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REVIEW

Introduction

The eukaryote RNA polymerase II (Pol II) holoenzyme is 
a 12-subunit complex that transcribes protein coding genes 
and many non-coding RNA (ncRNA) genes. Pol II activity is 
tightly regulated at three distinct phases: (1) initiation, which 
includes transcription start site selection, formation of the open 
complex, and production of the first few phosphodiester bonds 
in the RNA transcript; (2) elongation, or progression of RNA 
polymerase through a locus as it lengthens the RNA transcript; 
and (3) termination, or the release of polymerase when it reaches 
the end of the gene being transcribed. Recruitment of Pol II 
to a locus is perhaps the most conceptually straightforward 
mode of regulating gene expression, and thus Pol II initiation 
was thought to be the rate-limiting step in gene expression for 
many years. Indeed, today we understand the regulation of Pol 
II initiation by the general transcription factors (GTFs) at a 
detailed molecular level.1,2

During the past several years, biochemical and genomic 
analyses have revealed that Pol II recruitment is not the only 
point of transcriptional regulation. Rather, the transition between 
initiation and elongation is a multi-step process where any point 
between recruitment and productive elongation can potentially 
be regulated for proper gene expression in eukaryotes.3,4 
Accompanying this transition is the phosphorylation of specific 
residues on the extended C-terminal domain (CTD) of Pol II. 
In this review, we will discuss the relationship between Pol II 
elongation and phosphorylation of one of the CTD residues, 
Serine 2 (Ser2), across several model systems. Although it is 
appreciated that this modification correlates with elongation, how 
Ser2 phosphorylation is regulated in a multi-cellular context and 
its requirement during elongation is an emerging field of interest. 
Recent results from studies on tissue-specific regulation of this 
modification in C. elegans have bearing on these questions, and 
are informative for how Ser2 phosphorylation, and the kinases 
that add this modification, are linked to Pol II elongation.

The Pol II CTD

The large subunit of Pol II, Rbp1, contains a repeated motif 
on the C-terminal end, called the “C terminal domain,” or Pol 
II CTD.5,6 A highly conserved feature of the CTD is that it is 
composed of dozens of repeats of the heptapeptide sequence 
Y1-S2-P3-T4-S5-P6-S7 (for a review see refs. 7 and 8). All residues 
within the CTD heptad repeat can be modified either by 
phosphorylation (tyrosine, threonine, serine) or isomerization 
(proline).9 However, serine 5 and serine 2 phosphorylation 
(Ser5-P and Ser2-P) are the best studied and appear to be the most 
conserved general marks of transcription.10 Importantly, it was 
recognized 14 years ago that these modifications correlate with 
different steps of the transcription cycle. In 2000, Buratowski and 
colleagues showed that Pol II phosphorylated on Ser5 is found 
near the 5′ end of genes and Pol II accumulates phosphorylated 
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The transition between initiation and productive 
elongation during RNA Polymerase II (Pol II) transcription is a 
well-appreciated point of regulation across many eukaryotes. 
Elongating Pol II is modified by phosphorylation of serine 2 
(Ser2) on its carboxy terminal domain (CTD) by two kinases, 
Bur1/Ctk1 in yeast and Cdk9/Cdk12 in metazoans. Here, we 
discuss the roles and regulation of these kinases and their 
relationship to Pol II elongation control, and focus on recent 
data from work in C. elegans that point out gaps in our current 
understand of transcription elongation.
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Ser2 as it progresses through a gene.11 This has been shown to 
be a general phenomenon using genome-wide analysis in yeast12 
and mammalian cells.13 Thus, the current model is that for the 
vast majority of protein coding genes, Pol II is recruited to a 
gene with a hypophosphorylated CTD; the CTD then becomes 
phosphorylated on Ser5 during initiation, and subsequently 
phosphorylated on Ser2 during productive elongation (for a 
review see refs. 14 and 15). This differential phosphorylation 
of Ser2 and Ser5 functions to recruit transcription-associated 
proteins at the appropriate phase of the transcription cycle (for a 
review see refs. 9 and 14), thus acting as an important “docking 
station” that can be regulated for gene expression.

More recently, additional CTD residues (Tyr1, Thr4, and 
Ser7) have also been shown to be phosphorylated in vivo.16-20 
However, these phosphorylation events either are not generally 
required for transcription of protein coding genes, or their specific 
role in transcription is not as yet understood. In particular, 
Ser7 phosphorylation can be found throughout gene bodies 
in yeast.12,21-23 However, despite its presence on protein-coding 
genes, Ser7-P is particularly important for proper transcription of 
snRNA genes16 and may or may not be required for transcription 
or processing of mRNA genes.16,17 Thus, because Ser2 
phosphorylation has the tightest association with transcription 
elongation regulation, we focus our discussion on the kinases 
that carry out this modification. More complete reviews of the 
additional CTD modifications are available elsewhere.9,19

