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ABSTRACT

Motivation: Disease progression is driven by dynamic changes

in both the activity and connectivity of molecular pathways.

Understanding these dynamic events is critical for disease prognosis

and effective treatment. Compared with activity dynamics, connectiv-

ity dynamics is poorly explored.

Results: We describe the M-module algorithm to identify gene mod-

ules with common members but varied connectivity across multiple

gene co-expression networks (aka M-modules). We introduce a novel

metric to capture the connectivity dynamics of an entire M-module.

We find that M-modules with dynamic connectivity have distinct topo-

logical and biochemical properties compared with static M-modules

and hub genes. We demonstrate that incorporation of module con-

nectivity dynamics significantly improves disease stage prediction.

We identify different sets of M-modules that are important for specific

disease stage transitions and offer new insights into the molecular

events underlying disease progression. Besides modeling disease

progression, the algorithm and metric introduced here are broadly

applicable to modeling dynamics of molecular pathways.

Availability and implementation: M-module is implemented in R. The

source code is freely available at http://www.healthcare.uiowa.edu/

labs/tan/M-module.zip.

Contact: kai-tan@uiowa.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Complex diseases like cancer involve a continuum of molecular

events that starts with early initiation events through progression

and catastrophic end-stage events. Analyzing and understanding
disease-stage-specific molecular events are critical for under-

standing disease etiology and development of therapeutic inter-

ventions. Network biology has proven to be a powerful tool for

representing and analyzing complex molecular networks.

Previously, several lines of investigations have leveraged dynamic
changes in molecular networks to predict disease outcomes.

Focusing on hub genes in human protein interactome, several

groups have shown that they can be categorized into different

types based on topological measures such as degree and modu-

larity (de Lichtenberg et al., 2005; Han et al., 2004). It was

further demonstrated that such topological features of hub

genes can be used to improve the prognosis of breast cancer

patients (Taylor et al., 2009). Chuang et al. used a different strat-

egy by examining the differentially expressed subnetworks (in-

stead of hub genes) between two cohorts of breast cancer patients

(Chuang et al., 2007). They demonstrated that subnetworks with

differential expression levels are effective markers for breast

cancer metastasis. Besides nodal changes in a molecular network,

several studies have shown that gene/protein connectivity is also

highly dynamic during disease development and stress response.

Goh et al. (2007) showed that there is a higher degree of physical

connectivity between proteins whose genes are mutated in the

same disease state. Zhong et al. (2009) found a large fraction

of cases in which a single gene is linked to multiple disorders

via distinct interactions, which they call edgetic perturbations.

Bandyopadhyay et al. (2010) discovered widespread changes in

gene–gene interactions among yeast kinases, phosphatases and

transcription factors as the cell responds to DNA damage.

A common theme in these pioneering studies is the dichoto-

mization of the disease development, either for the onset or the

severity of the disease. Those methods analyze each condition

individually to determine which hub genes, subnetworks or edge

sets are significantly associated with one of the two conditions,

instead of collectively modeling and analyzing omics data from

patient samples as a single continuum. This inability to account

for dependence among pathways at different time points limits

our ability to observe changes at a pathway level during disease

progression.
Computational methods for joint analysis of multiple net-

works have been developed before. They fall into two categories

in terms of their purposes: (i) studying conservation of multiple

protein–protein interaction networks across species (Kelley et al.,

2003; Koyuturk et al., 2004), and (ii) functional gene-interaction

modules across multiple networks of the same species under vari-

ous conditions (Hu et al., 2005; Huang et al., 2007; Li et al.,

2011; Narayanan et al., 2010). Neither approach has been

applied to study subnetwork dynamics during disease progres-

sion. To address this critical gap, we have developed a general

framework to reveal subnetwork dynamics by joint analysis of

multiple gene co-expression networks during disease progression.

