with DAPI. After mounting in 50% glycerol/50%

0.2 M Na-glycine, 0.3 M NaCl, 3D epifluorescent 3D image stacks

were acquired using a Leica DMI6000B microscope equipped with

an Orca C4742-80-12AG camera (Hamamatsu) and Volocity

(Perkin-Elmer Improvision) and were subsequently deconvoluted

(Iterative Restoration, Volocity). In a few cases 3D stacks were also

obtained using a Leica SP5 II scanning confocal microscope.

Nucleolar statistics were obtained from three independent immu-

nofluorescence experiments in which ,20 nuclei were analysed by a

protocol established using the Volocity software. DAPI staining was

used to define the nuclear volume and Fibrillarin staining to define

the nucleoli and their individual volumes. 3D Immuno-FISH was

performed as previously described [77] using a Cy3 labeled

fragment from the mouse rDNA, (positions 20138 to 23651 in

Genbank Accession BK000964.3). Colocalization of FISH and

protein signals were estimated using Volocity and given by the

Pearson Global Correlation [78].

Ethics statement
All animal care and animal experiments were conducted in

accordance with the guidelines provided by the Canadian Council

for Animal Protection, under the surveillance and authority of the

institutional animal protection committees of Laval University and

the CHU de Québec. The specific studies described were performed

under protocol #2011-054 examined and accepted by the ‘‘Comité

de protection des animaux du CHU de Québec’’. This ensured that

all aspects of the work were carried out following strict guidelines to

ensure careful, consistent and ethical handling of mice.

Figure 9. A model for the chromatin structure of the three distinct states of rRNA gene activity. Active, unmethylated (meCpG minus)
genes maintain UBF and phospho-H1.4 (H1.4p) over their Enhancer region and their 47S transcribed gene region (indicated by lateral fibrils and rRNA
gene blocks), while RPI is restricted to the 47S region and to a site close to the spacer terminator (Tsp), the latter probably in an arrested elongation
state. These same gene regions display variable levels of H4ac, and are denuded of nucleosomes. H2Az is most likely present adjacent to the spacer
promoter (SpPr), while the preinitiation complex SL1/TIF1B is present at both spacer and 47S Promoters (Pr), (not shown). The Inactive, unmethylated
(meCpG minus) fraction of genes is devoid of UBF, displays enhanced occupation by H3K9me3 and HP1a, especially towards the 39 47S region, and
nucleosomes replace UBF over most of its interaction domain. But these inactive genes retain H2Az and H4ac over the SpPr and Enhancer regions,
suggesting they are in dynamic exchange with the actively transcribed gene population. Our unpublished alignments of H3K4me3 and CTCF Encode
data sets for ES and MEFs show that these factors are also present flanking the SpPr probably on both Active and Inactive unmethylated genes. The
methylated (meCpG) gene fraction is unaffected by UBF loss, and most probably exists in a classical heterochromatic state corresponding to the
inherited constitutively silenced NORs. Due to limited data, the status of the ‘‘Enhancer’’ region is difficult to ascertain and this is indicated by a
different shading.
doi:10.1371/journal.pgen.1004505.g009
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Supporting Information

Figure S1 The mouse (m)Ubf gene is essential for mouse

development beyond morula. A) Targeting vector and strategy for

target insertion into the wild type Ubf gene. B) Structure of the

targeted mutant Ubf gene, and the conditional Ubf2fl (Floxed) and

deleted Ubf2D (D) alleles. C) Example of Southern analysis of

targeted and deleted Ubf alleles using the 39 probe indicated in B).

D) Examples of PCR genotyping of mice tails. E) Examples of

mouse embryos and genotyping at the equivalent of 3.5 dpc. Ubf
null embryos arrest at the morula stage. F) In vitro development of

3.5 dpc embryos to late blastocysts (equivalent to 4.5 dpc) and

subsequent gentotyping. In A) and B) the lettering A to E refer to

PCR primers used in genotyping, and in D) to F) bracketed letters

indicate the combinations of these primers used to genotype.

