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Cognitive dysfunction is a disabling and core feature of 
schizophrenia. Cognitive impairments have been linked 
to disturbances in inhibitory (gamma-aminobutyric acid 
[GABA]) neurons in the prefrontal cortex. Cognitive defi-
cits are present well before the onset of psychotic symptoms 
and have been detected in early childhood with developmen-
tal delays reported during the first year of life. These data 
suggest that the pathogenetic process that produces dys-
function of prefrontal GABA neurons in schizophrenia may 
be related to altered prenatal development. Interestingly, 
adult postmortem schizophrenia brain tissue studies have 
provided evidence consistent with a disease process that 
affects different stages of prenatal development of specific 
subpopulations of prefrontal GABA neurons. Prenatal 
ontogeny (ie, birth, proliferation, migration, and pheno-
typic specification) of distinct subpopulations of cortical 
GABA neurons is differentially regulated by a host of tran-
scription factors, chemokine receptors, and other molecu-
lar markers. In this review article, we propose a strategy 
to investigate how alterations in the expression of these 
developmental regulators of subpopulations of cortical 
GABA neurons may contribute to the pathogenesis of cor-
tical GABA neuron dysfunction and consequently cognitive 
impairments in schizophrenia.
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Introduction

Schizophrenia is frequently associated with a lifetime 
of  impairment in social and occupational domains 
and premature mortality.1,2 While the diagnostic clini-
cal features of  schizophrenia include positive or 
psychotic symptoms and negative symptoms, poor 
long-term outcomes in individuals with schizophrenia 

have been principally linked to the severity of  cogni-
tive dysfunction in the illness.3 Cognitive impairments 
in schizophrenia include deficits in selective attention, 
declarative memory, working memory, and cogni-
tive control.4 Cognitive dysfunction represents a core 
impairment in schizophrenia because cognitive deficits 
are common and relatively stable across the course of 
the illness, are present regardless of  psychotic symp-
toms, and are found to a lesser degree in unaffected 
relatives.5,6 Furthermore, the lack of  responsiveness 
of  cognitive deficits to available antipsychotic medica-
tions7,8 indicates the need for greater insight into the 
pathogenetic processes that lead to the appearance of 
cognitive dysfunction in the illness.

Interestingly, cognitive disturbances are present prior 
to the onset of  psychotic symptoms that typically occurs 
in late adolescence and early adulthood,9 which suggests 
that the disease process that underlies cognitive prob-
lems may disrupt the normal maturation of  cortical 
circuits (previously reviewed).10,11 However, develop-
mental delays have also been observed in early child-
hood,12 even prior to the first birthday,13–15 in individuals 
who go on to develop schizophrenia. These and other 
findings have led to the hypothesis that the disease pro-
cess that ultimately leads to the appearance of  clinical 
symptoms of  schizophrenia in late teens/early 20s could 
actually have its origins in utero.16,17 Consistent with 
this hypothesis, environmental insults that occur while 
in utero, such as maternal exposure to infection, have 
been linked to higher rates of  schizophrenia.18 However, 
further investigation of  the role of  prenatal insults in 
the pathogenesis of  schizophrenia requires a consider-
ation of  the components of  cortical pathology that may 
subserve cognitive impairments and how disturbances 
in the prenatal ontogeny of  this cortical circuitry may 
contribute to the nature of  cortical circuitry dysfunction 
in the illness.
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Disturbances in Prefrontal GABA Neurons Contribute 
to Cognitive Dysfunction in Schizophrenia

Cognitive processes such as working memory are sup-
ported by the synchronized firing of groups of cortical 
pyramidal neurons at gamma frequencies (30–80 Hz).19 
Individuals with schizophrenia show altered gamma 
oscillation activity in the prefrontal cortex while perform-
ing cognitive tasks.20,21 Gamma oscillations are subserved 
by a subpopulation of cortical inhibitory (gamma-
aminobutyric acid [GABA]) neurons that contain the 
calcium-binding protein parvalbumin and provide pow-
erful perisomatic inhibitory control over pyramidal neu-
ron output. Disturbing the function of parvalbumin 
neurons leads to lower gamma oscillatory power.22,23 
Consequently, the presence of a disease-related distur-
bance in parvalbumin neurons would be predicted to 
interfere with the regulation of pyramidal neuron activity 
and gamma oscillations and lead to deleterious effects on 
cognition in schizophrenia.24

