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Background. Population models of tuberculosis transmission have not accounted for social contact structure
and the role of the environment in which tuberculosis is transmitted.

Methods. We utilized extensions to the Wells–Riley model of tuberculosis transmission, using exhaled carbon
dioxide as a tracer gas, to describe transmission patterns in an endemic community. Drawing upon social interaction
data and carbon dioxide measurements from a South African township, we created an age-structured model of tu-
berculosis transmission in households, public transit, schools, and workplaces. We fit the model to local data on
latent tuberculosis prevalence by age.

Results. Most tuberculosis infections (84%) were estimated to occur outside of one’s own household. Fifty
percent of infections among young adults (ages 15–19) occurred in schools, due to high contact rates and poor ven-
tilation. Despite lower numbers of contacts in workplaces, assortative mixing among adults with high rates of smear-
positive tuberculosis contributed to transmission in this environment. Households and public transit were important
sites of transmission between age groups.

Conclusions. Consistent with molecular epidemiologic estimates, a minority of tuberculosis transmission was
estimated to occur within households, which may limit the impact of contact investigations. Further work is needed
to investigate the role of schools in tuberculosis transmission.
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Tuberculosis transmission has been classically modeled
as a mass-action process in a homogenous population,
wherein individuals randomly contact one another and
in which types and duration of contacts are not consid-
ered [1–3]. There is substantial evidence to suggest that
the duration and environment in which contacts occur
are key determinants of the risk of tuberculosis trans-
mission [4]. Additionally, as with many other diseases,

age-specific mixing patterns likely play an important
role in tuberculosis transmission dynamics.

Tuberculosis is spread by droplet nuclei, which may
remain suspended in the air for 30 minutes in the
absence of air exchange. The impact of the indoor
environment in tuberculosis transmission was first
rigorously studied in the late 1950s by Wells and
Riley, who exposed guinea pigs to air from a tuberculo-
sis ward and measured infection rates under controlled
conditions [5, 6]. Models derived from the Wells–Riley
findings have focused on single environments to char-
acterize point-source outbreaks or nosocomial trans-
mission [7, 8]. Environmental settings have not been
factored into broader models evaluating endemic trans-
mission. This may be in part due to logistical difficulties
in measuring ventilation, as well as characterizing con-
tact patterns in various environments. The former ob-
stacle has been surmounted in part due to the use of
exhaled carbon dioxide as a natural tracer gas to
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evaluate air exchange [9], which can be done with increasingly
low-cost and portable devices. Additionally, recent efforts to
quantify social contact patterns have yielded rich data on age-
assortativeness and variability of contacts between settings
[10–12].

By integrating data on social interactions and environmental
context, we developed a new approach to project the impact of
age-specific contact patterns and estimate where tuberculosis
transmission occurs. We utilized local data from a study of so-
cial interactions together with measurements of carbon dioxide
in common indoor environments, to model tuberculosis trans-
mission in a South African township.

METHODS

Wells and Riley derived an equation describing the risk of tu-
berculosis infection (P) in an indoor environment as a function
of the number of infectious individuals in a space (I), the
breathing rate (p), the rate of generating infectious quanta (q;
quanta/hour), the duration of exposure (t), and the room ven-
tilation rate (Q) [6]:

P ¼ 1� exp � Ipqt
Q

� �
:

Rudnick and Milton extended this work to non-steady-state sit-
uations and described the use of carbon dioxide as a natural
tracer gas to overcome the need for resource-intensive measure-
ments of conventional room ventilation analysis [13]. This ap-
proach involves estimating the proportion of air in a room that
was expired by its occupants (the “rebreathed fraction,” f ) by
evaluating the excess carbon dioxide (CO2) in the room over out-
door air CO2. Using this rebreathed fraction, the probability of
infection, as a function of time and number of infectious individ-
uals (I) among all individuals (n) in a room, can be estimated

through the following relationship (see Supplementary Data):

P ¼ 1� exp �
�f Iqt
n

� �
:

We extended this work to describe endemic tuberculosis trans-
mission in an age-structured model with multiple transmission
environments.