(EPS)

Figure S2 A) Time course of ER-Cre induced recombination at

the UBF locus in Ubffl/fl/Er-cre+/+cells treated with 50 nM 4-HT

for 4 h. B) and C) Whole protein extracts prepared from Ubffl/fl/
Er-cre+/+cells at the given times post 4-HT treatment were

analyzed by Western blot to determine the levels of UBF and of

13 other relevant proteins. Tracks were loaded with equal

amounts of total protein with the exception of the first three

tracks in B in which the given percentages of whole extract at 0 h

post 4-HT treatment were loaded.

(EPS)

Figure S3 A) Map of the rDNA repeat showing the sites

(amplicons) sampled by ChIP analysis. B) ChIP analysis of the

individual components of SL1 used to generate the mean

distribution of this initiation factor shown in Figure 3B. The data

are shown as percent recovery in ChIP/Q-PCR assays of

chromatin from Ubffl/fl/Er-cre+/+ cells prepared at the indicated

times post 4-HT treatment, as in Figure 3B.

(EPS)

Figure S4 A) DNA CpG methylation assays of Ubffl/fl/Er-cre+/+

and Ubf+/+/Er-cre+/+ cells at the given times after 4-HT treatment.

The upper diagram indicates the BamHI rDNA fragment that was

analyzed by Southern blot and the position of the probe used. The

lower panels show the uncleaved BamHI rDNA fragment (4.7 kb)

and the 0.9 kb fragment generated by cleavage of all 11 internal

SmaI or XmaI sites. SmaI is sensitive to CpG methylation while

XmaI is not. Hence, on genes on which all SmaI/XmaI sites are

methylated SmaI cleavage is prevented, leaving the 4.7 kb BamHI

fragment intact, while XmaI cleavage continues to generate only

the fully cleaved 0.9 kb fragment. Since the 4.7 kb fragment can

be cleaved at all or any of 11 SmaI sites, even fractional changes in

methylation status will be detected by this technique. However,

only the 4.7 and 0.9 kb fragments were detected at all time points,

showing that little if any change in methylation status occurred. B)

Raw preimmune subtracted ChIP data for H3, H3k9me3, H4 and

H4ac. C) Raw, unsubtracted ChIP data for HP1a and H1.4-

S187p and preimmune antibodies. D) Analysis of H4ac/H4 and

H3K9me3/H3 ratios at the Camk2b locus normalized to 0 h

pHT.

(EPS)

Figure S5 Unbiased gene enrichment plots of expression

microarray data corresponding to the Boxplots shown in

Figure 5A. The data indicate the relative gene expression levels

for Ubffl/fl/Er-cre+/+ cells at 72 h post 4-HT normalized to relative

levels for Ubfwt/wt/Er-cre+/+ cells at the same time point. The

original data can be found in the GEO databank under the

accession number GSE55450.

(EPS)

Figure S6 A) to D) Single optical sections from 3D IF image

stacks of Ubffl/fl/Er-cre+/+ cells stained for UBF, RPI (large subunit,

A194), Rrn3/TIF1A or TTF1 and for Fibrillarin, and counter-

stained with DAPI, at the indicated times post 4-HT treatment.

Images show 0.2 mm optical sections from deconvoluted image

stacks.

(EPS)

Figure S7 A) Ubffl/fl/Er-cre+/+ cell metaphase spreads were

stained for rDNA by FISH (green) and counterstained with DAPI

(red). B) to D) 3D Immuno-FISH of Ubffl/fl/Er-cre+/+ cells at the

indicated times post 4-HT treatment, analyzed by FISH for rDNA

(green) and by IF for UBF, Fibrillarin and TTF1 respectively, and

counter stained with DAPI. Images show single 0.4 mm optical

sections from deconvoluted 3D image stacks.

(EPS)
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