We introduce a novel measure to capture changes in the connect-

ivity of a subnetwork. Using breast cancer as an example, we

demonstrate that adding information about network connectiv-

ity dynamics significantly improves the classification accuracy of

multiple stages of the disease.*To whom correspondence should be addressed.
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2 METHODS

Mathematical model for M-module

Given M gene networks with the same node set but different edge sets,

Gk=ðV;EkÞð1 � k �MÞ, they can be represented by a 3D matrix

A=ðaijkÞnxnxM, where aijk denotes the weight on the edge E(i,j) in net-

work Gk. An M-module, C, is defined as a set of genes whose connectivity

within them is stronger than random expectation across all M networks

under consideration. We introduce a graph entropy-based measure to

quantify the connectivity of an M-module in multiple networks. For a

given vertex v 2 C, let LkðvÞ denote the total weight between vertex v

and other vertices in the M-module C in the network Gk, i.e.

Lk vð Þ=
P

j6¼v;j2C avjk. Similarly, let Lk vð Þ=
P

j6¼v;j2V n C avjk denote the

weight between v and vertices outside of the M-module, C. We defined

the connectivity of vertex v to C as follows:

Hk v;Cð Þ=� p k½ �
v logp k½ �

v � ð1� p k½ �
v Þlogð1� p k½ �

v Þ ð1Þ

where p
½k�
v =LkðvÞ=ðLkðvÞ+Lk vð ÞÞ. The motivation for using graph en-

tropy is that it quantifies the skewness of in-module connectivity versus

out-module connectivity. However, unlike other measures such as modu-

larity (Newman, 2006a), entropy makes full use of the probability distri-

bution of a graph, which avoid the limitations of modularity or graph

density including the resolution limit (Fortunato and Barthelemy, 2007).

The connectivity between v and the M-module C across all networks is

given as follows:

H v;Cð Þ=
XM
k=1

Hkðv;CÞ ð2Þ

We expect that each component subnetwork of an M-module is well

connected in each network. Thus, the overall connectivity of M-module

C among all nodes and across all networks is as follows:

H Cð Þ=
X
v2C

Hðv;CÞ=jCj ð3Þ

H(C) is used as the score of the candidate M-module. To search

for an M-module C, we minimize the entropy value of C, i.e. minHðCÞ.
Given this objective function, we formulate the M-module identifica-

tion problem as a combinatorial optimization problem. Denote

Cið1 � i � �Þ as the group of M-modules being sought where � is the

number of M-modules. An index matrix X= x1; . . . ; x�½ �is constructed to

represent module membership such that columns correspond

to M-modules and rows correspond to genes. Each element xi;j=1

denotes the i-th gene that belongs to the j-th M-module and

otherwise 0. The overall objective function for finding M-module is

defined as follows:

X�
i=1

min H Cið Þ ð4Þ

s:t:

xij 2 0; 1f g
X�
j=1

xij=1

Xn
i=1

xij40

8>>>>>>><
>>>>>>>:

It is NP-hard to minimize the scores of all component modules of an M-

module across the networks. Relaxing the above objective, we obtain the

final overall objective function as follows:

min
X�
i=1

HðCiÞ ð5Þ

s:t:

xij 2 0; 1f g
X�
j=1

xij=1

Xn
i=1

xij40

8>>>>>>><
>>>>>>>:

A heuristic algorithm for M-module search

The objective function in Equation (4) is an integer programming prob-

lem of finding a binary combinatorial for the index matrix. It is an

NP-hard problem (Li et al., 2011). We introduce a heuristic algorithm

to solve this problem. The algorithm consists of three major steps: seed

selection; M-module search by seed expansion and entropy minimization;

and refinement of M-modules.

Step 1: Seed selection

We first rank each gene in a single network and then combine ranks

across multiple networks to obtain the final rank for each gene.

For each network Gk= V;Ekð Þð1 � k �MÞ with an adjacency matrix

Ak=ðaijkÞnxn, we wish to construct a function g : V! R such that g(v)

denotes the importance of vertex v in the corresponding network. We first

compute the degree-normalized weighted adjacency matrix

A
0

k=D�1=2AkD
1=2 where D is diagonal matrix with element

Dii=
P

j Aijk. The importance of the vertex could be measured by two

features: (i) its topological feature in the network and (ii) previous know-

ledge about its contribution to the phenotype under study. Many essential

genes have been shown to have unique topological features such as high

degree and centrality in gene networks (Goh et al., 2007; Taylor et al.,

2009). Likewise, genetic mutations have been observed to concentrate on

certain pathways for a given disease (Vogelstein et al., 2013), and this

observation can be leveraged to identify disease genes (Masica and

Karchin, 2011; Vanunu et al., 2010). Given these two considerations,

we used the following function to rank genes. A similar approach was

also used in (Vanunu et al., 2010):