Before discussing Ser2 kinases, several caveats of current 
experimental approaches should be taken into consideration. 
A large majority of the studies on Pol II CTD kinases have 
been performed using antibodies thought to be specific for 
distinct CTD modifications. These studies are limited by the 
same caveats that plague other antibody studies: variations 
in specificity under different situations and epitope masking. 
For example, antibodies thought to recognize specific 
phosphoepitopes can be significantly influenced by the status of 

phosphorylation on neighboring residues.17,24 This can produce 
dramatic differences in the conclusions drawn about the status 
of specific CTD phosphoepitopes within a gene.21 Additionally, 
as both immunofluorescence and immunoprecipitation 
experiments often require fixation of samples, it is possible that 
crosslinking between the CTD and CTD-binding proteins may 
mask the accessibility of the CTD to antibodies.12 Thus, low 
signal from antibody studies may not arise from the lack of a 
CTD modification, but from masking of the epitope by a cross-
linked protein that itself associates with the epitope in the cell. 
Finally, studies of the Pol II CTD are particularly challenging 
to interpret because of the repetitive nature of the CTD. Studies 
using antibodies against CTD modifications cannot inform how 
many heptad repeats are modified or which repeats on the CTD 
are modified. Thus, increases in signal could indicate that more 
Pol II molecules are phosphorylated, that more repeats of the 
CTD on one Pol II molecule are modified, or simply that the 
epitope is more accessible. Additionally, it should be noted that 
not all of the repeats on the CTD from any eukaryote have the 
conserved heptad sequence, and many eukaryotes harbor Pol II 
CTDs that vary quite dramatically from the consensus repeat.17 
As an illustration, many of the yeast CTD heptads match the 
consensus,8 while only two of the Drosophila heptads perfectly 
match the consensus25 (for a review, see refs. 8 and 10). The 
functional differences between these distinct repeats are not well 
understood; however, it should be noted these different heptads 
can also influence antibody studies.

Positive Elongation Factors:  
Pol II CTD Serine 2 Kinases

Eukaryotes have two kinases that phosphorylate Ser2: Bur1/
CDK9 and Ctk1/Lsk1/CDK12 (Table 1). Although initially 
thought to have distinct functions in yeast and mammals, recent 

Table 1. RNA Polymerase II elongation factor homologs

S. cerevisae S. pombe C. elegans Drosophila Mammals

5′ Ser2

kinase Bur1 Cdk9 CDK-9 CDK9 CDK9/PITARE

cyclin(s)
Bur2 Pch1 CIT-1.1 CYCT CCNT1

CIT-1.2 CCNT2a/b

3′ Ser2

kinase(s)
Ctk1 Lsk1 CDK-12 CDK12 CDK12/ CrkRS

CDK13/CDC2L5

cyclin(s)
Ctk2 Lsc1 CCNK-1 CYCK CCNK

Ctk3 Lsg1 * * *

DSIF
Spt4 Spt4 SPT-4 SPT4/p160 SPT4/p160

Spt5 Spt5 SPT-5 SPT5/p14 SPT5/p14

NELF

* * * NELF-A NELFA/WHSC2

* * * NELF-B NELFB/COBRA1

* * * NELF-D/TH1 NELFC/NELFD/ TH1/HSPC130

* * * NELF-E NELFE/RD†

*no significant homolog detected. †homologs detected in lower eukaryotes contain an RRM similar to that found in NELFE but do not appear to be 
functional homologs
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studies have uncovered a common mode of Ser2 phosphorylation 
regulation across eukaryotes by these kinases (described below, 
Fig. 1B and C).

The yeast Ser2 kinases: Ctk1/Lsk1 and Bur1/Cdk9
The first CTD Ser2 kinase was identified in biochemical 

studies in budding yeast.26 When cloned, this kinase showed 
homology to the cyclin dependent kinases and was named 

carboxy terminal kinase 1, Ctk1.27 Ctk1 forms a complex 
with its cyclin partner, Ctk2, and Ctk3, which is important 
for stability of the complex.28,29 The other budding yeast Ser2 
kinase complex components, Bur1 and Bur2, were identified 
in a screen for factors that could bypass the need for upstream 
activating sequences (UAS) of a reporter gene (BUR, bypass UAS 
requirement30). These proteins were also found to comprise a 
cyclin dependent kinase complex in which Bur1 is the kinase and 
Bur2 is the cyclin.31 While genetic studies linked Bur1 activity 
with phosphorylation of the CTD,32 it was not shown to be a 
direct CTD kinase in vivo until several years later.33,34

Interestingly, although Ctk1 is considered the major Ser2 
kinase in S. cerevisiae, it is not an essential protein. Null mutants 
for Ctk1 complex components are viable and healthy at normal 
temperatures, but show cold sensitive phenotypes.28 In contrast, 
Bur1 is important for normal growth as both bur1 and bur2 null 
mutants are extremely slow growing.31,35 Similarly, in fission 
yeast, mutants of the Ctk1 homolog, Lsk1, are also viable under 
normal growth conditions,36 while mutants of the Bur1 homolog, 
Cdk9, are lethal37 (Fig. 1A). This suggests that the activity of 
Bur1 is more important for yeast growth under normal conditions 
than the major Ser2 kinase, Ctk1. This could be due to its role 
in phosphorylating other sites on the CTD such as Ser538,39 and 
Ser722 or other proteins besides Pol II including the elongation 
factor Spt5.39,40

Bur1/Cdk9 and Ctk1/Lsk1 regulate yeast Ser2 
phosphorylation together

Recent studies using analog sensitive mutants of Ctk1 and 
Bur1 established an epistatic relationship between these factors.33 
This work showed that loss of Bur1 activity results in dramatic 
decreases in Ser2 phosphorylation.33 Additionally, the authors 
showed that the trace amounts (~10%) of Ser2-P detected in a 
ctk1 deletion strain are lost with Bur1 inhibition.33 Thus, while 
Ctk1 is responsible for the majority of Ser2-P, loss of Bur1 activity 
also shows significant decreases in Ser2-P. Significantly, a ctk1 
mutant shows more dramatic decreases in Ser2-P at the 3′ end of 
a gene than the 5′ end.33 Thus, the authors suggested that Bur1 
acts on Pol II at the 5′ end of genes, and this phosphorylation 
enhances phosphorylation by Ctk1 further downstream in the 
gene (Fig. 1A and B).