We drew on data from 571 residents in a Cape Town town-
ship that contained information on the number of indoor con-
tacts and time spent in various locations, stratified by 10 age
groups (0–4, 5–9, 10–14, 15–19, 20–24, 25–29, 30–34, 35–39,
40–44, and ≥45 years) [14]. More than 97% of indoor con-
tact-time occurred in 5 locations: own households, other house-
holds, schools, workplaces, and public transit [14]. Although
the majority of time spent indoors was spent in households
(Supplementary Figure 1), most daily contacts occurred outside
the home, with school accounting for the largest number of
contacts among children and transit and workplaces serving
as the environment for most contacts among adults (Supple-
mentary Figure 2). Compared with other settings, the number
of contacts observed in public transit were highly dispersed with
a long right tail; a number of individuals reported a very high
contact number (>50) (Supplementary Figure 1).

Additionally, using portable CO2 detection devices (Easy-
View 80 CO2 analyzer, Extech Instruments, and custom-
developed monitors using COZIR Ambient sensors, Gas Sensing
Solutions Ltd), ambient air in 4 environments—public transit
vehicles, schools/crèches, workplaces, and households—was
sampled by 9 volunteers to assess mean and ranges for CO2

concentration (Table 1). Volunteers collected 17 124 observa-
tions of CO2 concentration in various locations throughout
day and night. We used the mean and standard error of sets
of concentration observations for each setting. We utilized tu-
berculosis notification data (29 478 cases reported in 2009)

Table 1. Model Parameters and Data Sources

Parameter Symbol Value Range Reference

Relative infectiousness, smear-negative
tuberculosis

NA 0.2 . . . [15–17]

Duration of infectiousness NA 12 mo 4–18 [18, 19]
Excess CO2 concentration

a, household [CO2]h-[CO2]o 635 ppm 453–817 Observed

Excess CO2 concentration, public transit [CO2]p-[CO2]o 1464 ppm 397–2531 Observed

Excess CO2 concentration, school/crèche [CO2]s-[CO2]o 1404 ppm 1227–1581 Observed
Excess CO2 concentration, workplace [CO2]w-[CO2]o 538 359–717 Observed

Contacts per day in each location Ck Variable by age Variable by age [14]

Hours spent in each location Tk Variable by age Variable by age [14]
Infectious quanta production q Fit Fit . . .

Abbreviations: CO2, carbon dioxide; NA, not applicable; ppm, parts per million.
a Excess CO2 concentration refers to the difference between the indoor CO2 and the outdoor CO2, which varied by location and time of day. Range of values reflects
95% confidence intervals.
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and estimated age-stratified incidence rates of smear-positive
and smear-negative tuberculosis.

We assessed the risk of transmission in each environment as
a function of the number of individuals in the environment, the
amount of time spent in the environment, the rebreathed frac-
tion calculated from the CO2 concentration, and the probability
that there was an infectious individual present in the environ-
ment given age-specific tuberculosis prevalence, estimated from
age-stratified notification data (Supplementary Figure 3) and
adjusted for population age structure estimated by census data
(Supplementary Figure 4). A contact matrix reflecting the age
assortativeness of mixing was estimated by weighting reported
number of contacts for each age group by the proportion of
contact-time reported for each age group in each environment;
in other words, the probability of a person with age i contacting
a person with age j in environment k is proportionate to the
fraction of total contact time in environment k that was report-
ed by individuals of age j (see Supplementary Data). Therefore,
exposure to other individuals was proportionate to the amount
of time spent in each environment; the exception was interac-
tions in schools, which were modeled such that all contact time
among children was within their own 5-year age strata. This was
done because mixing between age groups in schools was
thought to be limited, as children spend most of their time in
classrooms with other children of the same age. We weighted
the infectiousness of smear-negative tuberculosis by 0.2, consis-
tent with estimates from several contact investigation studies
[15–17].

Using the risk derived from the modified Wells–Riley equa-
tion, we projected the annual risk of tuberculosis infection
(ARI), by age, from the daily risk of infection in each environ-
ment. We then used these age-structured estimates for ARI to
project the latent tuberculosis prevalence by age, according to
the following equation [20]:

Latent tuberculosis prevalence at age a ¼ 1�
Ya
i¼1

ð1� ARIðiÞÞ:

We fit our model to age-structured data on latent tuberculosis
prevalence from the same study community as the survey [21]
by varying the quantum production rate and using a simplex
descent algorithm to minimize the least-squares residuals be-
tween modeled and observed data.

