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Abstract

Context: Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability,
and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in
steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1
regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the
ventromedial hypothalamus.

Objective: To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed
with respect to steroidogenesis and energy balance.

Patients: 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient
harboring a novel mutation also suffered from adrenal insufficiency.

Methods: SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in
steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by
promoter assays (JEG3).

Results: Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1
mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by
SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical
data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI.

Conclusions: Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal
insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is
involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1
mutations.

Citation: Malikova J, Camats N, Fernández-Cancio M, Heath K, González I, et al. (2014) Human NR5A1/SF-1 Mutations Show Decreased Activity on BDNF (Brain-
Derived Neurotrophic Factor), an Important Regulator of Energy Balance: Testing Impact of Novel SF-1 Mutations Beyond Steroidogenesis. PLoS ONE 9(8):
e104838. doi:10.1371/journal.pone.0104838

Editor: Michal Hetman, University of Louisville, United States of America

Received April 2, 2014; Accepted July 17, 2014; Published August 14, 2014

Copyright: � 2014 Malikova et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This work was supported by grants of the Swiss National Science Foundation (320030-146127) to CEF, the Instituto de Salud Carlos III, Madrid, Spain
CIBERER U-712 to MFC and the AGAUR (University and Research Management and Evaluation Agency), Barcelona, Spain (2009SGR31) to LA, and by ESPE
(European Society of Pediatric Endocrinology) Research Fellowship grants to JM and NC (sponsored by Novo Nordisk A/S). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors declare that Novo Nordisk A/S partly funded this study. There are no patents, products in development or marketed
products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* Email: christa.flueck@dkf.unibe.ch

" JM and NC are joint first authors on this work.

PLOS ONE | www.plosone.org 1 August 2014 | Volume 9 | Issue 8 | e104838

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0104838&domain=pdf


Introduction

The nuclear receptor steroidogenic factor 1 (SF-1/NR5A1) is a

master regulator of adrenal and gonadal development, including

sexual determination and differentiation, as well as steroidogenesis

and reproduction [1,2]. SF-1 also plays a pivotal role in the

development of the ventromedial hypothalamic nucleus (VMH)

and for functions of the pituitary gland [3,4]. In addition,

expression of SF-1 has been identified in the spleen, skin and in

small amounts in the placenta [5,6,7]. SF-1 was first identified in

1992 for its function as a transcriptional regulator of steroidogenic

genes and was named accordingly [8]. Later, the Sf-1 KO mice

were reported with a severe phenotype including lack of adrenal

glands and a complete sex reversal of 46,XY animals [9]. Finally in

1999, the first human being with adrenal insufficiency and 46,XY

disorder of sexual development (DSD) harboring a heterozygote

SF-1 mutation was described [10]. Meanwhile, numerous SF-1

mutations have been identified [2], yet the exact function of SF-1

explaining the broad phenotype associated with SF-1 mutations

remains elusive [11,12].

SF-1 is encoded by the NR5A1 gene which is located on the

long arm of chromosome 9 (9q33). The gene consists of 7 exons

but only 6 exons are coding. SF-1 has 461 amino acids and

comprises a DNA binding domain with two zinc fingers, an

accessory DNA binding domain, a hinge region and a ligand

binding domain [1]. The structure of SF-1 is greatly conserved

among animal species [13]. To date more than 70 human NR5A1
mutations have been described (Human Gene Mutations Data-

base, www.hgmd.cf.ac.uk). Most of these mutations are found in a

heterozygote state [11,14] and only a few in a homozygote [15], or

compound heterozygote state [16]. So far, no correlation between

phenotype and genotype, and also no clear pattern of heredity has

been seen as both sporadic and familiar presentations exist [11].

Furthermore, possibility of dominant negative effect of heterozy-

gote NR5A1 mutations has been debated without convincing

results [11].

The clinical presentation of SF-1 deficiency is very variable.