Fission yeast regulate Ser2-P in a similar fashion. While an 
overwhelming majority of detectable Ser2-P is absent with loss 
of activity of the Ctk1 homolog, Lsk1,36,41 recent data using 
analog sensitive mutants has also shown that fission yeast Cdk9 
is responsible for some level of Ser2-P.41-43

Regulation of yeast Ser2 kinases
Mirroring their roles in Ser2 phosphorylation, both Ctk1 

and Bur1 are associated with elongating Pol II by chromatin 
immunoprecipitation (ChIP),32,44,45 and this has been shown 
genome wide for Ctk1.46 In yeast, these kinases appear to be 
recruited to loci through general mechanisms, rather than gene-
specific factors. Specifically, Bur1 contains a phospho-CTD 
interaction domain, which interacts with Ser5-P to enhance 
Bur1 recruitment to genes; Ctk1 is proposed to subsequently 
interact with Pol II through the Bur1-phosphorylated CTD.33 

Figure  1. Ser2 kinases in eukaryotic transcriptional elongation 
regulation. (A) Loss of Bur1/CDK9 or Ctk1/Lsk1/CDK12 activity results 
in different effects on Ser2-P levels in yeast vs. metazoans. While Ctk1/
Lsk1 are responsible for the majority of Ser2-P in yeast S. cerevisae and  
S. pombe, both CDK9 and CDK12 significantly contribute to Ser2-P levels 
in Drosophila and huamans. Importantly, loss of Cdk9 in metazoans 
results in complete loss of Ser2-P suggesting it is required upstream of 
CDK12 activity. Finally, while Bur1 and CDK9 are largely essential proteins 
(S. cerevisae bur1 mutants are extremely slow growing), Ctk1/Lsk1 is not 
essential in yeast. (B) Transcription elongation is not a rate-limiting step 
of gene expression in organisms without NELF homologs, including 
yeast. In these organisms, the kinases Bur1/CDK9 and Ctk1/CDK12 are 
recruited through general mechanisms to phosphorylate Ser2 of the Pol 
II CTD and SPT5. These phosphorylation marks enhance recruitment of 
other Pol II elongation associated factors such as RNA processing factors 
and chromatin remodelers. (C) In organisms that contain the NELF 
complex, such as Drosophila and mammals, the transition from Pol II 
initiation to elongation is a regulated step of gene expression. Here, DSIF 
(SPT4/SPT5) mediates NELF binding to the Pol II complex, “pausing” Pol 
II and preventing productive elongation. Regulated recruitment of CDK9 
and Cyclin T results in the release of this pause. CDK9 phosphorylates the 
Pol II CTD on Ser2, SPT5, and NELF. Downstream of this regulated step, 
the CDK12 complex further phosphorylates the Pol II CTD.
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Because the factors involved in Ser2 kinase activity identified 
thus far in yeast are not gene-specific regulators, recruitment 
of Ser2 kinases may not play a role in the regulation of Pol II 
elongation, unlike in higher eukaryotes (discussed below). 
Instead, these kinases seem to act largely as general factors that 
mark elongating Pol II for the recruitment of other factors at 
the proper stage of transcription. Therefore, regulation of 
this process at individual genes may have evolved as a process 
in multi-cellular organisms to control spatial and temporal 
expression during development.

The metazoan Ser2 kinases: CDK9 and CDK12
Metazoans have well-conserved homologs of Bur1 (CDK9) 

and Ctk1 (CDK12). Until recently,47 CDK9 was thought to be the 
sole Ser2 kinase in metazoans. When in a complex with its cyclin 
partner, Cyclin T, CDK9 is referred to as positive transcription 
elongation factor b, or P-TEFb, as it was first identified as having 
an ability to enhance Pol II elongation in vitro.48 CDK9 is a well-
studied protein, in part because of early associations of CDK9 
function with HIV infection (for a review see ref. 49) and more 
recently because of the role of CDK9 in the regulation of Pol II 
elongation (discussed below). However, the role of the metazoan 
Ctk1 homolog, CDK12, in Ser2 phosphorylation has been more 
recently appreciated.

Identification of CDK9
The P-TEFb complex, CDK9/Cyclin T, was identified as a 

factor that positively regulates transcriptional activity50 and 
phosphorylates the CTD48,51 in Drosophila and mammalian 
systems (for a review see ref. 49). Although these early studies 
established the CTD as the major target of CDK9 within Pol 
II,52,53 there have been conflicting reports about the specific 
residues targeted by CDK9. In vitro studies suggest CDK9 
may phosphorylate Ser5, Ser2, and Ser7.52,54-57 In contrast, in 
vivo studies that have shown that Ser2 phosphorylation is most 
affected when CDK9 is inactivated.58-62

CDK9 activity is tightly regulated, and in higher eukaryotes 
it is largely contained within multi-protein regulatory complexes 
that have been extensively characterized in Drosophila, mouse, 
and human. These complexes have been discussed in previous 
reviews (see below). Briefly, P-TEFb is negatively regulated 
by the 7SK/HEXIM complex (for a review see refs. 63 and 
64). Additionally, P-TEFb on active genes is found in a large 
complex of other elongation factors, called the “Super Elongation 
Complex,” or SEC65-70 (for a review see refs. 64, 71, and 72). 
Current models suggest that for P-TEFb to enhance elongation, 
it must be actively recruited to loci by other factors such as the 
Mediator proteins, CDK8,73,74 Med26,75 the bromodomain 
protein, Brd4,76,77 splicing factors,78 or by transcription factors, 
deemed “P-TEFb facilitators” (for a review see refs. 79 and 80). 
Some of these factors not only influence P-TEFb activity but also 
help release P-TEFb from the inhibitory 7SK/HEXIM complex 
(for a review see ref. 81).

