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Abstract

The left ventricular myocardium plays a key role in the entire circulation system and an automatic

delineation of the myocardium is a prerequisite for most of the subsequent functional analysis. In

this paper, we present a complete system for an automatic segmentation of the left ventricular

myocardium from cardiac computed tomography (CT) images using the shape information from

images to be segmented. The system follows a coarse-to-fine strategy by first localizing the left

ventricle and then deforming the myocardial surfaces of the left ventricle to refine the

segmentation. In particular, the blood pool of a CT image is extracted and represented as a

triangulated surface. Then, the left ventricle is localized as a salient component on this surface

using geometric and anatomical characteristics. After that, the myocardial surfaces are initialized

from the localization result and evolved by applying forces from the image intensities with a
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constraint based on the initial myocardial surface locations. The proposed framework has been

validated on 34-human and 12-pig CT images, and the robustness and accuracy are demonstrated.

Index Terms

Myocardium segmentation; left ventricle; shape segmentation; contour evolution

I. Introduction

Cardiovascular diseases are the leading causes of death in the world [1]. The diagnosis and

treatment of these diseases may rely on different cardiac image modalities. No matter what

modality is used, the clinical importance of delineating the myocardial boundaries is the

highest [2]. Though this tedious task can be done manually in about 20 minutes with

sophisticated interactive segmentation tools, the intra- and inter-observer variability is still

inevitable [3]. The automatic segmentation methods with high accuracy are attractive

because of the previous mentioned reasons. In this paper, we will focus on the segmentation

of the left ventricular myocardium from computed tomography (CT) images.

A. Related Work

The main challenges in extracting the myocardium include large shape variability within

cardiac cycles and between different patients, and weak edges between epicardium and heart

fat or soft tissues. To get an accurate and robust segmentation, model-based methods have

become dominant in this research [2]. Heart models are commonly used to represent the

geometric or intensity features of the heart, and they are applied either explicitly or

implicitly for segmentation. In the first type of methods, models created off-line are fitted to

images for segmentation. For example, active shape models (ASMs) [4] build a statistical

shape model from a set of aligned shapes by using the principal component analysis (PCA)

technique, and have been used for left ventricle segmentation [5], [6]. Active appearance

models (AAMs) extend this idea by incorporating gray level information [7] and have been

used in segmenting the left and right ventricles from MR images [8]. The deformations

allowed in the parametric models such as ASMs and AAMs are confined to the shape space

where the heart models are embedded. A more sophisticated way of representing the shape

space is by using 3D diffusion wavelets [9], which encode shape variations hierarchically.

Using deformable models provides a flexible way to incorporate shape priors that are

capable of adapting to local image content. For example, Ecabert et al. [10] modeled the

whole heart as a multi-compartment, triangulated surface. The local adaptation was achieved

by progressively optimizing the piecewise affine transformations of this model to match

image boundaries. In [11], a mean shape of the heart was fitted to an image by estimating

similarity transformations, which was then deformed to match image boundaries with the

help of landmark points on the interventricular septum. Instead of deforming a pre-aligned

model, atlas-based methods use shape information implicitly by directly registering each

atlas image to a target image. Then, either the labels from multiple atlases are fused [12] or

one single registered atlas is deformed [13] to extract the heart region. Model-free methods

have also been widely used to explore the characteristics of heart geometry or intensity

distribution from other perspectives. For example, the geometric and intensity features in the
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myocardial region were learned by using a random forests method for delineating the

myocardium [14]. For a comprehensive literature review of heart segmentation, see [2], [3]

and references therein.

Active contour models have been widely used in medical image segmentation because of

their flexibility and robustness. In these models, energy functionals are commonly defined

over image features such as edges [15], [16], region statistics [17], local characteristics [18],

[19], and a combination of edges and regions [20], [21], which are optimized by using

gradient descent techniques. Prior information can be incorporated as well to restrict the

optimization space. For example, in [22], an active contour model was evolved in the shape

space of the left ventricle obtained by applying the PCA to manually segmented images.

Local variations may be captured by decomposing images into different regions using prior

information for ventricles segmentation [23], [24] or by modeling a shape prior using pixel-

wise stochastic level sets to extract the endocardium [25]. A shape constraint was also

employed to control the search space of the myocardial contours between two consecutive

image slices [26]. Coupled active contours have been proposed with distance constraints

between contours for myocardium extraction [27], cortex segmentation [28], and cell

tracking [29].