To evaluate uncertainty in our projections resulting from
our data, we used Latin hypercube sampling to draw from
distributions of contacts and time spent in each environment
for each age group and CO2 measurements for each environ-
ment [22]. We drew from 1000 sets of parameters to generate
median and 95% credible intervals. We used broad 1-way
sensitivity analysis to evaluate 2 key parameters for which
there is great uncertainty: the duration of tuberculosis prior
to diagnosis and the proportion of contacts in each setting
that are recurring. We generated estimates of the quantum
production rate and the proportion of tuberculosis transmit-
ted in each setting.

This model drew upon data that were collected as part of a
study that was approved by the Human Research Ethics

Figure 1. Estimated contact-hours between individuals of various age groups in 4 locations (A, own household; B, public transit; C, schools; D, work-
places), with Gaussian smoothing applied to the contour. Abbreviation: HH, household.
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Committee of the University of Cape Town. Written informed
consent was obtained from all participants. Parental/guardian
consent was obtained for participants under 18 years of age,
and signed assent forms were obtained from adolescents aged
12–17 years.

RESULTS

We found significant assortativeness of contact-time among
children in schools and among adults in workplaces, in contrast
to general mixing between children and adults that occurred in
households and in public transit (Figure 1). Carbon dioxide lev-
els were highest in schools and public transit, followed by
homes and workplaces (Table 1). There were higher levels of
variation in CO2 estimates from public transit compared with
other environments.

We fit the modeled latent tuberculosis prevalence to empiric
measurements from a recent community survey [21] (Figure 2).
The projected age-weighted mean annual risk of tuberculosis
infection overall was 6.6% (95% credible interval, 3.1%–

10.6%); the risk varied from 4.4% among children aged 5–9
to 9.1% among young adults aged 15–19 (Supplementary Fig-
ure 5). The majority of tuberculosis transmission was estimated
to occur outside of one’s own household, for all age groups
(weighted mean percentage transmission within own house-
hold, 15.6%; Figure 3). Schools/crèches accounted for about a
quarter of infections among children aged 0–14 years; however,
up to half of tuberculosis transmission in young adults age 15–
19 was estimated to occur in schools. A substantial proportion
of tuberculosis transmission among adults was estimated to
take place in workplaces (weighted mean, 41.4%), where

there was high-level mixing among age groups with the highest
prevalence of smear-positive tuberculosis (Supplementary Fig-
ure 3). Owing to migration in recent years, working-aged adults
represent the largest population in this community, which
strongly influenced the weighted mean for transmission in
workplaces. Public transit was estimated to account for 7.9%–

34.8% of transmission in all age groups (weighted mean,
21.9%).

Among the most uncertain parameters in modeling transmis-
sion of tuberculosis throughWells–Riley approaches is the rate of
infectious quanta production, q. We found that two factors, both
of which are not well known, substantially impact the estimate of
q. The first is the duration of infectiousness of undiagnosed tu-
berculosis, which has been variably estimated as being from 4
months to over 18 months [18, 19].With shorter duration of in-
fectiousness, a higher quantum production rate is required to
achieve the same force of infection. We used a base case of 12
months as this reflected local data from this community [18].
Our estimate of q with this duration of infectiousness was 0.89
quanta/hour (Supplementary Table 1), but varied from 5.69
quanta/hour to 0.44 quanta/hour with duration of 4–18 months.

The second most influential factor in the estimate of qwas the
proportion of contacts that were recurrent. We evaluated 3
scenarios: (1) all contacts in all settings were recurrent; (2) no
contacts were recurrent; (3) all contacts were recurrent in

Figure 2. Modeled (blue line) and observed (red points) latent tubercu-
losis prevalence by age group, where duration of infectiousness is 12
months and all contacts were recurrent except those in public transit.
The gray shaded area reflects 95% credible intervals for model estimates.

Figure 3. Estimated proportion of tuberculosis infections acquired in
each setting, according to age group. Abbreviation: HH, household.
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households, schools, and workplaces, but not in public transit.
Recurrent contacts implied that the same individuals were con-
tacted each day; for example, if a person contacted 3 individuals
per day in the household, it was the same 3 individuals every
day (eg, family members). We assumed the third scenario for
our base case. Our estimate of q varied from 0.27 quanta/
hour in scenario 2 (none recurrent) to 0.94 quanta/hour in sce-
nario 1 (all recurrent). The scenario of no recurrent contacts
had poor model fit compared with scenarios 1 and 3.