The first human individual with a heterozygote Gly35Glu SF-1

mutation had 46,XY DSD and adrenal insufficiency [10]. So far,

only two additional SF-1 mutations causing adrenal insufficiency

have been reported [15,17]. The heterozygote Arg255Leu

mutation was found in a girl with symptoms of adrenal

insufficiency and normal ovarian differentiation and function

[17], and the homozygote Arg92Gln mutation was present in a

boy with adrenal failure and 46,XY DSD [15]. By contrast,

NR5A1 mutations are frequently found in patients with 46,XY

DSD with apparently normal function of the adrenal cortex

[11,14,18]. Similarly, some NR5A1 mutations were found in

46,XX females with premature ovarian failure or ovarian

insufficiency with normal adrenal function [11,19].

SF-1 deficiency also affects the central regulation of reproduc-

tion and energy balance [20]. The pituitary Sf-1 KO mouse model

showed that SF-1 is an essential regulator of gonadotropin (LH,

FSH) expression [4,21,22]. These mice present with hypogonad-

otropic hypogonadism reflected by sexual immaturity, low weight

of gonads and sterility [4]. Apart from the pituitary gland, SF-1 is

also required for the development, organization and function of

the ventromedial hypothalamus (VMH) [3,23]. Mouse models

have shown that a loss of SF-1 stimulation leads to disorganization

of the VMH, thereby impairing its function related to anxiety,

thermoregulation, sexual behavior and energy balance [24].

Selective deletion of Sf-1 in the VMH in mice prenatally resulted

in late onset obesity [25], while the same deletion postnatally led to

diet induced obesity and deregulated thermogenesis [25]. How-

ever, these possible effects of SF-1 deficiency have not yet been

studied in humans harboring SF-1 mutations.

In this context, the brain-derived neurotrophic factor (BDNF) is

an important regulator of energy balance [26]. It is a highly

conserved neurotrophin which is thought to be a SF-1 target gene

[27]. BDNF is expressed in several appetite-regulating centers in

the hypothalamus and the hindbrain in both mouse and human

[28]. Depletion of Bdnf or its receptor (TrkB) in mice results in

excessive feeding, weight gain and features accompanied by the

metabolic syndrome [26,29]. Abnormal locomotor activity and

late-onset obesity was also observed in a Bdnf heterozygote

knockout mouse model or when Bdnf was inactivated in the

central nervous system [29,30]. In addition, reduced expression of

BDNF was described in association with obesity in the leptin

receptor deficient mouse [31], the Alzheimer disease mouse [32]

and the Sf-1 KO mouse [3]. In humans, two reports show a

relationship between BDNF (locus 11p14) and obesity [33,34].

Patients with WAGR syndrome (Wilm’s tumor, aniridia, genito-

urinary anomalies and mental retardation, OMIM 194072) with a

heterozygous 11p14 deletion including the BDNF gene suffer all

from childhood onset obesity, while WAGR syndrome patients

without genetic anomalies including the BDNF gene have normal

prevalence of obesity [33]. Additionally, a girl with obesity and

impaired cognitive function who has only one functional copy of

the BDNF gene has been described [34].

We hypothesize that human SF-1 mutations may affect

metabolism and that this effect could be mediated in part through

BDNF. Therefore, in this study we characterize novel NR5A1
mutations, one being associated with the rare phenotype of

adrenal insufficiency and 46,XY DSD. We describe the effect of

these SF-1 mutations in vitro on transcription of genes involved in

steroidogenesis and on the BDNF gene which is important for

central regulation of food intake. Finally, we describe some weight

related parameters in our small cohort of NR5A1 patients.

Patients and Methods

Patients and ethical approval
Five patients of Czech Republic and Spanish origin with

unsolved 46,XY DSD were studied. Main characteristics of

patients and families are shown in Table 1, family trees are

depicted in Figure 1A and biochemical data are available as Table

S1. All studied subjects and/or their legal guardians gave written

informed consent for the hormonal and molecular studies, which

were approved by the respective ethical committees of the involved

centers: Ethics commissions of Vall d’Hebron Research Institute

and CIBERER, Barcelona, Spain, and University Hospital Bern,

Switzerland.

Case reports (Table 1 and 2, Figure 1, Table S1)
Patient 1 from Czech Republic, was delivered at 31 weeks

gestation because of HELLP (hemolysis, elevated liver enzymes,

low platelets) syndrome of the mother. Birth weight was 1430 g (5–

10th percentile) and length was 38 cm (5–10th percentile). Physical

exam revealed perineal hypospadias but no other anomalies.