One important but less studied topic is how to locate the heart initially, especially for these

methods using deformable models, which tend to get stuck in undesirable local extrema

when started without a good initialization. Typically, the geometric features of the heart are

used for localization. In [26], the endocardium was initialized by searching for a circular

structure in a blood pool mask obtained via thresholding. Similar empirical rules were used

to identify the left ventricle cavity [30]. To capture a more generic shape of the heart, the

generalized Hough transform was utilized for heart detection [10]. In [11], the localization

was achieved by searching for a similarity transformation in a hierarchical way. Atlas-based

registration has also been used for coarse initialization [9], [13].

One fact that has been ignored in the literature for the localization is that the left ventricle is

a salient component on the heart surface. This is where the shape decomposition/

segmentation technique may be utilized to cluster the surface into meaningful components

based on some given criteria as in computer graphics and geometric modeling [31], [32]. For

example, a surface may be hierarchically decomposed into regions of deep concavities by

using fuzzy clustering and graph partition techniques [33]. Prominent feature points [34]

have also been used to cluster a surface into meaningful regions. Applications of shape

segmentation in medical imaging can be found in heart modeling from images [35] and

aneurysm neck detection on vessel surfaces [36]. Active contour models have been applied

as well on surfaces to refine coarse segmentations [37] or extract objects of interest [38].

Among the few applications of the shape decomposition techniques to cardiac image

segmentation, the narrowing of vessels around the left atrium was detected by merging local

features based on given criteria to extract the left atrium [39]. As for the left ventricle

localization, the region near the left ventricle is much more recognizable from the heart

surface than from the volumetric data, which can be identified by a deep concave contour.

Zhu et al. Page 3

IEEE Trans Image Process. Author manuscript; available in PMC 2014 August 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



B. Method Overview and Our Contributions

In this work, we present a complete system for automatically extracting the myocardium

from cardiac CT images without using training images. A coarse-to-fine strategy, consisting

of global localization and local deformations, is used for the myocardium segmentation. The

flowchart of the proposed method is shown in Fig. 1.

Before starting the localization step, the heart surface is approximated by the blood pool

surface. Then, the apex point of the left ventricle on this surface is detected by using the

relative orientation of ventricles with respect to the physical coordinate system of a CT

image. The left ventricle is automatically detected by examining the distribution of the level

sets starting from the apex point, which is further refined by performing the geometric active

contour model on the blood pool surface. This contour decomposes the surface into two

parts, and the one contains the apex point is chosen as the initial endocardial surface. Once

the endcoardial surface is located, its corresponding mask is obtained via rasterization. Then,

a variational region-growing method [40] is used to extract the initial epicardial surface

based on the endocardium segmentation. Finally, these two surfaces are refined by

employing an active contour model with a shape constraint, and the myocardium is obtained

by extracting voxels between these surfaces.

The contributions of the proposed method are as follows:

1: we utilize the shape segmentation technique for localizing the left ventricle. Unlike

other methods that only use low level information from voxels, our method captures a

global geometric characteristic of the left ventricle that agrees with our visual

perception. Hence, it is not sensitive to such issues as shape variability and changes of

volume coverage. Note that, as an initialization step, the proposed method can be easily

incorporated into other model-based frameworks.

2: we use a variational region-growing method to locate the epicardial surface given the

segmentation of the endocardial surface. Then the localized endocardial and epicardial

surfaces are employed as a constraint for the final segmentation. In this formulation, the

shape variability is naturally handled and incorporated into our system without using

training images. In addition, instead of simply imposing a constraint on the point-wise

distance between two contours [28], the one used in our model is a surface-wise

restriction that uses a distance field for guiding contour evolution process.

Therefore, the overall system is complete in that all the active contour models involved are

initialized automatically and robustly, other than in those systems that active contours are

either used as a single component or initialized manually.

The rest of this paper is organized as follows: Section II describes the details of left ventricle

localization. Section III introduces the active contour model with a shape constraint obtained

from the localization results. The robustness and accuracy of the proposed method are

reported in Section IV. Finally, Section V concludes this paper.
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II. Left Ventricle Localization

Assume that the orientation of a CT image is given and intensity contrast exists between

blood pool and myocardium. The localization of the left ventricle is determined via

searching for a deep concave boundary on the blood pool surface as follows.

