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ABSTRACT

Motivation: Quantitative real-time PCR (qPCR) is one of the most

widely used methods to measure gene expression. Despite extensive

research in qPCR laboratory protocols, normalization and statistical

analysis, little attention has been given to qPCR non-detects—those

reactions failing to produce a minimum amount of signal.

Results: We show that the common methods of handling qPCR non-

detects lead to biased inference. Furthermore, we show that non-

detects do not represent data missing completely at random and

likely represent missing data occurring not at random. We propose

a model of the missing data mechanism and develop a method to

directly model non-detects as missing data. Finally, we show that

our approach results in a sizeable reduction in bias when estimating

both absolute and differential gene expression.

Availability and implementation: The proposed algorithm is imple-

mented in the R package, nondetects. This package also contains

the raw data for the three example datasets used in this manuscript.

The package is freely available at http://mnmccall.com/software and

as part of the Bioconductor project.

Contact: mccallm@gmail.com
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1 INTRODUCTION

Quantitative real-time PCR (qPCR) (Bustin, 2000; Gibson et al.,

1996; Higuchi et al., 1992; Wittwer et al., 1997) remains the gold
standard for measuring gene expression due to a combination of

greater sensitivity and lower cost than gene expression micro-
arrays or RNA-sequencing. It is commonly used to validate

results from high-throughput studies and to develop clinical bio-
markers. Recently, qPCR-based technologies have been de-

veloped to simultaneously measure thousands of transcripts,

e.g. the TaqMan OpenArray Real-Time PCR Plates contain
3072 wells. These plates have been used, for example, to simul-

taneously measure the expression of all microRNAs in a sample.
The increased use of qPCR (Ginzinger, 2002) has prompted

research examining qPCR laboratory protocols (Bustin, 2002;
Bustin and Nolan, 2004; Nolan et al., 2006) and more recently

normalization (Mar et al., 2009; Mestdagh et al., 2009; Qureshi
and Sacan, 2013) and statistical analysis strategies (Karlen et al.,

2007; Schmittgen and Livak, 2008; Yuan et al., 2006). In 2009,
the Minimum Information for Publication of Quantitative Real-

Time PCR Experiments (MIQE) guidelines were published.

These guidelines are designed to ‘encourage better experimental

practice, allowing more reliable and unequivocal interpretation

of qPCR results’ (Bustin et al., 2009).
Briefly, qPCR is used to measure the expression of a set of

target genes in a given sample through repeated cycles of se-

quence-specific DNA amplification followed by expression meas-

urements. Between subsequent cycles, the amount of each target

transcript approximately doubles during the exponential phase

of amplification. The cycle at which the observed expression first

exceeds a fixed threshold is commonly called the threshold cycle

(Ct) or quantification cycle (Cq). The latter is the MIQE-

preferred nomenclature but is not currently widely used. These

Ct values represent a quantitative assessment of gene expression

and are often treated as the raw data for subsequent analyses.
However, relatively little attention has been given to handling

non-detects—those reactions failing to attain the prespecified

minimum signal intensity. Currently, there is no consensus

manner in which to handle these non-detects in subsequent ana-

lyses. The default in the Applied Biosystems DataAssist v3.0

software is to set non-detects equal to the number of PCR

cycles performed (typically 40). One has the option of setting a

lowerMaximum Allowable Ct Value to which any greater value is

set or excluding these values from subsequent calculations (Life

Technologies, 2011). Integromics RealTime StatMiner distin-

guishes between two types of non-detects—undetermined values

are those that do not exceed the Ct threshold and absent values

are those for which no reaction occurred. RealTime StatMinder

handles non-detects by setting undetermined values to a max-

imum Ct (e.g. 40) and absent values to the median of the detected

replicates (Goni et al., 2009). Researchers have also developed

their own methods to handle non-detects that combine filtering

and thresholding, for example, summarizing replicates with a

value of 40 when the majority are non-detects and with an aver-

age of the detected Ct values otherwise (Mar et al., 2009).