Despite the uncertainty wrought by these parameters, the main
results in terms of where tuberculosis is transmitted were robust to
reasonable uncertainty ( Supplementary Table 1). The percentage
of tuberculosis cases transmitted in the household varied from
5.4% to 24.2% when varying duration of infectiousness from 4
to 18 months, respectively, and from 59.5% to 15.5% when vary-
ing proportion of recurrent contacts from 0% to 100%.

DISCUSSION

Mathematical models of tuberculosis transmission have relied
upon abstract effective contact rates that do not account for the
environment of contacts or the mixing patterns that characterize
social interactions [1–3]. We have demonstrated how mea-
surements of carbon dioxide in indoor environments can be
combined with social mixing data to describe tuberculosis trans-
mission in an endemic community. Although this approach is
subject to limitations in terms of data on transmission risks
and simplifying assumptions concerning social interactions, it
nevertheless offers a straightforward approach to understanding
the importance of various environments and contact patterns in
driving tuberculosis transmission. Moreover, this approach can
be done using easily obtainable data and simple deterministic
models, in contrast to detailed social network enumeration ap-
proaches [23, 24], and could be applied to other infectious diseas-
es spread by droplet nuclei, such as measles and varicella.

Epidemiologists have long cited crowding and population
density in urban environments as key factors contributing to
the spread of tuberculosis [25, 26]; however, a detailed under-
standing of how these factors influence tuberculosis transmis-
sion has been lacking. Data used for this model, for example,
demonstrate that close indoor contact rates in South African
townships are substantially higher than in Europe and rural
Vietnam [10, 11]. By integrating this data with duration of ex-
posure and the ventilation characteristics of the environment,
we estimate that a substantial proportion of tuberculosis trans-
mission occurs outside of households. Indeed, molecular epide-
miologic studies have suggested that only 19% of tuberculosis
cases in South African townships arise from transmission with-
in one’s own household [27], whereas our model similarly esti-
mated that 16% of tuberculosis transmission occurs in this
setting. Age-stratified molecular epidemiologic data on house-
hold transmission are not currently available, but as these

data emerge in the future, they could be used to further validate
models of this nature. However, because of delay between infec-
tion and onset disease in tuberculosis, it is difficult to use mo-
lecular epidemiologic approaches to evaluate the location of
transmission, particularly between casual or nonrecurring con-
tacts. Our approach enables the prediction of where tuberculosis
is transmitted, as well as which age groups are driving transmis-
sion. The use of detailed social network studies combined with
recent advantages in whole-genome sequencing of Mycobacte-
rium tuberculosis may be useful in validating predictions from
this approach [23, 24, 28, 29].

By understanding where tuberculosis transmission occurs, we
may be able to better project the impact of control interven-
tions. For example, contact investigations targeting household
members may fail to identify the majority of tuberculosis
cases in this setting. In other settings, household contacts
may account for a larger proportion of tuberculosis transmis-
sion, and simple data can provide insights to inform this.
Schools are characterized by high social contact rates and
high proportions of rebreathed air; we projected that this was
a particularly high-risk environment for transmission among
young adults aged 15–19. Among younger children, who have
a lower prevalence of smear-positive tuberculosis, infection
risk in schools was estimated to be more limited. In contrast
to schools, households and public transit are important areas
for general mixing between age groups and likely drive trans-
mission from adults to children. This modeling approach
could be used to evaluate thresholds for CO2 levels in congre-
gate settings, such as schools, public transit, and workplaces and
to project the impact of environmental interventions, such as
ventilation systems (mechanical or natural) or the use of
upper-room ultraviolet germicidal irradiation.

Among the most important and uncertain parameters in un-
derstanding the transmission of tuberculosis is the infectious
quanta production rate. Wells and Riley estimated this in
their original experiments to be 1.25 quanta/hour, derived
from hospitalized patients at the beginning of their tuberculosis
treatment [6]. Escombe and colleagues repeated these studies in
a tuberculosis ward in Peru and reported considerable variabil-
ity, from 0 quant/hour to over 200 quanta/hour [30]. Their
mean estimate was 8.2 quanta/hour, which was affected by a
few outliers. However, both sets of estimates were made by
studying the infections induced among guinea pigs by hospital-
ized patients with a confirmed diagnosis of tuberculosis. The ex-
tent to which this can be generalized to individuals in a
community setting with undiagnosed disease, many of whom
may have few to no symptoms, is unclear. We estimated this
rate by fitting our model to data on latent infections. Our esti-
mates were heavily dependent upon assumptions about the re-
currence of contacts and the duration of infectiousness, and
ranged from 0.27 quanta/hour to 5.69 quanta/hour, with a
base case estimate of 0.89 quanta/hour. Recurrence of contacts
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leads to local saturation of infections (by depletion of suscepti-
ble contacts of an infectious person) and requires a higher
quantum generation rate to achieve a comparable population
level of transmission. In general, however, these estimates
were lower than those of Wells–Riley and Escombe et al,
which may indicate that individuals are less infectious earlier
in their course of illness. More detailed enumeration of social
contact patterns, including frequency of recurrent contacts,
may lead to improved estimates of infectiousness.