A. Extract Blood Pool Surface

The extraction of the blood pool surface is carried out by a few mature techniques in the

computer vision and graphics: since CT images have calibrated gray levels, the source

image is thresholded to highlight the blood pool region. Then, the morphological opening

operator is applied to remove noisy arteries and cut spines that may be residing in the same

connected component of the heart. After that, the largest connected component is chosen and

triangulated to get the blood pool surface.

B. Detect Apex Point

Suppose the coordinate system of the source image is Left-Posterior-Inferior (LPI) as shown

in Fig. 2. In this system, the XYZ coordinates trace from left to right, posterior to anterior,

and inferior to superior. Even though the long axis of pig and human heart has different

orientations [41], the directions of left and right are clearly defined from the inferior view.

The apex point is one salient feature that can be used to locate the left ventricle. Its location

is determined as follows: 1) estimate the orientation of ventricles; 2) search for the left

ventricle apex, which is the left tip point with respect to the estimated orientation.

To estimate the orientation of ventricles, the convex hull of the blood pool surface Mbp is

first constructed. Let K(p ̃) be the Gaussian curvature at each vertex p̃ of the convex hull. The

vertices used for estimating the ventricle orientation are selected as

(1)

where μK and σK are the mean and standard deviation of K(p̃), and a threshold ty defines the

region of interest for the ventricles, which was empirically set as ty = ymin + 0.5(ymax − ymin)

to select points in the top half of the source image in the Y direction. Then, all points p̃ ∈

Vch are translated as p̃s = p̃ − μbp, where μbp is the centroid of Mbp. The PCA technique is

utilized to find the principal component of these translated points p̃s as the orientation of the

ventricles, denoted by H. The positive direction is chosen so that H has negative component

in the Y direction. A plane LO passing through μbp with normal N = Z × H defines a

reference plane such that the left ventricle points are mainly above the plane and otherwise

for the right ventricle.

Let λmax ∈ ℝ s.t. λmax = max(ps · H). A reference point is defined as prf = μbp + λmax H. A

constraint region-labeling process is employed to search for a neighborhood of the left

ventricle apex. First, the corresponding points of Vch on surface Mbp are sorted in an

ascending order based on their distance to prf, which is denoted by {pj}, j = 1 · · · nch, where

nch is the cardinality of the set Vch. Then, the distance field starting from p1 is constructed

using the fast marching method [42]. All points with their distances smaller than a threshold
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tn are labeled as 1. After that, the unlabeled point with the smallest index in {pj} is checked.

If its distance to prf is smaller than the maximum distance between labeled points and prf,

then the point is selected to start the labeling process again and the points within the range of

tn are labeled as 2. Let μ1 and μ2 be the centroids of these two labeled regions, respectively.

The region with a larger projection (μi − μbp) · N, i = 1, 2, is selected as a neighborhood Napx

around the left ventricle apex. If only one labeled region is found, it is automatically selected

as Napx. Finally, the point in Napx with the largest projection in N direction is selected as the

apex point.

An illustration of the apex detection process is shown in Fig. 3.

C. Identify Cut Contour

A two-step segmentation strategy is used to identify the left ventricle by searching for a cut

contour on Mbp.

1) Find an Initial Cut Contour—The initial cut contour, denoted by C0, is determined

based on the distance field starting from papx. Sampling this distance field evenly at an

interval of 2 mm gives its isocontours/level-sets as shown in Fig. 4(a). The total length of

each isocontour increases gradually and then drops slightly as it is traveling along the left

ventricle. After that, it goes up first and then drops rapidly as it is propagating to the right

ventricle and other regions (see Fig. 4(b)). Thus, the total length of an isocontour at distance

d may be modeled by

(2)

where d̃ is serving as a turning point for these changes. Let (di, li), i = 1 · · · n, be a pair of a

sampled distance and its corresponding isocontour length, where n is the number of samples

over the distance field. Then, choose the isocontour at dj* as the initial cut contour, where j*

is determined by searching for the optimal turning point that minimizes the least-squares

fitting error,

(3)

Here, dj is a sampling point serving as a trial turning point. The optimal turning point dj* is

obtained by exhausting all elements in {dj}, j = 1 · · · n. An illustration of the model fitting

process described above is shown in Fig. 4.