It should be noted that Brd4 has also been identified as a Ser2 
kinase in human cells;82 however, its role in the transcription cycle 
is unclear10 as it also regulates CDK9 activity.83 Furthermore, 
Brd4 is not present in lower eukaryotes.

CDK12/Cyclin K: the recently appreciated CTD kinase 
complex

The role of CDK12 in CTD phosphorylation was 
demonstrated in 2010 when Greenleaf and colleagues showed 
that it phosphorylates Ser2 in vitro and in vivo.47 ChIP studies 
revealed that CDK12 is enriched toward the 3′ end of genes, 
which correlates with the 3′ enrichment of Ser2-P. In addition, 
the authors showed that a S. cerevisiae Bur1 chimera with the 
CDK9 kinase domain rescues a bur1 deletion while a Ctk1/
CDK12 kinase domain chimera rescues a ctk1 mutant, illustrating 
conservation of function.47 Based on these observations, as well 
as the fact that inhibition of CDK9 activity frequently reduces 
all detectable Ser2-P, Greenleaf and colleagues proposed a model 
for metazoan Ser2-P regulation that more closely matches Ser2-P 
regulation in yeast: CDK9 phosphorylates Ser2-P at the 5′ end 
of genes and this activity is upstream of and required for the 
CDK12-mediated Ser2-P toward the 3′ end of genes84 (discussed 
below, Fig. 1A and C). Therefore in both yeast and metazoans, 
Bur1/CDK9 acts upstream, both physically within the ORF and 
epistatically, of Ctk1/CDK12 to regulate Ser2 phosphorylation.

This model of Ser2 phosphorylation in higher eukaryotes is 
particularly attractive as it places a Ser2 kinase, CDK12, in the 
location of where the majority of Ser2-P is located on a gene, 
at the 3′ end. In many studies, CDK9 is largely located toward 
the 5′ end of genes85-87 while the majority of Ser2-P is found to 
increase toward the 3′ end of genes. While this low Ser2-P signal 
at CDK9 binding sites could be due to antibody detection issues 
discussed above, or the activity of a the Ser2 phosphatase FCP1,88 
the identification of CDK12 as a Ser2 kinase helps to resolve this 
apparent paradox.

Recent studies have showed that CDK12/Cyclin K is 
important for the expression of long genes with a large number 
of exons.89 In particular, DNA damage response genes are 
down-regulated in cells with reduced CDK12 and cells 
lacking CDK12/Cyclin K accumulate spontaneous DNA 
damage.89 Regulation of CDK12/Cyclin K levels may also be 
important for differentiation. While Cyclin K levels are high in 
pluripotent embryonic stem cells (ESCs), they decrease through 
differentiation and experimentally decreasing CDK12 levels in 
ESCs leads to spurious differentiation.90 Thus, CDK12/Cyclin 
K is an important transcriptional regulator that needs to be more 
extensively characterized.

Summary of kinase requirements
It now appears that most if not all eukaryotes probably 

regulate Ser2 phosphorylation in a similar manner: Bur1/Cdk9 
phosphorylates Ser2 toward the 5′ end of genes, and this enhances 
further phosphorylation by Ctk1/Cdk12 (Fig. 1B and C).  
Although it is satisfying that recent results have resolved 
two seemingly disparate modes of Ser2 regulation into one 
conserved model, there is one important difference between 
yeast and metazoans. In yeast, while Bur1 is important for Ser2 
phosphorylation levels, it is not required for Ctk1-mediated 
phosphorylation (Fig. 1A and B). In contrast, CDK9 is essential 
for CDK12-mediated CTD phosphorylation in Drosophila 
and mammalian systems (Fig. 1A and C). The reason for 
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this dissimilarity is due to differences in the regulation of 
transcriptional elongation between these systems.

Pol II Elongation Control:  
A CDK-9-Mediated Transition in Metazoans

Pol II pausing is pervasive in some higher eukaryotes
As mentioned in the introduction, the transitions between Pol 

II recruitment and productive elongation are now recognized as 
possible points of transcription regulation in many eukaryotes.91 
One of the most general and well-documented examples of post-
recruitment regulation is the transition between initiation and 
productive elongation.

Because many early studies of transcription were performed 
in yeast, where Pol II activity is largely regulated at the level of 
recruitment (discussed below), this was thought to be the major 
point of transcription regulation. However, studies in Drosophila 
and human cells reveal that higher eukaryotes exhibit substantial 
post-initiation regulation of transcription. Genome-wide 
analyses showed that at many genes, Pol II localization is highest  
25–60 bp downstream of transcription start sites where Pol II 
“pauses” between early elongation and productive elongation.92-98 
This abundance of binding is thought to reflect the fact that Pol 
II quickly transitions from the pre-initiation complex (PIC) to the 
paused state at most genes,99 and can be stably positioned at paused 
sites for several minutes prior to productive elongation.96,98-102 
Thus, as opposed to yeast systems, the transition between 
transcription initiation and productive elongation is regulated in 
higher metazoans. While there are many ideas about the purpose 
of Pol II pausing, it is clear that regulating polymerase elongation 
allows fine-tuning of gene expression (for a discussion about 
proposed functions of pausing see refs. 4, 80, and 103).