2 APPROACH

We begin by showing that the common practice of setting non-

detect values equal to 40 introduces substantial bias in normal-

ized gene expression, "Ct, and differential expression, ""Ct,

estimates (Pfaffl, 2001). Next, we provide evidence that non-

detects are not missing completely at random and are likely

missing not at random; therefore, filtering these data will also

introduce bias in subsequent analyses (for an introduction to

missing data terminology, see Gelman and Hill, 2007, Chap.

25). To address non-detects, we propose a method to model

the missing data mechanism that can be used to impute Ct

values for the non-detects or to directly estimate the quantities*To whom correspondence should be addressed.
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of interest. Finally, we show that the proposed approach greatly

reduces the bias introduced by non-detects in qPCR data ana-

lysis. Three published qPCR datasets (described in the Methods

Section) are used throughout the manuscript to motivate and

illustrate the results.

3 METHODS

3.1 Three example datasets

The first dataset consists of nine gene perturbations with matched control

samples (Almudevar et al., 2011); the second dataset is composed of two

cell types and three treatments (Sampson et al., 2013); the third dataset is

a study of the effect of p53 and/or Ras mutations on gene expression

(McMurray et al., 2008).

In the first dataset, cells transformed to malignancy by mutant p53 and

activated Ras are perturbed with the aim of restoring gene expression to

levels found in non-transformed parental cells via retrovirus-mediated re-

expression of corresponding cDNAs or shRNA-dependent stable knock-

down. The data contain four to six replicates for each perturbation, and

each perturbation has a corresponding control sample in which only the

vector has been added (Almudevar et al., 2011).

The second dataset consists of two cell types—young adult mouse

colon (YAMC) cells and mutant-p53/activated-Ras transformed

YAMC cells—in combination with three treatments—untreated,

sodium butyrate or valproic acid. Four replicates were performed for

each cell-type/treatment combination (Sampson et al., 2013).

The third dataset is a comparison between four cell types—YAMC

cells, mutant-p53 YAMC cells, activated-Ras YAMC cells and p53/Ras

double mutant YAMC cells. Three replicates were performed for the

untransformed YAMC cells, and four replicates were performed for

each of the other cell types (McMurray et al., 2008).

As in the original publications, all three datasets were normalized to a

reference gene, Becn1, with the resulting values denoted as "Ct. In the

first dataset, ""Ct values were computed by comparing each perturbed

sample to its corresponding control sample. Additional details regarding

each of these datasets can be found in the original publications.

4 RESULTS

4.1 Setting non-detects equal to 40 introduces bias

We begin by examining the common practice of replacing non-

detects with a Ct value of 40. Replicates were summarized

by calculating the average "Ct (datasets 2 and 3) or ""Ct

(dataset 1) values for each unique gene/sample-type combin-

ation. The residuals from this summarization for gene i,

sample-type j and sample k were calculated as follows:

Dataset 1 : rijk=""Ctijk �
1

K

XK
k=1

""Ctijk

Datasets 2 and 3 : rijk="Ctijk �
1

K

XK
k=1

"Ctijk

The distribution of these residuals differs substantially between

those in which the "Ct or ""Ct value contains a non-detect and

those in which these values were observed (Fig. 1). Note that

when calculating "Ct values, the reference gene, Becn1, is

always detected, so non-detects can only occur in the target

gene; therefore, datasets 2 and 3 are each split into two groups

based on whether both Ct values were observed or a non-detect

was present in the target gene. A non-detect typically results in

lower absolute expression estimates (Fig. 1B and C). When

calculating ""Ct values, a non-detect can occur in the perturbed

and/or control sample. In general, a non-detect in the perturbed

sample results in lower relative expression, and a non-detect

ina the control sample results in higher relative expression

(Fig. 1A). Non-detects in both samples yield ""Ct values

close to zero—these values simply represent differences in

Becn1 expression between the perturbed and control samples.