2) Refine the Cut Contour—The geometric active contour model [15], [16] is utilized to

refine the initial cut contour C0. Suppose a contour on the surface Mbp is represented by the

zero level set of a function U : M → ℝ with U(C(p, t)) = 0, where C(p, t) is a family of

contours on M. Let g : Mbp → ℝ+ be a positive function that attracts an active contour to a

conceptually desired boundary [37], defined as
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(4)

where κ(p) is the mean curvature at p, and S is a constant for a scaling to enhance the

concave regions so that the values of g(p) for such regions are not overwhelmed by those of

other regions. In our implementation, S = 0.01 was used in all the experiments. As in [37], κ

is set to zero if it is positive. Then, the geometric active contour model on the surface Mbp is

formulated in the level set framework as

(5)

where δ(U) is the Dirac delta function. The energy E(U) evaluates a weighted contour

length. Similar as in ℝn, the gradient descent flow of E(U) is

(6)

where ∂Mbp is the boundary of Mbp and n→ is the intrinsic outward normal of ∂Mbp. Here,

∇Mbp is the del operator on Mbp. This flow drives a contour to segment desired boundaries

while minimizing the weighted contour length. In particular, it moves a contour on Mbp by

its geodesic curvature when g = 1, which produces the contour of the shortest length.

Numerically, a narrow band method is employed to solve Equation (6). The main steps are

summarized as follows.

Algorithm

Narrow band for Geometric Active Contour

1 Initialize the level set function U with C0.

2 Construct a narrow band ΩMbp around the current contour on Mbp.

3 Update U in ΩMbp, according to

U (p, t + 1) = U (p, t) + dt( ∣ ∇Mbp
U ∣ ∇Mbp

· (g ∇Mbp
U

∣ ∇Mbp
U ∣ ))

(p,t)

, (7)

where dt is the time step in discretizing U.

4 Find the new zero level set of U to update the contour C.

5 Repeat steps 2–4 until it converges or reaches the maximum number of iterations.

In step 1, U is realized as the signed distance function from C0, which decomposes Mbp into

several regions. The sign of U is positive in the region that contains the apex point. The fast
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marching method is used to build ΩMbp from C0 with a threshold ϕmax to control the size of

the narrow band.

Step 3 requires numerical approximations for gradient and divergence operators on a

surface. The discretization schemes of [38] are adopted because they naturally capture the

geometric properties of surfaces. The surface Mbp is represented by a triangle mesh as

, where pi ∈ ℝ3 is the ith vertex and Tk represents the kth

triangle. The surface gradient and divergence operators at a vertex are approximated by

taking the weighted average of the discretized operators over the first-ring neighbors of the

vertex.

Let f = {f(p1), f(p2), f(p3)} be a function and V = {V(p1), V(p2), V(p3)} a vector field

defined at each vertex. For any point p inside Tk, the values of f and V can be interpolated as

(8)

where (χ1, χ2, 1 − χ1 − χ2) is the barycentric coordinate of Tk. Here, χ = (χ1, χ2) defines a

local coordinate system for Mbp. Then the approximations of these two operators are

(9)

(10)

where l traces through all triangles in the first ring of the vertex pi to average the discretized

operators at each vertex (see Appendix for details). Typically, the maximum narrow band

width is set as ϕmax = min(10, 4lmax) mm, where lmax is the length of the longest edge on

Mbp and 10 mm is about 10% of the maximum distance from the apex point to a turning

point (see Section IV-B), such that there is enough support to compute the gradient and

divergence operators. The time step of dt = 1 was used in our implementation.

In step 4, a new zero level set is obtained from U. The algorithm stops either when the

contour stops evolution or the maximum number of iterations is reached.