Karyotype was 46,XY. Neonatal period was unremarkable.

However, at the age of three months, he was admitted for adrenal

failure (hyponatremia, hyperkalemia, episode of hypoglycemia,

dehydration) in the course of an acute, viral respiratory infection.

Baseline levels of ACTH and plasma renin activity were elevated.

Cortisol response to ACTH stimulation was low confirming

adrenal insufficiency.
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Patient 2 from Spain (with parents from Argentina of European

descents) was investigated during fetal development because of a

discordant genital sex by ultrasound (female) compared to the

genetic sex (46,XY). He was conceived by ICSI from both parents

gametes. Owing to the father‘s history of hypospadias, the NR5A1
gene was analysed in the father showing an heterozygous

mutation. The same mutation was detected in fetal material.

Although there was no consanguinity, the mother was also

analysed to predict possible compound heterozygocity or homo-

zygocity. The patient was delivered at 40 weeks gestation with a

normal weight and length. External genitalia showed a clitoris-like

genital tubercle, posterior labial fusion, no visible urethral meatus

nor vaginal opening. Small (,1 ml) gonads were palpable in the

genital folds. Male sex was assigned. The neonatal period was

uneventful and endocrine evaluation was not performed until the

age of 3.5 months when baseline ACTH, cortisol and 17-hydroxy-

progesterone (17OHP) were normal, while baseline testosterone

(T) was low and FSH high for age; T response to hCG stimulation

was low. Therefore, at 4 months of age, gender was reassigned to

female due to the severely feminized external genitalia.

Patient 3 from Spain was delivered at 38 weeks gestation with

normal weight and length; he was evaluated at 14 days due to

ambiguous genitalia (scrotal hypospadias, penis length 2 cm and

gonads palpable in the scrotal folds). Karyotype was 46,XY.

Baseline cortisol and aldosterone were normal as were the

measured steroid precursors. Baseline FSH was slightly elevated,

AMH and inhibin B were low. T response to hCG stimulation was

low while the T/DHT ratio was normal.

Patients 4 and 5 from Spain were delivered as bichorionic twins

at 36 weeks gestation with the 1st twin showing normal weight and

lenght while the 2nd was small for gestational age (SGA). They

were obtained by ICSI from the father’s sperm and a donated ova

to avoid the mother’s genetic disease (epidermiolysis bullosa). Both

babies presented with ambiguous genitalia: scrotal hypospadias

with a penis length of 1.5 cm, both gonads palpable (1 ml) in the

scrotal folds (1st twin) and unilateral cryptorchidism and one

palpable gonad (0.5 ml in the 2nd twin). The father had been

operated for hypospadias during childhood. His testes biopsies at 9

years of age revealed diminished seminiferous tubule diameter and

fertility index in the left testis while these parameters were normal

in the right testis). Neonatal period was uneventful in both twins.

At birth (2 days), baseline T, precursors and gonadotropins were

normal for age and AMH was low at 2 months.

Genetic analyses
Genomic DNA was isolated from peripheral blood leukocytes.

All exons and part of adjacent introns of the NR5A1 gene were

amplified and sequenced as previously described [11]. Obtained

sequences were analysed against the NR5A1/SF-1 GenBank

entries NT_008470.19 (genomic DNA), NM_004959.4 (mRNA)

and NP_004950.2 (protein).

In vitro functional studies
Human embryonic kidney cells (HEK293) and human placental

choriocarcinoma cells (JEG3) were used for functional studies.

HEK293 cells were cultured in DMEM supplemented with 10%

fetal calf serum, 1% penicillin/streptomycin and 1% sodium

pyruvate (Gibco, Paisley, UK). JEG3 cells were cultured in MEM

supplemented with 10% fetal calf serum, 1% penicillin/strepto-

mycin and 1% L-glutamine (Gibco).