g=�A
0

kg+ 1� �ð ÞY ð6Þ

where A
0

kg captures the topological importance of nodes and Y is a vector

denoting the prior information for the nodes. The parameter � is a value

between 0 and 1 that controls the relative contributions by topological

importance and prior knowledge. The topological importance of node v is

defined as g vð Þ=
P

u2NkðvÞ gðuÞA
0

uvk, whereNkðvÞ is the set of neighbors in
Gk. This means the importance of a node depends on the number of its

neighbors, strength of connection and importance of its neighbors. The

exact solution to Equation (6) is 1� �A0k
� ��1

1� �ð ÞY, indicating that

how the importance of nodes is associated with network topology and

prior information. However, computing the matrix inversion is time-

consuming. Here, we use the following fast iteration-based algorithm

introduced by Zhou et al. (2004)

g t+1½ �=�A
0

kg
t½ �+ 1� �ð ÞY ð7Þ

where t denotes the iteration, and g 0½ �=0.

To determine the prior information of vector Y, we use gene mutation

information from the COSMIC database (Pleasance et al., 2010). For

each gene, we calculate the number of independent biological samples

in which the gene was mutated. Based on the mutation frequencies of all

genes associated with breast cancer, we estimated the probability density

function using a kernel density function. The fitted function is in the form

f xð Þ=ea�bx

where x is the number of samples in which a gene was observed to be

mutated, and a and b are breast cancer-specific parameters
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(Supplementary Fig. S1). Next, for each mutated gene u observed in k

samples, the prior probability of mutation is calculated as follows:

Y uð Þ=
Zk

x=0

xf xð Þdx

For each gene, after obtaining its ranks in all individual networks,

denoted as g= g 1ð Þ; . . . ; gðMÞ
� �

, we calculate a z-score for each rank gðiÞ.
Then we obtain the rank for that gene across all networks by averaging

the z-scores across all networks.

In this article, we selected the top 5% of the genes in the network as

seeds because the number of significant M-modules does not change with

higher number of seeds (Supplementary Fig. S1).

Step 2: M-module search by seed expansion and entropy

minimization

For a given seed v 2 V, we treat it as a M-module C= vf g. For each

vertex u in its neighborhood in all networks, we define N vð Þ=UiNiðvÞ
where Ni vð Þ is the neighbor set in Gi as the candidate for C. For each

u 2 NðvÞ, we calculate the entropy decrease between the new M-module

C 0=CUfug and C, i.e. "H C 0;Cð Þ=H Cð Þ �HðC 0Þ. "H C 0;Cð Þ40 indi-

cates that addition of vertex u improves the connectivity of the former M-

module C. The vertex u whose addition maximizes "H is added to C. If

there is more than one vertex that can be included at each step, we ran-

domly select one. The expansion step terminates until no additional

vertex can reduce the entropy of the evolving M-module further.

Step 3: Refinement of M-modules

M-modules whose sizes are smaller than five are removed. If two

M-modules have a Jaccard index of 0.5, they are merged.

Statistical significance of M-modules

The statistical significance of M-modules is computed based on the null

score distribution of M-modules generated using randomized networks.

Each network is completely randomized 100 times by degree-preserved

edge shuffling. To construct the null distribution for M-module scores, we

perform M-module search on the randomized networks. Using the null

distribution, the empirical P-value of an M-module is calculated as the

probability of the module having the observed score or smaller by chance.

P-values are corrected for multiple testing using the method of

Benjamini–Hochberg (Benjamini and Hochberg, 1995). An adjusted

P-value of 0.05 is considered as significant.