Interestingly, some of the most consistently reported 
postmortem brain tissue findings in schizophrenia 
involve disturbances in parvalbumin neurons in the pre-
frontal cortex. For example, lower parvalbumin mRNA 
levels have been reported in prefrontal cortex gray mat-
ter homogenates in multiple different cohorts of schizo-
phrenia subjects25–28 and do not appear to be attributable 
to antipsychotic medications.25,28 Furthermore, approxi-
mately half  of parvalbumin neurons in the prefrontal 
cortex in schizophrenia fail to express detectable mRNA 
levels for the GABA synthesizing enzyme GAD67,25 and 
protein levels of parvalbumin and GAD67 have been 
reported to be reduced in parvalbumin axon terminals in 
the illness.29,30 In addition, voltage-gated potassium chan-
nels are involved in the fast repolarization of neurons that 
allow high frequency firing such as gamma oscillations.31 
Interestingly, transcript levels of several voltage-gated 
potassium channels that are selectively found in parv-
albumin neurons, including Kv3.1 and KCNS3, which 
encode the Kv9.3 modulatory α subunit,31,32 are lower in 
the prefrontal cortex in schizophrenia.33,34 Taken together, 
these disturbances in biochemical markers important for 
the gamma oscillation-related function of parvalbumin 
neurons may provide a substrate for some of the cogni-
tive disturbances observed in schizophrenia.

Alteration in Subpopulations of Cortical GABA 
Neurons Are Consistent With a Prenatal Origin in 
Schizophrenia

Recent studies have provided insight into the prenatal 
ontogeny (ie, neuronal birth, proliferation, migration, 
and phenotypic specification) of different subpopula-
tions of cortical GABA neurons. In humans, (future) 
parvalbumin neurons, and another subpopulation of 
cortical GABA neurons that express the neuropeptide 

somatostatin, begin to be born and proliferate by the 
8th week of gestation in the medial ganglionic eminence 
of primordial basal ganglia, then begin to migrate tan-
gentially to the cerebral cortex.35–41 In contrast to parv-
albumin and somatostatin neurons, the subpopulation 
of cortical GABA neurons that express the calcium-
binding protein calretinin appears to largely originate 
from the caudal ganglionic eminence and possibly also 
from the subventricular zone of the dorsal pallium.38–44 
Phenotypic specification involves the ongoing process of 
developing cell-type-specific expression patterns of bio-
chemical markers, electrophysiological properties, and 
anatomical features that differentiate neurons into sub-
classes such as parvalbumin, somatostatin, and calretinin 
neurons. Furthermore, as discussed in the next section, 
many transcription factors and other molecular markers 
are required for various stages of prenatal ontogeny of 
cortical GABA neurons.

Interestingly, the pattern of evidence from postmortem 
human brain tissue studies suggests that disturbances 
in parvalbumin neurons may originate during prenatal 
ontogeny. First, lower mRNA levels for somatostatin, but 
not calretinin,25,28 have also been consistently observed in 
the prefrontal cortex across multiple cohorts of schizo-
phrenia subjects.26–28,45 Furthermore, parvalbumin and 
somatostatin mRNAs have been reported to be primar-
ily lower in the same schizophrenia subjects identified 
as having a “low-GABA-marker” molecular phenotype 
(approximately half  of all schizophrenia subjects stud-
ied), while the other schizophrenia subjects show no 
abnormalities in either parvalbumin or somatostatin 
mRNA in the prefrontal cortex.28 Thus, a selective distur-
bance in cortical parvalbumin and somatostatin neurons, 
but not calretinin neurons, in the same schizophrenia 
subjects may potentially be explained by a pathogenetic 
process early in development that selectively affects neu-
rons originating from the medial ganglionic eminence.