Figure 1. Genetic information on 5 subjects carrying NR5A1 mutations. A. Family trees of 4 families and 7 affected individuals (5 patients and
2 parents) are shown. Scheme of the NR5A1 gene showing the mutations identified in the reported patients (above the scheme) and all reported SF-1
mutations causing adrenal insufficiency (below the scheme). Electropherograms of novel mutations are also depicted. The NR5A1 gene is composed
of coding (black) and non-coding sequences (gray). Exons are indicated by numbers.
doi:10.1371/journal.pone.0104838.g001
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Promoter luciferase reporter vectors for steroidogenic enzymes

HSD3B2, CYP11A1, CYP17A1 (-227CYP17A1_Dluc, -152CY-

P11A1_pGL3, -301HSD3B2_pGL3) and corresponding empty

control vectors (D_luc, pGL3), as well as cDNA for wild-type (WT)

SF-1/NR5A1 were available from previous work [35,36].

Luciferase reporter vectors for human promoters I, IV, V and

VII of the BDNF gene (pGL4.15_hBDNFpI, pGL4.15_

hBDNFpIV, pGL4.15_hBDNFpV, pGL4.15_hBDNFpVII) were

kindly provided by Dr. P. Pruunsild and Prof. T. Timmusk

(Tallinn University of Technology, Tallinn, Estonia). Mutant

NR5A1 expression vectors (c.19T, c.887T, c.937T, c.1222_

1223insC) and SF-1 cis element mutant pGL4.15_hBDNFpI (c.-

876_873CTTT) were generated by PCR-based site-directed

mutagenesis using specific primers (available upon request)

following the QuickChange protocol by Stratagene (Agilent

Technologies Inc., Santa Clara, CA, USA).

For promoter activity studies, cells were cultured in 24-well

plates and transiently transfected with WT or mutant NR5A1 and

WT or mutant promoter luciferase reporter constructs using

Lipofectamine 2000 (Invitrogen, AG, Basel, Switzerland) for 48

hours, and the Dual-Luciferase Reporter (DLR) Assay System

(Promega AG, Wallisellen, Switzerland) was used for readout as

previously described [11]. Specific Firefly luciferase readings were

normalized against Renilla control readings and expressed as

relative light units (RLU). Experiments were repeated at least 3

times in duplicates.

Statistical analysis
Data are shown as mean6SEM of at least three independent

experiments. Statistical analysis was examined by t-test with

Microsoft Office Excel (Windows 2003, Microsoft Inc.). Signifi-

cance was set at *p,0.05, **p,0.01.

Results

Genetic analysis
We identified 2 novel and 2 known NR5A1 sequence variations

in 5 patients newly diagnosed with SF-1 deficiency (Figure 1).

Patient 1 (family 1), a boy with adrenal insufficiency and 46,XY

DSD harbored compound heterozygote novel c.19G.T and

c.887C.T variations in the NR5A1 gene coding for Glu7Stop in

the DNA binding domain and Thr296Met in the ligand binding

domain. Glu7Stop was not found in either parents, thus qualifying

as a de novo mutation. By contrast, heterozygocity for Thr296Met

was detected in the healthy father (Figure 1). Patient 2 (family 2)

was heterozygote for a novel insertion c.1222_1223insC which is

predicted to result in a frameshift elongating the SF-1 protein by

159 amino acids (His408Profs*159). The mutation was inherited

from an affected carrier father (Figure 1). In patients 3 to 5 from

two families (3 and 4), a heterozygote c.937C.T mutation in exon

5 was found changing Arg313Cys in the ligand-binding domain

(Table 1, Figure 1). In family 3, the mutation was de novo (patient

3), whereas in family 4 (patients 4 and 5), the mutation was

inherited in two dizygotic twins from an affected carrier father

(Table 1, Figure 1). This mutation was recently reported in a

patient manifesting with distal hypospadias and a bifid scrotum

containing testes [37].

In vitro studies of the impact of SF-1 variants on
steroidogenesis and energy balance

Impact of identified SF-1 mutations on steroidogenesis was

studied in non-steroidogenic HEK293 cells by assessing their

transcriptional activity on the promoters of the HSD3B2,

CYP11A1 and CYP17A1 genes (Figure 2). The Glu7Stop

mutation revealed a complete lack of transcriptional activation

for all promoter constructs. The Thr296Met variant showed

similar transactivation activity as WT SF-1 indicating that it is not

a disease-causing variant but rather a polymorphism (SNP).