Module connectivity dynamic score

To quantify the connectivity dynamics of an M-module, we compare

adjacent component subnetworks of an M-module across disease

stages. Specifically, given an M-module C whose weighted adjacency

matrices of the corresponding induced subgraphs are AC
i ð1 � i �MÞ,

the change in connectivity between two adjacent component modules is

defined as the l2 norm of the matrix subtraction normalized by the

number of genes in the M-module,

"AC
i;i+1=kAC

i � AC
i+1k2=jCj ð8Þ

where k � k2 is the matrix l2 norm. The module connectivity dynamic score

(MCDS) of an M-module is defined as the average of connectivity

changes across all adjacent stages:

� AC
� �

=
XM�1
i=1

"AC
i;i+1=ðM� 1Þ ð9Þ

The statistical significance of dynamic M-modules is computed in a simi-

lar way as that for M-modules. Briefly, we first calculate the null

distribution for M-module dynamic scores based on randomized

networks. The empirical P-value of an M-module dynamic score is cal-

culated using the null distribution. P-values are corrected for multiple

testing using the method of Benjamini–Hochberg (Benjamini

and Hochberg, 1995). An adjusted P-value of 0.05 is considered as

significant.

Construction of features for Support Vector Machine

classifier

Given a module identified by the different algorithms, following the strat-

egy by Chuang et al. (2007), we normalize the expression level of each

gene across patient samples and across genes in a sample using z-score

transformation. The final z-score is denoted by Zij. For each pa-

tient sample J, the activity score of the Sth M-module CS is defined as

follows:

MAjS=
X
j2CS

Zij=jCSj ð10Þ

where jCSj is the cardinality of CS. For each patient sample, a feature

vector was constructed as MA1j; . . . ;MAmj

� �
where m is the number of

modules used as features. For a given M-module CS, the weighted

M-module feature value is defined as the product of its activity score

and connectivity dynamics, i.e.

MA
ðwÞ
iS =MAiSMCDSS; i=1; . . . ; l ð11Þ

where MCDSS denotes the connectivity dynamic of module CS, l is the

number of samples. For differentially expressed genes and random genes,

each gene is a feature and the number of genes in each set equals the total

number of M-modules.

3 RESULTS

The M-module algorithm for identifying shared co-expression

modules across multiple networks

To examine the dynamics of pathway connectivity, we de-

veloped a novel algorithm, M-module, to identify shared subnet-

works present in multiple gene co-expression networks. Here we

term these subnetworks M-modules. They have the same set of

member genes but potentially different connectivity among the

members. Using M-modules, we can quantify the dynamic

changes in module connectivity. The core M-module algorithm

consists of three major components: seed selection, M-module

search by seed expansion and graph entropy minimization and

refinement of M-modules (Fig. 1).
M-module takes as inputs multiple edge-weighted co-expres-

sion networks and a set of prior probabilities representing the

mutation probability of a gene based on experimental data.

Along with network topological features, the prior probabilities

are used to rank and select seeds (See Supplementary Methods).

We transform the M-module search problem into a minimum

entropy problem by introducing a graph-entropy–based object-

ive function for M-modules. Finding M-modules whose entropy

values are all minimal is an NP-hard problem (Li et al., 2011).

We therefore developed a greedy algorithm for M-module search

based on seed expansion. Empirical P-values of candidate

M-modules are determined by using randomized networks. The

software implementing the algorithm is freely available on

request.
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Performance benchmarking of M-module on simulated and

real networks

To characterize the performance of the M-module algorithm, we

first used simulated networks in which the module membership

for each node is known (see Supplementary Methods). We also

introduced various levels of noise into the networks, which is

controlled by the ratio of intra-module edges to inter-module

edges for each node. We compared M-module with several

state-of-the-art algorithms, including JointCluster (Narayanan

et al., 2010), Tensor Clustering (Li et al., 2011), Consensus

Clustering (Lancichinetti and Fortunato, 2012) and Spectral

Clustering (Newman, 2006b). For brevity, we abbreviated these

algorithms as JC, TC, CC and SC. We used the receiver operat-

ing characteristic (ROC) curve to evaluate the performance (see

Supplementary Methods). When the noise level is50.5, both JC

and M-module have the best performance. However, unlike JC,

M-module maintains its superior performance over other meth-

ods when network noise is40.5 [P=0.01, ROC test by (DeLong

et al., 1988)]. Because of the low node coverage (510%) and high

overlap between discovered modules (470%), performance of

TC is not included in Figure 2A.
We next compared the performance of the five methods on