NELF is the established regulator of polymerase pausing
Although the widespread regulation of Pol II elongation was 

not appreciated until recently, beautiful biochemistry by the 
Handa and Price labs established a framework for understanding 
the regulation of early transcription elongation. Specifically, this 
work uncovered factors that are required to mediate promoter 
proximal pausing: the DSIF complex (SPT4/SPT5) and 
the NELF complexes. DSIF interacts directly with Pol II,104 
bridging contact between NELF and Pol II.105 Although the 
molecular details of how NELF negatively regulates Pol II is 
poorly understood (for a review see refs. 4 and 80), it is clear 
that NELF is a major mediator of pausing in systems studied to 
date106-108 (discussed below). Elongation repression is alleviated 
by P-TEFb,109,110 which, in addition to phosphorylating the Pol 
II CTD, also phosphorylates SPT5 of the DSIF complex111 
and the NELF complex.112 Following this, NELF leaves the 
elongating Pol II complex while DSIF remains associated.113,114 
After dissociation of NELF, DSIF acts to enhance transcription 
elongation111 (details below). Thus, DSIF may repress elongation 
simply by acting as a facilitator of NELF-mediated repression 
(Fig. 1C).

While the NELF complex members are only conserved 
in higher eukaryotes, including Drosophila and mammals,107 

both DSIF components, SPT4 and SPT5, are highly conserved 
proteins (for a review see refs. 115 and 116). Studies performed in 
yeast, which lack NELF, suggest that DSIF acts only as a positive 
elongation factor,117-119 supporting the model that DSIF functions 
as a negative elongation factor in higher eukaryotes by binding 
NELF. In yeast, Spt5 helps to recruit transcription-associated 
factors such as RNA processing factors and chromatin remodelers 
(for a review see refs. 115 and 120-122). In addition, structural 
studies have determined that DSIF likely directly enhances Pol 
II processivity.123-125 Thus, this role of Spt5 in transcriptional 
regulation likely evolved early, with successive layers of regulation 
added throughout evolution.

Studies in other organisms also support the correlation 
between presence of NELF homologs and regulation of Pol II 
elongation. Pol II pausing has only been extensively studied in 
Drosophila and mammalian systems; however, NELF homologs 
are also present many other eukaryotic model systems such as 
Xenopus and Zebrafish. Genome-wide studies of Pol II in these 
systems both show a prominent 5′ accumulation of Pol II in 
metagene analyses.126,127 These studies suggest that elongation is 
a regulated event in these systems and is likely to be mediated 
by NELF. In contrast, Arabidopsis does not have obvious 
NELF homologs, and promoter proximal Pol II pausing has 
been undetected in this organism.128 In summary, evolutionary 
conservation of NELF correlates with widespread Pol II pausing 
in many eukaryotes.64

Pol II elongation is a general step of transcription regulation 
in higher eukaryotes

The roles of DSIF, NELF, and P-TEFb in pausing were 
first characterized using biochemical studies on naked DNA 
templates. This, along with the fact that these factors appear to 
have consistent effects on the genes tested in vitro and in vivo, 
led to the model that the transition of Pol II from initiation to 
elongation is a general point of regulation for all genes, and that 
these elongation factors are basal transcription factors (Fig. 1C). 
Genome-wide ChIP studies corroborated this conclusion as these 
factors are located on a surprisingly large number of genes, both 
active and inactive.129,130 Indeed, genes bound by DSIF and NELF 
significantly overlap (> 90%) with those bound by Pol II.97,131,132 
Finally, functional data supports this model, as incubation of 
HeLa cells with flavopiridol, an inhibitor of P-TEFb, reduces the 
level of transcription to a level strikingly similar to incubation 
with α-amanitin, a well-studied Pol II inhibitor.133 Thus, 
P-TEFb-mediated DSIF/NELF release is a generally required 
and regulated step of transcription in higher eukaryotes. This 
explains why higher eukaryotes require CDK9 upstream of 
CDK12: CDK9 is required for the release from NELF-mediated 
pausing and subsequent elongation-associated phosphorylation 
of Ser2 by CDK12.

Promoter proximal escape is not generally regulated in yeast
Early studies in yeast established initiation as the major point 

of transcription regulation,134,135 and this has been confirmed for 
the vast majority of genes in genome-wide analyses. Pol II is fairly 
evenly distributed across gene bodies in budding yeast during log 
phase growth, suggesting there are no major rate-limiting steps 
in the transition between recruitment and elongation12,136 (for a 
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review see ref. 137). This is also the case for fission yeast, as they 
also lack a Pol II peak near the TSS in metagene analyses.138

Several other studies have provided more direct evidence 
for initiation as the major point of transcription regulation 
in yeast. Although recent genome-wide polymerase run-on 
sequencing (GRO-seq) studies in budding yeast have shown 
that the elongation rate can vary across a gene,119 this is not 
analogous to promoter proximal escape. Instead, this variation 
may reflect effects on Pol II processivity by the underlying DNA 
sequence or nucleosome positioning.139 Furthermore, changes 
in Pol II accumulation on a gene following a stimulus largely 
reflect changes in mRNA.140 Finally, genes that have initiated 
transcription (i.e., have Ser5 phosphorylation) highly correlate 
with genes where elongating Pol II is present (i.e., have Ser2 
phosphorylation).12 Thus, the transition between initiation and 
elongation is not a common barrier to gene expression in yeast. 
During normal growth, genes that have initiated transcription 
will generally produce a full-length mRNA product.