While one might expect some difference in the distribution of

residuals between the observed values and those containing a

non-detect, the large differences seen in Figure 1 likely

A B C

Fig. 1. Within replicate residuals stratified by the presence of non-detects. The average ""Ct (A) or "Ct (B and C) values were calculated within each set

of replicates (same gene and sample type). The residuals, for each gene and sample from this summarization are plotted here, stratified by the presence of

non-detects. In dataset 1, a non-detect could occur in the perturbation sample, the control sample or both samples. The left-most box in Panel A shows

the distribution of residuals in dataset 1 when there are no non-detects. The other boxes in Panel A (from left to right) show the distribution of residuals

when there are non-detects in the perturbation sample, the control sample and both samples. Similarly, the left box in Panels B and C shows the

distribution of residuals when there are no non-detects. The right box in Panels B and C shows the distribution of residuals when there is a non-detect.

Although one would expect some difference in the distribution of residuals between the detects and non-detects, the differences seen here are much larger

than one would expect and likely represent bias introduced by setting non-detects equal to 40
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represent bias introduced by the common method of handling

non-detects.
To further illustrate the bias introduced by replacing non-

detects with a value of 40, the "Ct and ""Ct values for one

example gene from each dataset are shown in Figure 2. These

examples were chosen to demonstrate situations in which repla-

cing non-detects with a value of 40 may lead to spurious differ-

ential expression.
In Figure 2A, the response of Sema7a to perturbation of each

of nine genes is shown. Looking at only the ""Ct values for

which there were no non-detects, the expression of Sema7a

does not appear to be greatly affected by any of the perturb-

ations, except perhaps Hoxc13. However, there do appear to be a

relatively large number of outliers. Focusing on Sema7a’s re-

sponse to perturbation of Hoxc13, half of the ""Ct values con-

tained a non-detect in the perturbed sample. If one replaced these

non-detects with a value of 40, the resulting ""Ct values would

be approximately 3.23 and 5.05, while the ""Ct values without

non-detects were approximately 0.16 and 1.54. This would pro-

duce an average ""Ct value of 2.5. This is probably a substantial

overestimate of the down-regulation of Sema7a induced by

perturbation of Hoxc13, resulting from the common method of

handling non-detects.
Figure 2B shows the expression of Gpr149 in six conditions.

Among the normal samples, there does not appear to be a dif-

ference in expression between the untreated (UT), sodium butyr-

ate (NB) and valproic acid (VA) samples when looking at only

the "Ct values without non-detects. However, there are three

non-detects in the NB samples and one in the VA sample.

Replacing these non-detects with a value of 40 would lead to a

large (and likely spurious) difference in expression between these

treatments.
Finally, Figure 2C shows the response of Pdlim2 to mutation

of p53 and/or Ras. While there are non-detects in each group, the

number of non-detects varies from 3/3 in the normal samples to

1/4 in the Ras and p53/Ras samples. Replacing these non-detects

with a value of 40 will produce a sizeable difference in average

expression between the normal and p53 samples and the Ras and

p53/Ras samples.

4.2 Filtering non-detect Ct values also introduces bias

Whether one can filter missing values from one’s data without

biasing one’s results depends on the type of missing data. Data

are said to be missing completely at random if the probability of a

missing value is the same for all data points. For qPCR data this

implies that the probability of a non-detect is the same for every

data point regardless of gene, sample-type, sample-replicate, etc.

A broader class of missing data is missing at random in which the

probability of a missing value depends only on the available in-

formation. For qPCR data this would imply that the probability

of a non-detect is the same for each replicate within a given gene/

sample-type combination. Finally, the data are called missing not

at random when the probability of a missing value depends on

either unobserved predictors or the missing value itself. A well-

studied example of the latter is censoring. For data missing not at

random, filtering the missing values produces bias in one’s

inferences.
If the non-detects are missing completely at random, then the

proportion of non-detects should be roughly constant across

genes. For each gene, we compute the proportion of non-detects

and the average Ct value across replicate samples (Fig. 3). There

appears to be a strong relationship between the average expres-

sion of the genes across replicate samples and the proportion of

non-detects. In other words, it seems that genes with lower aver-

age expression are far more likely to be non-detects. From this

we can conclude that the non-detects do not occur completely at

random.
While it is relatively easy to distinguish between missing com-

pletely at random and missing at random, it is generally not

possible to distinguish between missing at random and missing

not at random from the observed data. However, in the case of

qPCR non-detects, we are able to use two pieces of additional

information to suggest that non-detects are likely missing not at

random.