real networks. We used a compendium of 531 gene expression

profiles of breast cancer samples generated by the TCGA

consortium. The patient samples were classified into four clinical

stages using the latest American Joint Committee on Cancer

staging system (Edge, 2010) (Supplementary Table S1). We con-

structed one co-expression network for each cancer stage. We

identified 50, 110, 1573, 91 and 100 modules using M-module,

JC, TC, SC and CC, respectively. The respective average sizes of

the modules are 17, 70, 10, 85 and 77 genes and the respective

gene coverages are 8.2, 99.4, 20.7, 100 and 100%. Note that

because JC, SC and CC are partition-based algorithms, their

gene coverage is essentially 100%. We evaluated the resulting

sets of gene modules using multiple reference pathway annota-

tions, including Gene Ontology (Ashburner et al., 2000), KEGG

(Kanehisa et al., 2012), Biocarta (Nishimura, 2001), Canonical

pathways (Subramanian et al., 2005) and functional gene inter-

actions (Lee et al., 2011). M-module achieves significantly higher

specificity when evaluated using all reference sets while main-

taining comparable sensitivity (P50.05, one-sided Fisher’s

exact test, Figure 2C and D).

We also benchmarked the time complexity of the algorithms.

When tested on the same breast cancer co-expression networks

(7737 genes and 10 970 386 edges), M-module has the fastest

A B

C D

Fig. 2. Performance assessment of M-module using simulated and real

networks. (A) Performance as a function of the amount of noise in three

simulated networks. AUC was used as the performance measure. Shown

here are average AUC values of 50 runs of each method at each noise

level. (B) Time complexity of different methods. Inputs are four gene co-

expression networks constructed using breast cancer data. ForM-module,

two strategies were used to select seeds: top 5% genes as seeds and top

20% as seeds (in this case,490% genes were covered by the discovered

modules). (C) Specificity of the methods. Gene modules found by each

method are evaluated by a set of gold-standard pathway annotations.

Specificity is defined as the fraction of predicted modules that signifi-

cantly overlaps with reference pathways. (D) Sensitivity of the methods.

Sensitivity is defined as the fraction of reference pathways that signifi-

cantly overlaps with predicted modules. Pathway overlap P-values were

computed using hypergeometric distribution. P-values for the difference

in specificity and sensitivity were computed using Fisher’s exact test. All

P-values were corrected for multiple testing using the method of

Benjamin–Hochberg. *P50.05

Fig. 1. Overview of the M-module framework. The algorithm consists of

three key components: construction of multiple co-expression networks,

seed selection and M-module search. First-order partial Pearson correl-

ation coefficient is used as edge weight to construct the gene co-expression

network. For each network, we integrate topological and gene mutation

information to rank genes via network propagation. The overall ranking

of a gene across multiple networks is computed by considering rankings

in all networks. The top genes are used as seeds and a graph-entropy–

based function is used to guide the M-module search
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speed among the five algorithms. In particular, it is 5 and 120

times faster than JC and TC algorithms, designed for multiple

network analysis (Fig. 2B).

M-modules reveal distinct properties of the dynamics of

pathway connectivity

Pathway dynamics can be attributed to both changes in gene

expression level and changes in the connectivity among genes

(i.e. pathway rewiring). Although less studied, the latter type of

dynamics has recently been shown to be critical for understand-

ing disease progression and treatment, including the role of hub

genes (Taylor et al., 2009) and rewiring of signaling pathways

during cancer treatment (Lee et al., 2012). Because component

subnetworks of an M-module share the same set of genes in

multiple co-expression networks but can differ in their connect-

ivity, M-module provides a natural way to capture pathway con-

nectivity dynamics. To this end, we introduce a novel measure to

quantify changes in the connectivity of an entire subnetwork

across multiple networks. We term it the MCDS. As the co-

expression networks are weighted based on gene expression cor-

relation, MCDS quantifies not only the presence and absence of

edges but also changes in edge weights that can be viewed as

interaction strength among genes. By comparing the MCDS

values of real 4-modules to a null distribution of MCDS values

of random 4-modules, we found that 30 of the 50 discovered

4-modules have significant dynamic scores (P=1.9E-10, one-

sided t-test, Fig. 3B). An example of dynamic 4-modules involved

in Errb2/Her2 signaling is shown in Figure 3A. As the tumor

progresses, multiple interactions in this module are significantly

changed (P50.05, see Supplementary Methods), suggesting a

significant role of pathway rewiring during the disease

progression.
We confirmed that the dynamics captured by MCDS is be-

cause of changes in the connectivity among module members

instead of changes in their expression levels. First, we found

that gene expression changes and MCDS between adjacent

cancer stages are not correlated (r=0.16, P=0.27, Fig. 3C

top). Second, we found no significant overlap (P=0.49, hyper-

geometric test) between genes of dynamic 4-modules and differ-

entially expressed genes (P50.05, one-way ANOVA) (Fig. 3C).
Previously, connectivity dynamics of hub genes in protein