The lack of promoter proximal pausing in yeast also correlates 
with Pol II Ser2 kinase requirements: Pol II elongation does 
not require Bur1/Cdk9 in yeast. Reducing Bur1 activity does 
not increase promoter proximal Pol II levels.141 Instead, there 
is a reduction in both initiated and elongating Pol II.119,141,142 
As in budding yeast, the Bur1 homolog, Cdk9 is not required 
for elongation in fission yeast.143 Thus, while Bur1/Cdk9 
phosphorylate the CTD toward the 5′ end of genes, is not 
required for the transition of Pol II into productive elongation 
in yeast. This is likely why Bur1/Cdk9 is not required for Ctk1/
Lsk1-mediated Ser2 phosphorylation (Fig. 1A and B).

Transcriptional Elongation Regulation in C. elegans

A new facet of Ser2-P regulation and transcription elongation 
is now emerging in the C. elegans model system. C. elegans has 
been a unique model for understanding transcription regulation 
because it is one of the few well-studied models that has trans-
splicing of Pol II transcripts. Trans-splicing, which occurs on 
~70% of C. elegans genes,144,145 involves the replacement of 
the 5′ end of transcripts with a short, 21–22 nucleotide RNA 
sequence, called a splice leader.146 Because trans-splicing occurs 
on the majority of genes, the TSS for many Pol II genes cannot be 
mapped from the 5′ sequence of mature mRNA as is commonly 
done in other organisms.147,148 Thus, although the TSS has 
been mapped for individual genes in C. elegans,149 genome-
wide approaches for TSS identification have only recently been 
performed.145,147,148,150 These recent results have, for the first time, 
allowed scientists to analyze the regulation of early steps of Pol II 
transcription on a global scale. CTD phosphorylation patterns in 
C. elegans are similar to other metazoans. Genome-wide studies 
show that Ser5-P shows stronger signal toward the promoter 
and Ser2 phosphorylation within the body of the genes151,152 (for 
a review see ref. 153). However, recent studies have identified 
tissue-specific regulation of Ser2 phosphorylation in C. elegans 
(for a review of C. elegans germline biology see refs. 154 and 155).

C. elegans Somatic Ser2-P Requires CDK-9  
and CDK-12

In C. elegans embryo somatic tissues, Ser2 phosphorylation 
is regulated similar to other metazoans, i.e., inhibition of 
CDK-9 activity results in near total loss of detectable Ser2 
phosphorylation while inhibition of CDK-12 reduces Ser2 
phosphorylation levels by about 60%.58,59 Additionally, CDK-9 
is required for bulk transcription in C. elegans somatic tissues as 
loss of CDK-9 activity causes phenotypes similar to those caused 
by loss of embyronic RNA Pol II activity, e.g., embryonic death 
and defective gastrulation.59,156 Furthermore, CDK-9 activity is 
required for expression of somatic developmental genes in C. 
elegans embryos.58 Thus, in embryonic somatic tissues, as in other 
metazoans, it appears that CDK-9 acts upstream of CDK-12 in 
Ser2 phosphorylation and is required for productive transcription 
(Fig. 2A).

While regulation of Ser2-P in the C. elegans soma by CDK-9 
parallels observations in other metazoans, there are likely distinct 
differences in the regulation of CDK-9 activity. For example, in 
higher eukaryotes, CDK9 activity is regulated by large protein 
complexes that include the inhibitory 7SK/HEXIM and 
stimulatory SEC complex. C. elegans does not contain obvious 
homologs for the 7SK/HEXIM components, and thus likely 
does not sequester CDK-9 in an analogous inhibitory complex. 
While C. elegans does contain homologs for a subset of the SEC 
components, specifically ELL1 (Y24D9A.1), AFF9 (Y55B1BR.1 
and Y55B1BR.2), and EAF (D1007.16), these factors do not 
appear to play an essential role in transcription.157 Furthermore, 
knock down of ELL and AFF9 does not significantly affect 
either Ser2-P levels or viability (E.A. Bowman, W.G. Kelly, 
unpublished). Finally, whereas CDK9 activity is regulated by 
Brd4 and Med26 in higher eukaryotes, there is not a clear Brd4 
homolog in C. elegans and Med26 does not affect bulk Ser2-P 
levels in somatic tissues (EA Bowman, W Kelly, unpublished).

C. elegans elongation regulation
Does C. elegans regulate Pol II promoter proximal escape?
The requirement of CDK-9 for Ser2-P in C. elegans soma 

suggests that CDK-9 may play a pivotal role in transcriptional 
elongation in this tissue. As described above, Cdk9 is required for 
transcription elongation in Drosophila and mammalian systems 
to counteract Pol II pausing mediated by NELF and DSIF.  
C. elegans does not have an obvious NELF complex (Table 1); 
however, the fact that (1) CDK-9 appears to be required for 
somatic transcription,58,59 (2) cells lacking CDK-9 retain a 
marker of initiated Pol II, Ser5-P, in the absence of the elongation 
marker, Ser2-P,59 and (3) Ser2-P in C. elegans somatic tissues 
is regulated similarly to higher metazoans suggests that Pol II 
elongation is still critically regulated by CDK-9 in these tissues. 
Is transcription elongation regulated in C. elegans and does CDK-
9/P-TEFb regulate promoter proximal escape of Pol II?