A B C

Fig. 2. Examples of the potential for spurious differential expression produced by replacing non-detects with values of 40. Panel (A) shows the response

of Sema7a to the perturbation of nine genes from dataset 1. Panel (B) shows the expression of Gpr149 in each combination of normal/tumor samples and

one of three treatments from dataset 2. Panel (C) shows the response of Pdlim2 to p53 and/or Ras mutation from dataset 3. "Ct and ""Ct values

produced by replacing a non-detect with a value of 40 are shown as asterisks. Note that in panel A, a non-detect could have also occurred in one of the

control samples; however, in these data this did not occur for Sema7a—all of the non-detects happened to occur in the perturbed samples

2312

M.N.McCall et al.

i
--
--
--
--
--
,


First, the PCR reactions are run for a fixed number of cycles

(typically 40), implying that the observed data are censored at the

maximum cycle number. This is a type of non-random missing-

ness in which the missing data mechanism depends on the unob-

served value. Knowledge of the technology allows us to conclude

that the data are at least subject to fixed censoring; however, as

we will later show, the qPCR censoring mechanism may actually

be a probabilistic function of the unobserved data.

Second, the experimental design of the first dataset, in which

there are a large number of control samples, allows one to esti-

mate an additional piece of information that is not typically

available—the proportion of non-detects as a function of the

average sample expression across a large number of replicates

(Fig. 4). Here, we see a similar relationship between average

expression and proportion of non-detects. It appears that sam-

ples with overall lower signal, as a result of technical not biolo-

gical variability, also result in a greater number of non-detects.

Because most qPCR experiments are not designed to allow one

to estimate the relationship between overall sample signal and

the proportion of non-detects, qPCR data typically exhibit a type

of non-randommissingness in which the missing data mechanism

depends on an unobserved variable.

This suggests that qPCR non-detects are probably not missing

at random; therefore, filtering non-detects will introduce bias in

one’s inference. The only principled approach is to attempt to

model the missing data mechanism and incorporate this into

one’s analysis.

4.3 The missing data mechanism

Before proposing a missing data mechanism for qPCR non-

detects, it is important to first determine what a non-detect rep-

resents. There are several possibilities:

(1) Truncation of a continuous expression distribution—a

non-detect represents a true Ct value 440. This implies

that if the PCR were run for more cycles, one would even-

tually see an amplification above the Ct threshold. This

would mean that the Ct values are a type of censored data.

(2) A completely unexpressed transcript—no matter how long

the PCR was run, one would never see amplification above

the Ct threshold.

(3) A failure to detect a true Ct value 540—the Ct value

should be540, but in the given experiment the transcript

failed to amplify or its amplification efficiency was poor.

We begin by evaluating the first potential explanation for non-

detects by examining the distribution of Ct values including non-

detects coded as 40 (Fig. 5). The number of non-detects in these

datasets far exceeds what one would expect based on fitting a

normal distribution to the detected Ct values. Approximately

1.2, 1.8 and 2.8% of the measurements are non-detects in data-

sets 1, 2 and 3, respectively, where one would expect 0.02, 0.03

and 50.01%. This argues against non-detects being explained

completely by a truncation of the Ct value distribution, unless

the distribution has an extremely long upper tail.

A B C

Fig. 3. The proportion of non-detects versus median observed gene expression within control samples (A) or within each sample condition (B and C).