To reduce the effect of local noise [see Fig. 5(b)], the contour evolution process described

above are applied twice. In the first round, set g = 1 so that it shortens the initial contour by

its geodesic curvature flow. Then, the feature function defined in Equation (4) is used to

refine the contour so that it stops at locally concave locations. Finally, the endocardial

surface, denoted by Mendo, is identified by the cut contour that separates the endocardial

surface from other regions on Mbp. An illustration of the process for localizing the left

ventricle is shown in Fig. 5.
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III. Myocardium Wall Segmentation

The endocardial surface indicates the location of the left ventricle, which is rasterized to get

its 3D mask Ĩendo for refinement. Instead of simply dilating Ĩendo for approximating the

epicaridal mask Ĩepi, a variational region-growing model [40] is used by taking an outward

neighborhood of Ĩendo as the seed region. After that, a localized region-based active contour

model is utilized with a shape constraint imposed by these initial masks to refine the

myocardial segmentation.

A. Initialize the Endocardial and Epicardial Masks

The surface Mendo is closed via triangulating the points along the cut contour Ccut. Here,

Mendo is still used to denote the closed surface. Ĩendo is created by rasterizing Mendo with the

same origin and resolution as the source image I. To remove noise and papillary muscles,

the convex hull of Mendo is computed and set as a ROI for performing the morphological

closing operation on Ĩendo. The size of the structure element for the closing operator depends

on the radii of the papillary muscles, which was empirically set as 3 mm.

One way of initializing the epicardial mask is by dilating the endocardium to a given

distance. This works well for the myocardial wall with a nearly uniform thickness. Here, we

propose another way to initialize Ĩepi. Similar as in the dilation-based methods, a distance

field from Ĩendo is computed and a small strip-region that lies between din and dout away is

chosen as the seed region for the epicardial mask. Typically, the values are set to din = 2 mm

and dout = 4 mm. The blood pool voxels are excluded from this region. Given the seed

region of the epicardial mask, the robust-statistics-based energy functional [40] is defined as

(11)

where ϕ is the signed distance function from Ĩepi and H is the Heaviside function. Here,

p(f(x)) is the probability density function of a feature vector f(x) that evaluates the intensity

median, inter-quartile range, and median absolute deviation at point x, respectively, where

p(f(x)) is learned from the seed region intensities. The first term in Equation (11) measures

the intensity homogeneity inside the contour, and the second term is the length of the

contour that controls the smoothness of the final result. In implementation, λRS was

empirically set as λRS = 0.2.

The myocardial masks Ĩepi and Ĩend provide a good localization of the epicardium and

endocardium, which impose a shape constraint for local refinement, especially on regions of

low contrast or poor edges.

B. Evolve Active Contours With a Shape Constraint

Given a mask image Ĩ ∈ {Ĩendo, Ĩepi}, a feature function g̃ : ℝ → ℝ+ is defined over its

signed distance function ϕ̃ as
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(12)

Here, g̃(ϕ̃) is a modified sigmoid function, where α and β define the shape and width of the

function, respectively, while dmax and dmin control the range of this function (see Section

IV-B for details).

Then, the energy functional for refining the mask images is designed as

(13)

where B(x, y) is a ball of radius r centered at x, and F(I(y), ϕ(y)) is a generic internal energy

term defined over Ω. In this work, the Chan-Vese energy [17] was used for F(I(y), ϕ(y)). The

first term in Equation (13) is a localized region-based energy [21]. The second term is

essentially the geometric active contour energy [15], [16] using the feature image g̃ to

prevent the contour from evolving far from its initial location.

The sparse level set method [43] was used to implement the active contour model for its

efficiency. In particular, the upwind scheme was used in discretizing |∇(·)| (see [44] for

details). The refinement of the endocardial and epicardial masks were performed separately.

In initializing the epicardial mask, a parameter dw was used to control the maximum

distance allowed in the region-growing process. This parameter is related to the average

thickness of the myocardial wall, which typically ranges from 6 to 16 mm [3]. In our

implementation, dw was empirically set as dw = 16 mm, and r = 4 mm was used for the

radius of B(x, y). See Section IV-B for details.

C. Extracting the Myocardial Wall

The myocardial wall is defined as the volume between the endocaridal and epicardial masks.