Genome-wide studies show conflicting evidence for 
elongation regulation in C. elegans. Data from the modENCODE 
project using C. elegans embryos and larvae suggested that Pol 
II binds to genes that have low and even undetectable levels of  
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expression.158 This result suggests that Pol II binding at these  
genes may reflect a paused or stalled polymerase that 
is regulated for expression later in development.158 A 
separate analysis of Pol II ChIP data showed a 5′ peak 
of Pol II binding at both spliced and unspliced genes,150 
although this peak can be further downstream of the TSS  
(100–170 bp) than paused Pol II in Drosophila and mammals 
(25–60 bp). However, using the current gold standard for 

identification of Pol II pausing, genome-wide polymerase  
run-on sequencing (GRO-seq), Meyer and colleagues did 
not observe evidence of wide-spread Pol II pausing in worms  
under optimal growth conditions.147

Despite the inconsistent evidence for Pol II pausing in genome-
wide analysis and averaging, some reports have suggested that 
pausing indeed exists at individual genes. Snyder and colleagues 
identified enriched Pol II promoter proximal binding at 2% 
of genes analyzed in normally growing embryos and larvae 
by ChIP-seq (“enriched” defined as 4-fold higher binding 
near the TSS than within the gene body; about 250 genes).159 
Additionally, Meyer and colleagues identified several genes with 
a Pol II “pausing” profile in embryos and fed larvae by GRO-seq 
(0.38% in embryos, 15 of 3975 genes; 2.0% in larvae; “pausing” 
defined as TSS:body signal ratio ≥ 2).147

The strongest evidence that Pol II elongation is regulated 
in C. elegans comes from studies in starved larvae. Under these 
conditions, Baugh and colleagues identified an accumulation of 
Pol II at the 5′ end of a substantial fraction of genes160 (for a 
review of larval starvation arrest see ref. 161). Most recently, two 
studies have confirmed that some of these genes with 5′ Pol II 
accumulation do indeed harbor paused Pol II. As described above, 
promoter proximal paused Pol II as described in Drosophila is 
transcriptionally competent rather than arrested or backtracked,96 
and remains associated with short capped RNAs (scRNA) 
instead of terminating.162 Indeed, recent GRO-seq analysis from 
starved larvae showed that 7.7% of genes analyzed have a 5′ 
accumulation of Pol II and are transcriptionally competent.147 
Furthermore, Baugh and colleagues showed that genes with this 
5′ GRO-seq signal also produce scRNAs (short capped RNAs), 
which extend approximately 30–65 bp downstream of TSSs.163 
Furthermore, these scRNAs are longer in worms mutant for 
TFIIS.163 This lengthening of scRNAs is consistent with Pol II 
pausing and backtracking seen in Drosophila,162 and makes the 
case for Pol II pausing in C. elegans even more compelling. Thus, 
Pol II elongation is indeed regulated for a substantial number of 
genes in starved C. elegans larvae.

While the release of Pol II from initiation into elongation may 
not be a ubiquitous rate-limiting step during normal growth in 
C. elegans, there is strong evidence that a fraction of genes are 
regulated at this step and are thus “paused.” At this point, it is 
unclear if Pol II release requires CDK-9 as is the case in Drosophila 
and mammals; however, as mentioned above CDK-9 is generally 
required for transcription in somatic tissues (see above). Thus, it 
seems likely that CDK-9 mediates promoter proximal escape at 
paused genes and it is attractive to consider that CDK-9 may be a 
general regulator of transcriptional regulation in C. elegans.

Possible mechanisms for C. elegans promoter proximal 
escape

Pol II elongation can be regulated during C. elegans 
transcription, and whether this is a general mechanism at all 
genes as in Drosophila and mammals, or only important for a 
small subset of genes, this regulation appears to occur by a 
mechanism that does not involve NELF. One of the biggest 
reasons that elongation regulation has been controversial in  

Figure 2. Ser2 kinases in C. elegans transcriptional elongation regulation. 
(A) Loss of CDK-9 or CDK-12 activity results in different effects on Ser2-P 
levels in the C. elegans germline vs. soma (compare with Fig. 1A). While 
CDK-12 is responsible for the bulk of Ser2-P in the germline, both CDK-9 
and CDK-12 regulate Ser2-P levels in the soma. Importantly, loss of CDK-9 
in the soma results in complete loss of Ser2-P, suggesting it is required 
upstream of CDK-12 activity. Finally, while both CDK-9 and CDK-12 are 
essential for somatic development, only CDK-9 is essential for germline 
development. (B) As an analogy to eukaryotic organisms that do not have 
a NELF homolog, transcription elongation may not be a rate-limiting 
step of gene expression in the germline. Because CDK-9 is essential 
in the germline, it may target SPT-5 or other factors, though it is not 
required for phosphorylation of Ser2 on the Pol II CTD. (C) In the soma, 
the transition from Pol II initiation to elongation can be a regulated step 
of gene expression. Here, DSIF (SPT4/SPT5) alone or in combination with 
an additional pausing factor (PF) may regulate a 5′ check point prior to 
productive Pol II elongation. Regulated recruitment of CDK9 and Cyclin 
T through transcription factors and possibly phosphorylation of pausing 
factors may release Pol II from this check point. At the same time, CDK9 
phosphorylates the Pol II CTD on Ser2 and may phosphorylate the SPT5 
CTR. Downstream of this regulated step, the CDK12 complex further 
phosphorylates the Pol II CTD.
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C. elegans is because it lacks homologs to the NELF complex. 
Thus, Pol II elongation could be regulated by DSIF activity 
alone or via a novel, unidentified pausing factor.147 Importantly, 
C. elegans does not have clear homologs of the recently identified 
pausing factors Gdown1,164,165 GAGA factor,166 or M1BP.167