Logistic regression fits (dashed lines) all show a strong relationship between the proportion of non-detects and the median observed gene expression—

P-values of (A) 2:57� 10�6, (B) 1:58� 10�12, (C) 52� 10�16

Fig. 4. The proportion of non-detects versus median sample expression

within controls in dataset 1. Logistic regression fit (dashed line) shows a

strong relationship between the proportion of non-detects and the median

gene expression—P-value of 0.0003
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Furthermore, if the non-detects represented censoring of

values440, one would expect a reduction in bias by replacing

the non-detects with a value �40. However, in general, bias is

reduced by replacing non-detects with a value of 35 rather than

40 (Fig. 6). This suggests that many non-detects are due to a

failure to amplify rather than a true Ct value440.
Next, we evaluate the second potential explanation for non-

detects—that a non-detect represents a completely unexpressed

transcript. As previously mentioned, Figure 4 shows a strong

relationship between low overall signal in a sample and a greater

proportion of non-detects. Although some non-detects may rep-

resent a completely unexpressed gene, this cannot be the only

explanation, given that samples with low signal (due to technical

not biological differences) typically have a greater proportion of

non-detects.
Finally, examination of Figure 5 shows a relatively low number

of Ct values between 35 and 40. Together with Figure 6, in which

replacing non-detects with a value of 35 rather than 40 reduced

the bias in "Ct and ""Ct values, this suggests that some non-

detects represent a failure to detect a true Ct value540.

4.4 A potential generative model

One model to explain the observed behavior of non-detects in the

Ct data is the following:

Yij=
fð�ijÞ+"ij ifZij=1

non - detect ifZij=0

(

where

PrðZij=1Þ=
gðYijÞ ifYij5Sij

0 otherwise

(

Here, Yij is the observed Ct value of gene i for sample j, �ij is the
true expression of gene i for sample j, fð�ijÞ represents the non-

biological effects present in the observed data and "ij captures the
technical and biological variability in the data. Zij is a binary

variable representing whether a Ct value was obtained for gene i

and sample j that takes on a value of 1 with probability gðYijÞ for

values of Yij less than some threshold Sij. Here, Sij represents the

upper Ct value detection limit for gene i and sample j.

In this framework, one can represent the standard assump-

tions regarding non-detects as: (i) Sij=40 8ði; jÞ, where 40 is the

total number of PCR cycles performed and (ii) gðYijÞ=1 mean-

ing that Ct values 540 are never reported as non-detects.

However, the results shown above suggest that these assump-

tions are probably not valid. Specifically, Sij may be 540 for

some genes and/or gðYijÞ may be51.
Furthermore, this model captures several important aspects of

qPCR non-detects. The relationship between technical variability

in expression and the proportion of non-detects is formalized in

the dependence of Zij on Yij rather than �ij. The gap in observed

Ct values between 35 and 40, i.e. the potential for Ct values 540

to be non-detects, is captured by gðYijÞ51 and/or Sij540.

4.5 An EM algorithm to handle non-detects

Having established that non-detects in qPCR data represent data

missing not at random, we now propose a method that incorp-

orates the missing data mechanism into subsequent statistical

analyses. The expectation–maximization (EM) algorithm pro-

vides a method to obtain maximum likelihood estimates in the

presence of missing data by iteratively calculating the conditional

expectation:

Qð�j�nÞ=E ln fðXj�Þ jY; �n
� �

and maximizing Qð�j�nÞ with respect to �. Here, X is the com-

plete unobserved data andY is the incomplete observed data, � is

the set of all parameters, ln fðXj�Þ is the complete data log-

likelihood, and �n is the estimate of � at iteration n. This process

is repeated until convergence (Dempster et al., 1977).