Our approach and results are subject to limitations of our
assumptions and available data. We fit our model to age-
structured data on latent tuberculosis prevalence, which does
not account for cohort effects of differences in tuberculosis
transmission rates over time. Estimates of the annual risk of
infection have remained fairly stable for at least 15 years in
this area [31], although earlier differences in the annual risk
of infection, if present, would lead to errors in estimating the
annual risk of infection, particularly in older adults. We pro-
jected latent tuberculosis prevalence by age according to annual
risk of infection, as commonly done in tuberculosis epidemiol-
ogy [20]; however, this does not account for mortality due to
tuberculosis, which has a small impact on latent tuberculosis
prevalence estimates. We did not consider “self-quarantine”
in this model, wherein individuals who feel ill due to undiag-
nosed disease stay at home, reducing their contact with others
[32]. Given the disparity in duration of reported symptoms
prior to tuberculosis diagnosis (around 4 weeks in most studies)
and estimates of the duration of infectiousness (12 months), it
is likely that self-quarantine does not account for a signifi-
cant reduction in mixing. We did not have empirical data
on age-assortativeness of contacts; therefore, we estimated
age-assortativeness based on age-specific time reported in
each setting. Additionally, there are currently no available
data on the proportion of contacts that are recurring, or the fre-
quency of recurrences; such data could be obtained through
self-report or novel approaches to defining social networks
that involve radiofrequency identification tags [33]. Neverthe-
less, our results remained fairly robust to reasonable assump-
tions concerning these uncertain parameters. Children are
likely much less infectious than adults with tuberculosis; in
the absence of better data, we assumed that differences in infec-
tiousness were explained by smear status. This led to almost
negligible transmission from the youngest children in this
model. We did not incorporate heterogeneity in infectiousness,
although multiple experimental data suggest tremendous inter-
individual variability in infectiousness [6, 30, 34]. Furthermore,
there is likely intraindividual variability in infectiousness over
time, as individuals develop higher burdens of disease. Com-
bined with skewed distributions of contact rates and contact
time, these factors may help explain the observed phenomena
of superspreading [35]. As better data on variability in infec-
tiousness become available, future work with agent-based

models may build on this approach to yield more nuanced in-
sights into transmission patterns. We did not attempt to adjust
notification data, which was stratified by smear status, for dy-
namic changes in smear status that likely occur over time.
There are conflicting data on the smear-adjusted relative infec-
tiousness of individuals with human immunodeficiency virus
(HIV) infection [36, 37] and the relative duration of active
tuberculosis [18, 19]; we used data from a large survey done
in this community that found the duration of undiagnosed tu-
berculosis to be equal among HIV-infected and -uninfected in-
dividuals. Our results demonstrate that the duration of
infectiousness is a key influential parameter in understanding
the social and environmental contributions to tuberculosis
transmission; further epidemiological studies are greatly needed
to provide additional estimates of this parameter in other set-
tings and to elucidate the interindividual variability in duration
of infectiousness. We did not explicitly model dynamics of pro-
gression from tuberculosis infection to disease, but rather fo-
cused on modeling location and age structure of transmission
assuming a stable epidemic. This approach could easily be ex-
tended to dynamic models. As with “mass action”models of in-
fectious disease transmission, this model does not account for
clustering of tuberculosis within local social networks over
time, which could further drive heterogeneity of tuberculosis
risk.

There have been a number of studies in recent years charac-
terizing social contact patterns in various settings [10–12]. We
have demonstrated how such information can be combined
with simple, easily obtainable environmental data to describe
tuberculosis transmission patterns and estimate where trans-
mission is taking place. This approach may enable us to better
understand the impact of crowding and population density in
sustaining tuberculosis endemicity, as well as to target interven-
tions to improve control of tuberculosis.
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