interaction networks has been used to improve prognosis accur-

acy of breast cancer (Taylor et al., 2009). We next contrasted

topological and biochemical properties of three groups of genes:

hub genes and genes in dynamic and static 4-modules. For hub

genes, we used the top 5% genes (387) with the highest degrees in

the input networks. We found that genes in dynamic 4-modules

exhibit distinct values with regard to these properties. We first

examined two topological features, betweenness centrality and

weighted degree. Betweenness centrality measures the relative

importance of a node in the network, whereas weighted degree

measures the interaction strength of a gene with other genes. We

found that genes in dynamic 4-modules have significantly lower

centrality than hub genes but significantly higher centrality than

genes in static 4-modules (one-sided t-test, Fig. 3D). The lower

centrality of genes in static 4-modules may be because of the

higher fraction of protein complexes represented by these mod-

ules (Supplementary Fig. S2). Bandyopadhyay et al. (2010) have

shown that interactions among members of protein complexes
are generally stable in response to perturbation, whereas inter-

actions in signaling pathways are more dynamic.
In terms of weighted degree, we found that genes in dynamic

4-modules have significantly lower degrees than hub genes, but

higher degrees than genes in static 4-modules (one-sided t-test,
Fig. 3E), suggesting that genes in dynamic 4-modules tend to

have stronger interactions among themselves.
Next, we asked whether the proteins encoded by genes in

dynamic and static 4-modules possess different biochemical

properties. We found that cell signaling domains [based on the
SMART database (Letunic et al., 2006)] were enriched in pro-

teins encoded by genes of dynamic 4-modules (P=4.8E-4, bi-
nomial test, Fig. 3F), whereas non-signaling domains were evenly
distributed between the two groups of proteins (P=0.22, bino-

mial test).

A

D

F

E

B C

Fig. 3. Evidence and properties of module connectivity dynamics across

multiple networks. 4-modules were identified using co-expression net-

works representing four stages of breast cancer. (A) An example dynamic

4-module representing the Erbb2/Her2 signaling pathway. Middle sub-

network, composite 4-modules whose edges are the average co-expression

correlations across four networks. Surrounding subnetworks, subnet-

works induced by edges that show significant changes in values between

two adjacent co-expression networks. (B) Cumulative distributions of

connectivity dynamic scores of discovered 4-modules. MCDS, module

connectivity dynamic score. (C) Module connectivity dynamics is not

correlated with expression level dynamics of module members. Top,

correlation between gene expression dynamics and gene connectivity dy-

namics of module members. Bottom, overlap between 4-module genes

and differentially expressed genes. (D) Betweenness centrality of genes in

4-modules and hub genes. (E) Sum of edge weights of genes in 4-modules

and hub genes. (F) Occurrence frequency of signaling (left) and non-

signaling (right) protein domains encoded by 4-module genes
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Incorporation of module connectivity dynamics significantly

improves disease stage classification

Given that dynamic M-modules are associated with breast

cancer progression and they have unique topological and bio-
chemical properties, we hypothesized that they can be used to
improve breast cancer stage classification. To test this hypoth-

esis, we built statistical classifiers using different feature sets for
classifying multiple stages of breast cancer.
As a baseline comparison, we first compared the classification

accuracy using the following feature sets: significant M-modules
(both static and dynamic M-modules), modules generated by

TC, SC, CC and JC, size-matched set of genes that are differen-
tially expressed across stages (P50.05, one-way ANOVA) and
size-matched set of randomly selected genes. We trained Support

Vector Machine (SVM) classifiers to perform multi-class classi-
fication simultaneously (see Section 2). SVM classifier using
M-modules as features achieved marked improvement over

other feature sets in both accuracy and area under curve
(AUC) based on 5-fold cross validation experiments (Fig. 4),

suggesting that M-modules can capture discriminative informa-
tion across the entire spectrum of breast cancer stages better than
those identified by other methods.