The challenging aspect of applying the EM algorithm to qPCR

non-detects is calculating the conditional expectation. This re-

quires one to estimate the distribution of gene expression given

a non-detect. Here, we proceed via Bayes rule:

fðYijjZij=0Þ=
PrðZij=0jYijÞ � fðYijÞ

PrðZij=0Þ

We can estimate PrðZij=0jYijÞ by examining the relationship

between the proportion of non-detects and average observed ex-

pression within replicates. This approach permits flexible model-

ing of the data to either directly estimate the parameters of

A B C

Fig. 5. The distribution of Ct values in each of the three datasets. Here, non-detects are coded as 40
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interest or to obtain estimates of the missing data that can be

used to impute the non-detect values.
To demonstrate the reduction in bias that one can achieve by

treating non-detects as missing data, we propose the following

model of the observed expression for gene i, sample-type j and

replicate k, Yijk:

Yijk=
�ij+�k+"ijk ifZijk=1

non - detect ifZijk=0

(

where �k represents a global shift in expression across samples

and,

PrðZijk=1Þ=
gðYijkÞ ifYijk540

0 otherwise

(

Here, gðYijkÞ can be estimated via the following logistic regression:

logitðPrðZijk=1ÞÞ=�0+�1�̂ ij

where �̂ ij is an estimate of the average expression for gene i and

sample-type j. For the data presented here, �k can be estimated

using the reference gene, Becn1.

4.6 Treating non-detects as missing data reduces bias

We begin by examining the effect of replacing non-detects with

an imputed Ct value based on the conditional expectation calcu-

lated in the EM algorithm. Looking at the residuals within rep-

licates in each dataset, it is clear that replacing non-detects with

these imputed values results in far less bias in the "Ct and ""Ct

values than if we replaced the non-detects with a value of 40

(Fig. 7).

The improvement in bias after imputing the non-detects can

also be seen in the example genes shown in Figure 2. After

replacing the non-detects with values imputed using the EM

algorithm, the non-detect "Ct and ""Ct values are far more

similar to their replicate values, while retaining small differences

due to the informative missingness (Fig. 8). Figure 8C shows

one important limitation of the current implementation.

Because the "Ct values from the three normal samples all con-

tained non-detects, their imputed values are fairly similar to the

initial values based on replacing the non-detects with a value of

40. One could address this by implementing a slightly more

complex EM algorithm that shrinks the imputed values

toward a global mean; however, such an approach assumes

A B C

Fig. 6. Same as Figure 1, with additional boxplots showing the residuals when non-detects are replaced with 35 rather than 40. Here, Ct values435 are

also replaced by a value of 35. By replacing non-detects with a value of 35 rather than 40, the distribution of the residuals is far more similar between

those in which the Ct values were observed and those containing a non-detect. However, this does not imply that one should replace non-detects with

a value of 35. Such an approach makes very strong assumptions about the missing data mechanism and would require one to discard observed Ct

values435

A B C

Fig. 7. Same as Figure 1, but after imputing the non-detects using the proposed EM algorithm
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that Pdlim2 is actually expressed in the normal samples in

dataset 3. Given that all three replicates resulted in a non-

detect, it may be that Pdlim2 is truly unexpressed in these

samples. Any modeling for such situations will depend on the

specific dataset being analyzed and the biological plausibility of

the potential assumptions.

One can also use the EM algorithm to directly estimate the

parameters of interest. In the example datasets reported here,

these might be the average expression of each gene within each

sample-type, �ij. Alternatively, one could use this framework to

directly estimate the "Ct or ""Ct values. Furthermore, the EM

algorithm allows one to easily combine the treatment of non-

detects with more complex statistical analyses.

5 DISCUSSION

In this manuscript, we have shown that the default procedure of

replacing qPCR non-detects with the maximum PCR cycle

number (typically 40) introduces a large bias in subsequent in-

ference. We have carefully examined the nature of non-detects

and shown that they likely represent data missing not at random.

Furthermore, we have shown that many non-detects represent an

amplification failure rather than a true Ct value440. Finally, we

propose a relatively simple EM algorithm and show that it is

able to greatly reduce the bias caused by non-detects. The flexi-

bility of our approach allows one to easily tailor the method

described here to one’s own analyses. Specifically, one could

easily use a different normalization procedure or perform a

more complex statistical analysis. Additionally, any analysis

based on imputed values (rather than direct estimation of a par-

ameter of interest) would benefit from a multiple imputation

procedure.
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