Interestingly, the His408Profs*159 and Arg313Cys mutations

showed normal activity when tested on the HSD3B2 promoter

construct, but their transactivation activity was significantly

decreased when tested on the CYP11A1 and CYP17A1 promot-

ers.

To study potential involvement of SF-1 on central energy

balance, the transcriptional regulation of SF-1 on the promoters of

the BDNF gene was assessed in JEG3 cells. According to

literature, there are many alternative BDNF variants (17 BDNF

and 12 antisense BDNF variants) in human due to use of different

promoters [28]. For initial experiments, we used four different

human BDNF promoter constructs, namely hBDNF I, IV, V and

VII. Promoter constructs I and IV were chosen as mouse Bdnf
transcripts I and IV are primarily expressed in the brain (area of

VMH) and their promoters are reported to be regulated by Sf-1

[27]. Similarly, promoters V and VII were assessed for reported

expression in the human brain [28]. In our JEG3 cell system,

among those promoters, we were only able to transactivate the

hBDNF promoter I by WT SF-1 (data not shown). Thus, further

studies involving SF-1 and human BDNF were performed with

this hBDNF promoter I (Figure 3). In this promoter, we found a

putative SF-1 cis-element at c.-874 to -867 (CAAGGACA). To

confirm that this cis-element in the hBDNF promoter is regulated

by SF-1, we constructed a promoter with a mutant SF-1 site and

assessed its activity by co-transfection with WT SF-1. Upon co-

transfection with WT SF-1, the mutant BDNF promoter lost

activity when compared with the WT promoter (Figure 3A). In

this system, SF-1 mutants Glu7Stop, Arg313Cys and His408-

Profs*159 showed only weak transactivation activity compared to

WT SF-1 confirming a possible effect of SF-1 on BDNF and thus

energy balance. By contrast, the Thr296Met sequence variation

had similar transactivation power on the hBNDF promoter I as

seen with WT SF-1 (Figure 3B).

Weight related parameters of patients harboring SF-1
mutations

To address the question whether SF-1 deficiency may have

metabolic consequences, we collected clinical data from our cohort

of patients with SF-1 mutations. We were able to obtain data from

16 subjects with heterozygote SF-1 mutations including patients

and their (affected) relatives (Table 2). Birth weight in singletons

was normal (n = 8; median 20.83 SD, range 21.9 to 1.21). BMI of

subjects currently being 1–17 years of age was also normal (n = 9;

median 0.04 SD, range 20.69 to 2.81), as was BMI of 5 adults

(median 0.6 SD, range 0.4 to 0.84). Thus in our small cohort of

rather young patients with heterozygote SF-1 mutations over-

weight or obesity seems not an issue.

Discussion

In this study, two novel SF-1 mutations (Glu7Stop, His408-

Profs*159) were identified in 5 patients with SF-1 deficiency, all

manifesting with 46,XY DSD and one (Glu7Stop) presenting with

adrenal insufficiency that is rarely associated with SF-1 mutations.

The disease causing impact of the identified mutations was

confirmed by functional studies in cell models assessing transcrip-

tional activity of wild-type and mutant SF-1 on genes involved in

steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and central

energy balance (BDNF).

Human SF-1, Steroidogenesis and Energy Balance
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To date, only three SF-1 mutations have been implicated with

adrenal insufficiency (heterozygote Gly35Glu and Arg255Leu,

homozygote Arg92Gln) [10,15,17]. With patient 1, we add a novel

SF-1 mutation (Glu7Stop) to this series. Our in vitro studies

suggest that Glu7Stop is a loss of function SF-1 mutation. By

contrast, the second SF-1 sequence variation (Thr296Met)

identified in patient 1 is rather a simple polymorphism. First, it

does not differ in functional assays when compared to WT SF-1.

Second, this variant (rs201151141) has also been detected at an

allelic frequency of 0.001 in a cohort of 662 normal subjects

studied for a large-scale genome sequencing project (dbSNP

database, http://www.ncbi.nlm.nih.gov/projects/SNP/snp).