Next, we asked whether information in module connectivity
dynamics can be used to further improve classification accuracy.
To this end, we weighted each M-module based on its MCDS

and used the weighted feature to train a SVM classifier (see
Supplementary Methods). We found that the MCDS-weighted

classifier achieved significantly higher accuracy (76.4 versus
61.6%, P=3.9� 10–10, Wilcoxon test) and AUC (0.83 versus
0.70, P=0.01, ROC test by DeLong et al., 1988) than classifier

trained using M-modules without feature weighting (Fig. 4).
To rule out the possibilities that the above result is because of

the choice of classifier, cross validation scheme and how unba-

lanced data are corrected, we performed additional analyses
by varying each of these parameters. Collectively, our results

demonstrate that the weighted M-modules consistently outper-
form other feature sets across different parameter settings
(Supplementary Methods and Supplementary Figs S3–S5).

To rule out the possibility that confounding factors in the
TCGA dataset contribute to the classification accuracy, we eval-
uated the performance of the SVM classifiers (trained on TCGA

data) using two external microarray datasets, both of which
cover all four stages of breast cancer. Our result shows that

the observed performance is not because of hidden confounding
factors in the TCGA dataset (Supplementary Fig. S6).

A meta-network of 4-modules associated with breast cancer

progression

To obtain a systems view of the discovered 4-modules, we com-

puted the Pearson correlation between the first principle compo-
nents of the expression profiles of a pair of modules (Langfelder
and Horvath, 2007). We then constructed a meta-network based

on the Pearson correlation coefficients (see Supplementary
Methods and Fig. 5A). Hierarchical clustering of the correlation

matrix revealed five clusters, four of which are tightly clustered
(Supplementary Fig. S7). This analysis highlights two groups of
4-modules that are known to be critical for cancer progression:

inflammation (teal) (Andre et al., 2013) and metastasis (yellow)

(Nguyen et al., 2009). The inflammation cluster consists of T-cell
activation (modules 4, 10, 18, 36), B-cell receptor signaling
(module 15) and innate immune response (module 17), indicating

the induction of an adaptive immune response associated with
tumor-infiltrating immune cells. The metastasis cluster captures

genes involved in several critical steps during the development of
metastasis, including extracellular matrix process (modules 32,
38), angiogenesis (modules 20, 46) and the Ras family of

GTPases (modules 8, 29) (Hernandez-Alcoceba et al., 2000).

Relative importance of 4-modules for the classification of

each stage of breast cancer

The multi-class SVM classifier consists of six subclassifiers, each

of which classifies one of the six pairwise comparisons. To under-
stand the importance of each 4-module to the classification of
each disease stage, we determined their relative importance based

on their normalized classifier weights over six sets of subclassifier
weights (see Supplementary Methods). Hierarchical clustering of

the feature importance matrix reveals distinctive sets of four-
modules that are important for the classification of each cancer
stage (Fig. 5B and Supplementary Table S2). For instance, ciliary

mobility and establishment of cell polarity are more important
for stage III classification than other stages. Inflammation invol-
ving immune cells is more important for stage four than previous

three stages. In contrast, genetic imprinting, steroid hormone
(Errb2/Her2) signaling, regulation of mitosis and protein deubi-
quitination pathways are more important for the first two stages.

Knowing the relative importance of each 4-module enables us to
gain new insights into the molecular mechanism of breast cancer
progression.

4 DISCUSSION

Our current knowledge about the dynamics of gene networks
during disease progression is rather limited. Conceptually, the

A B

Fig. 4. Module connectivity dynamics improves disease stage classifica-

tion. Results are based on 50 independent 5-fold cross validations.