Note that the contour evolution process returns closed masks. To extract a complete

myocardial wall, the voxels inside the blood pool need to be removed [seed Fig. 6(d)]. To

this end, the wall is divided into two parts: one in which the myocardium can be completely

determined by performing the XOR operation between the endocardial and epicardial

masks, and the other formed by removing the voxels inside the blood pool from the

epicardial mask. Let { }, i = 1 · · · nc be the points on Ccut. The unit normal of the plane

that divides the wall is determined by

(14)

where pm is the centroid of { }, and the constraint specifies the normal direction. The

dividing plane is defined as

(15)
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where  and NL · (pi − pL) ≤ 0, ∀i = 1 · · · nc. That is, all points of Ccut lie on the

same side of the dividing plane as papx does. The myocardial wall is the set of voxels that

satisfy

(16)

where V̄
BP are the set of voxels outside of the blood pool, ṼEndo and ṼEpi are the volumes

enclosed by the endocaridal and epicardial masks, respectively. An example of extracting

the myocardial wall is given in Fig. 6. It is clear that, by using the procedure described

above, a smooth endocardial mask is extracted in the presence of noise and papillary

muscles. Further, the epicardial mask is separated from the background with soft tissues

around the apex point and cut off right around the base area. The shape constraint makes the

evolution process go smoothly while preserving the overall shape as well as adapting to the

local intensity content.

IV. Experimental Results

This study was approved by the Institutional Review Board. We tested the robustness and

accuracy of our method using cardiac CT images of 34 human and 12 pig hearts. The data

include anomaly cases (hypertrophic cardiomyopathy and aneurysm) and volumes with

different scanning quality.

A. Implementation

The overall framework was implemented in C++. Open source packages ITK [45] and [46]

were used for basic image processing tasks, convex hull extraction and 3D visualization,

respectively.

In extracting the blood pool, the source image was down-sampled to a voxel resolution of

2.0 × 2.0 × 2.0 mm3, where the heart shape is well preserved. The thresholds of 180 and 350

in Hounsfield units were used for human and pig images, respectively, so that the left and

right ventricles can be separated after thresholding.

B. Parameter Determination and Robustness

To test the robustness of localizing the left ventricle described in Section II, sample points

randomly selected from a neighborhood within 30 mm of the apex point were used as trial

apex points to start the localization process. To quantify the errors, the distance between the

cut contours obtained by using different sample points and the original contour was

measured as

(17)
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Here, C is the original cut contour, D is the distance field starting from C, and C̃ is the cut

contour obtained from a sample point. In implementation, D(C) was evaluated at triangle

vertices. The initial and final errors d(C, C̃) for 20 randomly sampled points is shown in Fig.

7. All of the cut contours generated with sampled apex points converge to the original C

with a tolerable numerical error. In addition, the average of the turning point d̃ are 94 ± 9

mm and 76 ± 6 mm for the human and pig data, respectively. This result shows that the

feature used for identifying the cut contour is stable despite of the variability in heart shapes.

Similarly, the sensitivity of the scale factor S defined in Equation (4) was tested by

computing the average distance between the original cut contour and the ones obtained with

different scale factors. Experiments showed that the average distance was 0.08 mm as S

ranging from 0.001 to 0.1.

The parameters in the feature function g̃(ϕ̃) were set as α = 1, β = 5, dmax = 1.0 mm, and

dmim = 0.02 mm, the width of which is slightly smaller than the average myocardium

thickness. Example shapes of this function with varying α are shown in Fig. 8. It implies

that larger values of α give a stricter constraint while minimizing Equation (13), and thus α

= 1 was used.

The sensitivity of the epicardial initialization step to λRS and dw were examined separately.

Figure 9 shows the average point-to-surface distance for the example image when λRS varies

from 0.1 to 0.9 and dw from 8 to 24 mm, respectively. λLG is stable up to 0.8 for the

epicardial initialization, after which the growing process stops before reaching the

epdicardial boundary due to the high curvature constraint. Regarding dw, the localization

step is stable for dw > 16 mm, which agrees with the thickness of a normal myocardial wall

[3].

The sensitivities of the parameters λLG and r were examined by varying one of them in a

given range while keeping the other fixed. The coefficients of variation [47] are summarized

in Table I. It shows that all these parameters are stable in the given range.

Our method succeeded in localizing the left ventricle for all of the testing data with wide

shape variations and volume coverages. Two examples of segmentation for the human data

with completely different heart shapes are presented in Fig. 10. The results of pig data with

different volume coverages are shown in Fig. 11. As can be seen from these results, the

papillary muscles, pericardium, and soft tissues were successfully excluded from the

myocardium.