Can pausing be mediated by DSIF alone? DSIF is commonly 
referred to as a negative regulator of elongation; however, it is 
generally thought to perform this function in concert with 
NELF (discussed above). In support of a possible role for DSIF-
mediated pausing, an early study showed that a heat shock gene, 
which requires CDK-9 for expression, is re-expressed when both 
CDK-9 and DSIF are knocked down in the C. elegans embryo.58 
However, this may be unique to heat-shock regulation, or there 
may be additional elongation factors regulating other genes, as 
the authors did not observe re-expression of developmental genes 
when both CDK-9 and DSIF were knocked down.58 In summary, 
if CDK-9 does act to release Pol II for productive elongation in the 
soma, there is likely to be an additional factor that mediates this 
step, which may or may not work in combination with DSIF in a 
mechanism analogous to NELF in higher eukaryotes (Fig. 2C).

Recently, Grishok and colleagues have identified the ZFP-1 
(AF10 homolog)/DOT-1 complex as a negative regulator of Pol 
II elongation in C. elegans.168 Specifically, ZFP-1 mutants cause a 
decrease in Pol II abundance at the promoter of several C. elegans 
genes. ZFP-1/DOT-1 regulates elongation by reducing histone 
ubiquitination that normally promotes transcription. It is unclear 
if this complex plays a role analogous to the NELF complex in Pol 
II pausing but it does suggest an interesting mode of elongation 
regulation through chromatin.4,168 Finally it should be noted that 
the ZFP-1/DOT-1 complex is not found at all genes that have 
a predominant 5′ Pol II accumulation, so additional factors are 
likely involved in this step of Pol II elongation.

Unique regulation of Ser2-P in the C. elegans germline 
suggests tissue-specific Pol II elongation regulation

Recent studies have uncovered tissue-specific regulation 
of Ser2-P in C. elegans (for a review of C. elegans germline 
biology see refs. 154 and 155). In contrast to its essential role 
in somatic Ser2-P, CDK-9 is not required for the bulk of Ser2 
phosphorylation in the germline, which instead requires CDK-
12.59,169 While it is unexpected that C. elegans germline Ser2-P 
does not require CDK-9, this pattern of Ser2-P regulation is 
surprisingly similar to that seen in yeast (Fig. 1A). As in yeast, 
Ser2 phosphorylation does not require upstream activity of the 
Bur1/CDK-9 kinase, but instead is largely dependent on Ctk1/
CDK-12 (Fig. 2A). Additionally, in both systems, Bur1/CDK-9 
is not required for bulk Ser2 phosphorylation although they are 
important for normal growth in each cell type. Finally, as in 
yeast, the Ser2 kinase, CDK-12, is also not essential for germline 
development in standard laboratory conditions (Fig. 2A).

Overall, Ser2-P regulation in germline tissues matches the 
regulation seen in yeast while Ser2-P regulation soma matches 
what is seen in Drosophila and mammalian systems. What is the 
mechanism for the differential regulation of Ser2 phosphorylation 

between somatic and germline tissues? As Ser2-P is most tightly 
associated with transcription elongation, it is appealing to 
think that tissue-specific Ser2-P regulation reflects differences 
in transcription elongation control between these two basic 
tissue types. While it is clear that transcription elongation can 
be a regulated step in C. elegans transcription (see above), it is 
enticing to speculate that this regulation is limited to the soma 
and not the germline. Perhaps somatic tissues require CDK-9 for 
Ser2-P because CDK-9 activity is required for elongation as in 
higher metazoans (Fig. 2C). In contrast, germline Ser2-P may 
not require CDK-9 because (as in yeast) CDK-9 is not required 
for transcription elongation in the germline (Fig. 2B). While 
speculative, it is exciting to consider that transcription elongation 
may be differentially regulated in a tissue-specific manner in 
some metazoan systems.

Perspective

After an exciting 20 years of research on Pol II CTD 
phosphorylation and transcription, we are developing a clearer 
picture of the relationship between Ser2-P and Pol II elongation. 
As we have uncovered species-specific differences in Pol II 
regulation, it is also becoming clear that differences in Ser2-P 
can exist within a species as tissue-specific regulation. Thus, 
it is important that we begin to dissect mechanisms of Pol II 
elongation in distinct tissues.

Future tissue-specific studies are likely to be aided by new 
methods that isolate cell-type specific nuclei. Importantly many 
previous genome-wide studies of Pol II elongation regulation in 
metazoans have been performed using mixed cell-types. Based on 
the recent data suggesting tissue-specific regulation, it is possible 
that a mixture of cell types masks details of tissue-specific Pol 
II regulation. Isolation of tissue-specific material, either through 
flow cytometry, cell-type specific tagging,170 or the recently 
developed INTACT (isolation of nuclei tagged in specific cell 
types) method171,172 is likely to have a major impact on the ability 
to understand tissue-specific phenomenon. This method has 
already been used to isolate C. elegans muscle nuclei172 and it 
seems likely that this could be easily adapted to additional somatic 
tissues or the germline. As we move toward the development of 
methods that can dissect these events in multicellular organisms, 
it is likely that we will find unique exceptions to well-established 
models of transcription. Powerful genetic model systems such as 
C. elegans will continue to provide this unique insight.
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