The novel His408Profs*159 mutation identified in the SF-1

gene in patient 2 codes for a longer protein of 567 amino acids

compared to WT SF-1 (461 aa). This mutant had an impact on

both the steroidogenic promoters and the BDNF promoter

(Figure 2). Interestingly, this heterozygous mutation was first

detected in the father when investigated because of his history of

childhood hypospadias and infertility. He nevertheless fathered a

child through ICSI but the fetus’s genetic and phenotypic sex was

discordant. At birth the 46,XY child’s genital phenotype was

almost completely feminized and hormonal work-up at 4 months

of age revealed low androgens prompting female sex assignment

although the mutation was the same as in the father. This

illustrates again for a novel NR5A1 mutation the wide phenotypic

spectrum within the same family.

The Arg313Cys mutation found in patients 3–5 in our study

was recently reported in a patient with hypospadias [37]. Similar

to our functional assays, Arg313Cys showed reduced transactiva-

tion on the promoters of the AMH and CYP11A1 genes [37].

Although Arg313 is located in the highly conserved helix 5 of the

ligand-binding domain, this same position has also been described

for an Arg313His change (c.838G.A) in males with hypospadias

[38,39]. Thus, position Arg313 of SF-1 may be a hot spot for

mutations. Interestingly, this mutation appeared de novo in our

family 4, while in family 5, the mutation was transmitted by an

affected father.

In theory, SF-1 mutations could also have metabolic conse-

quences for affected patients. But so far, no clinical data existed on

this topic. Observations from the Sf-1 KO mice models suggest

that loss of SF-1 is associated with impaired energy balance and

low temperature expenditure leading to late-onset type of obesity

[25]. Deletion of BDNF gene was described in obese patients with

WAGR syndrome [33]. Among many other factors regulating

appetite, SF-1 together with BDNF are expressed in the VMH of

mice. Tran et al. described a significantly decreased expression of

the Bdnf gene in Sf-1 +/2 KO mice [27]. They also identified two

promoter variants of the murine Bdnf gene which were specifically

used in the VMH and their activity was related to SF-1 dosage

[27]. In the presented study, we tried to establish the role of SF-1

in the regulation of human BDNF, an important player for central

energy balance and thus obesity [40]. In fact, our experiments now

show that the human BDNF promoter I is regulated by SF-1, and

that SF-1 mutations have impaired transactivation activity on this

promoter similar to impaired effect on promoters regulating genes

of steroidogenesis. These results indicate that SF-1 might be a co-

regulator of energy balance and that mutations in SF-1 may

therefore also lead to metabolic consequences (e.g. obesity) in

humans.

In addition to the in vitro studies, we were also able to collect

some clinical data related to energy balance in 16 patients with

heterozygote SF-1 mutations (Table 2). However, in our small

cohort of 9 patients aged 1–17 years and 5 adults, we did not find

weights and BMIs consistent with overweight or obesity.

Figure 2. Promoter reporter studies for reported NR5A1
mutations. Human embryonic kidney HEK293 cells were transiently
transfected with wild-type (WT) or mutant SF-1 and promoter luciferase
reporter constructs of the genes for steroidogenic enzymes HSD3B2 (A),
CYP11A1 (B), CYP17A1 (C). Luciferase activity was measured with the
Promega Dual Luciferase assay system. Results are expressed as
percentage of WT SF-1 activity. Independent experiments were
performed in duplicate at least 3 times. Error bars represent the mean
and SEM. *p,0.05; **p,0.01.
doi:10.1371/journal.pone.0104838.g002
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Therefore, presented clinical data in humans are not in line with

data found in mice [25,26], although in vitro data in human and

mouse are similar [25,27]. These negative results might be ‘true’

negative results or may be explained by the following shortcomings

of our presented study. First, small number of studied patients,

which are in addition too young to observe metabolic conse-

quences. Second, all patients are heterozygote for their SF-1

mutation and carry one wild-type SF-1 allele while most studied

mice were Sf-1 complete KO. Further collaborative studies are

therefore needed to gather clinical data of more patients and

follow-up on a bigger cohort longitudinally.

Supporting Information

Table S1 Biochemical data of patients included in this
study. Values outside the age- and sex-specific reference range
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