C. Quantitative Analysis

To make fair comparisons, all testing data were resampled to the same resolution of the

manual segmentations at 1.0 × 1.0 × 1.0 mm3. The mean and standard deviation of the point-

to-surface errors for the human and pig data at the localization and refinement steps are

shown in Table II. These results show that the localization step (LV localization) locates the

endocardial and epicardial masks with high precision as compared to the manual

segmentations, which are further refined after applying the active contour model with a

shape constraint (AC refinement). Note that the accuracy of the endocardial segmentation is

Zhu et al. Page 12

IEEE Trans Image Process. Author manuscript; available in PMC 2014 August 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



better than the epicardial segmentation as the former is better defined because of the high

contrast between the blood pool and the myocardium, while in the latter case poor contrast

and weak edges are present between the epicardium and background tissues.

The proposed method was compared to three types of training-based methods: an active

contour method using localized PCA [23], [24], an active shape model (ASM) [4] method,

and a standard multi-atlas method with a majority voting scheme [48] for segmenting the pig

myocardium using the same dataset. For the latter two methods, the leave-one-out strategy

was used due to the small number of images. In particular, the localization results from the

proposed method were used to estimate the initial pose of the ASM model for segmentation.

Regarding the multi-atlas-based method, affine registration was first applied to align training

images to a testing image, which was refined by employing the B-Spline registration method

[49]. Parameters were tuned to give the best performance for the three training-based

methods. An example of segmentations from these methods is shown in Fig. 12, and the

statistics of the surface-to-point errors of these methods are summarized in Table III. These

results demonstrate the different characteristics of these four types of methods. The

proposed method captured more local image content as compared to the other three

methods. The PCA based active contour method also performed well but was less adaptive,

since it relies on the sub-space learned from the training images. The ASM method failed to

capture the finer details for both the endcardium and epicardium as it is essentially a PCA

based method, which depends on how representative the training image are. The atlas-based

method was not competitive with the other tested methods as it is mainly driven by global

image information, and thus may not be able to compensate for large initialization errors

especially when images have a wide volume coverage (see Fig. 11).

In addition, the proposed method was tested on a computer with Quad CPU 3GHz, 8G

RAM. The average processing time is given in Table IV.

Given the mask of a myocardium wall, we triangulated it and computed the volume enclosed

by this triangulated surface using the same computational method as in [50]. The mass was

computed as the product of the volume and density. The density ρ = 1.05g/mL was used in

our experiments. For the human data, the average absolute difference between the masses

from automatic and manual segmentations was 7.8 ± 5.0g, which is 5.5% ± 3.5% with

respect to the mean mass. For the pig data, this difference was 4.2 ± 2.9g, which accounts

for 6.4% ± 4.4% of the mean mass.

V. Discussion and Future Work

We have presented a complete system for automatically segmenting the myocardial wall

from cardiac CT images. It follows the coarse-to-fine framework by first detecting the left

ventricle, and then refining this result by employing contour evolution techniques with a

shape constraint obtained on-line. Its performance has been evaluated by measuring the

errors between automatic and manual segmentations. In these tests, our method achieved

high accuracy as well as strong robustness for segmenting both the human and pig

myocardium with large shape variabilities and different volume coverage.
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Though the proposed method was specific for the segmentation of the left ventricular

myocardium, it may be generalized in several possible ways for broader applications in

cardiac image segmentations. It is straightforward to apply the shape segmentation

technique to segment the right ventricle from CT images because of the similarity of

ventricle structures. In addition, the proposed method may be applied to other image

modalities as long as a smooth heart surface can be reconstructed. For example, in MR

images, we may manually threshold an MR image to extract the blood pool and then

generate the heart surface. Moreover, the proposed method can be easily integrated into user

interactive segmentation frameworks, which are widely used in medical image

segmentations. In particular, for ventricles with an arbitrary orientation, a user can

effectively pinpoint the apex point to start the segmentation.