(A) Classification accuracy of breast cancer stages using different feature

sets, including randomly selected genes (RG, N=50 features, 50 genes),

differentially expressed genes (DG, N=50 features, 50 genes), TC mod-

ules (N=1573 features, 1601 genes), SC (91 features, 7737 genes), CC

(100 features, 7737 genes), Jointclustering (JC, 110 features, 7690 genes),

significant 4-modules (SM, 50 features, 635 genes) and weighted 4-mod-

ules (wSM, 50 features, 635 genes). Accuracy is defined as the number of

patient samples correctly classified. Y-axis, mean accuracy. Error bar,

standard deviation. (B) Receiver operating characteristic curves for

SVM classifiers trained with different feature sets. AUC values are in

parenthesis
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problem of understanding network dynamics can be divided into

two subproblems: (i) identifying the subnetworks that exhibit

structural changes in response to different growth or develop-

mental events or different spatial location; and (ii) quantifying

the dynamic changes in the subnetwork structure. Our frame-

work addresses both subproblems. To identify subnetworks

that change over multiple conditions, many previous approaches

first perform all pairwise network comparisons and then identify

a unified subnetwork that partially overlaps with pairwise com-

parisons (Doering et al., 2012; He et al., 2012; Palla et al., 2007;

Tomlins et al., 2007; Zhang et al., 2013). In contrast, the JC, TC

and the M-module algorithms analyze multiple gene networks

simultaneously. By doing so, the latter approach can reduce

noises as well as capture subtle but consistent changes in the

subnetworks. The three latter methods use different objective

functions to identify shared subnetworks. JC uses the modularity

measure (Newman, 2006a), whereas TC uses frequent dense sub-

graphs. The modularity measure is known to have a resolution

limit that prohibits the discovery of small modules (Fortunato

and Barthelemy, 2007). On the other hand, strictly relying on

network density prevents the discovery of subnetworks with

sparser and linear topologies such as signaling pathways.

M-module alleviates both problems by using graph-entropy–

based objective function (Dehmer and Mowshowitz, 2011). In

addition, M-module incorporates both network topological fea-

ture and prior knowledge about the mutational status of genes

for the disease under investigation.
The second subproblem of network dynamics is how to quan-

tify structural dynamics in the subnetwork. We introduced a

novel measure (MCDS) based on the matrix norm of adjacency

matrices that represent subnetworks. Unlike degree comparison,

which was commonly used in previous studies, MCDS takes into

account both the existence and strength of connectivity between

genes in a subnetwork.

We compared both the quality and the classification

accuracy of modules derived using individual networks separ-

ately and using M-modules. We found that M-modules have

higher sensitivity and comparable specificity based on known

pathway annotations. More importantly, we found that M-mod-

ule–based features achieve significantly higher accuracy in pre-

dicting cancer stages (Supplementary Fig. S8). This result

emphasizes the importance of joint analysis of multiple gene net-

works to more accurately capture the dynamics of gene

pathways.
Much of previous studies on connectivity dynamics have been

focused on the dynamics of hub genes. M-module enables ana-

lysis of entire pathway instead of hub genes only. Our result

suggests that genes in dynamic modules have unique topological

and biochemical properties that may contribute to their function

in cancer progression. In particular, we found that genes encod-

ing signaling domains are enriched in dynamic modules but not

static modules. This finding is consistent with previous results

that signaling domains are more frequently associated with onco-

genesis and play critical roles in rewiring signaling networks and

driving phenotypic alteration as disease progression (Lee et al.,

2012) or during cellular stress responses (Bandyopadhyay et al.,

2010).
We see ample opportunities to improve on the basic concept of

M-module in future work. First, although this study uses breast

cancer as a proof-of-principle, the M-module framework is

A B

Fig. 5. Characteristics of discovered 4-modules. (A) Meta-network view of 4-modules across breast cancer stages. Edge thickness is proportional to the

Pearson correlation of the first principle components between the expression profiles of two modules across all patient samples. Node size is proportional

to the average connectivity dynamic score of a 4-module over three adjacent stage transitions. Node color, enriched GO biological process terms.

(B) Feature importance for cancer stage classification. Each row represents a feature (4-modules) and each column represents a breast cancer stage.

Feature importance values are clustered using hierarchical clustering. Feature ID and enriched GO biological process term are shown to the right of the

dendragram
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broadly applicable to any cohort of patients for which disease-

stage–specific transcriptome data are available. Second, integrat-

ing multiple types of molecular analytes beyond gene expression

and somatic mutation (e.g. epigenome, miRNA, CNVs) might

further expand our ability to identify dynamic molecular events

that are associated with disease progression. Finally, comparing

and contrasting dynamic events involving different molecular

types may yield new mechanistic insights into their interactions

in the context of disease progression.
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