Therefore, in future work, we plan to extend the current method to segment ventricles both

in CT and MR images and apply segmentation results to clinical applications such as

evaluating the myocardial mass at risk caused by stenoses.
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Appendix

Given the definition in Equation (8), the discretized gradient operator on Tk is computed as

[38]

(18)

where ∂χ1 = p1 − p3 and ∂χ2 = p2 − p3 are the two tangent vectors at p3 that span the tangent

plane TpM of a surface M. The matrix g−1 = (gi, j) is the inverse of the Riemannian metrics

on M with

(19)
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The vector field on Tk can be represented in the local coordinate as V = υ1 ∂χ1+υ2 ∂χ2. The

discretization of the divergence operator on Tk is

(20)

Zhu et al. Page 20

IEEE Trans Image Process. Author manuscript; available in PMC 2014 August 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1.
Flowchart of the proposed approach.
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Fig. 2.
Orientations of (a) human and (b) pig blood pool surfaces in the source image coordinate

system. The reference directions are left(L), right(R), posterior(P), anterior(A), inferior(I),

and superior(S).
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Fig. 3.
Apex detection of human and pig hearts. Convex hull with high curvature points (green) for

the human (a) and pig (c) hearts. Neighborhoods around apex points for human (b) and pig

(d) hearts. The detected apex points are marked with red dots. The vector H represents the

left ventricle orientation. The plane LO with normal N identifies the directions of left and

right.
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Fig. 4.
Detection of the initial cut contour. (a) Distance field from the apex with isocontours. The

initial cut contour C0 is marked in red. (b) The length of isocontours vs. distance, and the

determination of the optimal .
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Fig. 5.
Left ventricle localization. (a) Features on surface Mbp. (b) Initial contour C0 and its narrow

band ΩMbp. (c) Final contour Ccut. (d) Segmented endocardial surface.
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Fig. 6.
Segmentation of the myocardial wall. Initialize the endocardial surface (red) (a) before and

(b) after removing papillary muscles. (c) Initialize the epicardial surface (yellow) from the

initial endocarial surface (red) with a seed region (green). (d) Evolve the myocardial

surfaces from the initial contours (yellow). (e) Extract the myocardial wall from endo- and

epi- cardial masks by using the dividing plane (green). (f) The 3D visualization of the

segmented myocardial wall.
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Fig. 7.
The initial and final errors for the cut contours generated from 20 randomly sampled apex

points.
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Fig. 8.
Effects of α to g̃(ϕ̃) with β = 5, dmax = 1 mm and dmin = 0.02 mm.
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Fig. 9.
Sensitivity of the epicardial initialization with respect to λRS (Left) and dw (Right).
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Fig. 10.
Myocardium segmentation results of human data with completely different heart shapes.

The first row shows segmentations in a diastole cycle. The second row shows the results of a

patient with hypertrophic cardiomyopathy. From left to right are left ventricle localization,

myocardial wall in axial, coronal, and sagittal views, respectively.
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Fig. 11.
Myocardium segmentation results of pig data with different volume coverages. From left to

right are left ventricle localization, myocardial wall in axial, coronal, and sagittal views,

respectively.
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Fig. 12.
Comparison of myocardium segmentation. From left to right are results from the proposed

method, localized-PCA, ASM, and Multi-Atlas methods, respectively.
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TABLE I

Coefficient of Variation for Wall Refinement

Parameters Range Endo-Surface Epi-Surface

λLG [0.2, 0.8] 1.9% 3.4%

r [2, 10] 1.2% 2.1%
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TABLE II

Mean and Standard Deviation of the Point-to-Surface Errors in Localization and Refinement (in mm)

Data Stages Endo-Surface Epi-Surface

Human LV localization 1.07 ± 1.03 1.27 ± 1.24

AC refinement 0.88 ± 0.96 1.07 ± 1.16

Pig LV localization 0.83 ± 0.89 1.05 ± 1.12

AC refinement 0.72 ± 0.88 0.80 ± 0.99
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TABLE III

Comparison Between Proposed Method and Training-Based Methods for the Pig Data (in mm)

Method Endo-Surface Epi-Surface

Proposed method 0.72 ± 0.88 0.80 ± 0.99

Localized-PCA 1.08 ± 1.12 1.10 ± 1.40

ASM 1.12 ± 0.90 1.35 ± 1.37

Multi-Atlas 1.76 ± 1.97 1.48 ± 2.06
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TABLE IV

Average Computation Time (in Seconds)

Human Pig

LV Localization 25.2 15.6

AC Refinement 61.6 41.6

Total 89.0 58.1
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