Second, the characteristics of disturbances in parval-
bumin and somatostatin neurons suggest that different 
stages of prenatal ontogeny may be disrupted in schizo-
phrenia. For example, a full complement of parvalbu-
min neurons appears to present in the prefrontal cortex 
in schizophrenia.25,46 However, approximately half  of 
parvalbumin neurons lack detectable mRNA levels of 
GAD67,25 which suggests that parvalbumin neurons may 
migrate normally but fail to fully complete phenotypic 
specification.47 Similarly, in situ hybridization studies of 
the prefrontal cortex in schizophrenia have also found 
that detectable somatostatin neurons express lower soma-
tostatin mRNA levels.45,48 However, in contrast to the 
findings with parvalbumin neurons in schizophrenia, 
fewer somatostatin neurons were detectable in the gray 
matter, while more somatostatin neurons were detect-
able in the white matter of the prefrontal cortex in the 
illness.45,48 Thus, available data from postmortem human 
brain tissue studies are at least consistent with a disease 
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process that interferes with the migration of some soma-
tostatin neurons in cortical white matter early in develop-
ment and leads to an incomplete phenotypic specification 
of the cortical parvalbumin and somatostatin neurons 
that complete the migration process. Consistent with this 
hypothesis, other studies have also observed a higher den-
sity of interstitial white matter neurons in the prefrontal 
cortex in schizophrenia.49–52 This evidence from post-
mortem human brain tissue studies, in combination with 
clinical findings of developmental delays in the first year 
of life,13–15 raises the hypothesis that selective disturbance 
in subpopulations of cortical GABA neurons may begin 
during the period of prenatal ontogeny in schizophrenia. 
Understanding potential pathogenetic mechanisms that 
could selectively disrupt the development of parvalbumin 
and somatostatin neurons next requires a consideration 
of the factors that regulate prenatal GABA neuron ontog-
eny and how disturbances in the expression levels of these 
ontogenetic factors in schizophrenia may contribute to 
cortical GABA neuron dysfunction in the illness.

Transcription Factors, Chemokine Receptors, and 
Other Molecular Markers Regulate the Prenatal 
Development of Cortical Parvalbumin and 
Somatostatin Neurons

Numerous transcription factors, which are proteins that 
selectively bind to specific regions of DNA and regulate 
the transcription of mRNAs, are required for the nor-
mal migration, phenotypic specification, maturation, and 
survival of specific subpopulations of cortical GABA 
neurons. For example, multiple cell-type-specific tran-
scription factors such as Nkx2.1, Sox6, MafB, Zeb2 (also 
known as Sip1 and Zfhx1b), Dlx5, and Dlx6 are expressed 
early in gestation in the medial ganglionic eminence and 
regulate the migration, specification, and maturation 
of cortical parvalbumin and somatostatin, but not cal-
retinin, neurons.37,53–60 Some molecular markers appear to 
be particularly important for the development of corti-
cal parvalbumin neurons. For example, certain devel-
opmental regulators including the chemokine receptors 
CXCR4 and CXCR7 and the scaffold protein Disrupted-
in-Schizophrenia 1 (DISC1) are all strongly expressed in 
the medial ganglionic eminence and are necessary for the 
migration of cortical parvalbumin neurons to the cere-
bral cortex.61–65 In addition, the receptor tyrosine kinase 
for the trophic factor neuregulin 1, ErbB4, regulates 
the migration of cortical parvalbumin neurons and the 
development of excitatory synapses onto parvalbumin 
neurons.66–68 In contrast, the transcriptional coactivator 
peroxisome proliferator-activated receptor γ coactivator 
1α begins to be expressed postnatally by parvalbumin 
neurons and is essential for complete development of the 
parvalbumin neuron phenotype.69

While there is considerable overlap with the molecular 
markers that regulate parvalbumin neuron development, 

some developmental regulators appear to be more spe-
cific for somatostatin neuron development. For example, 
ontogenetic transcription factor Dlx70 does not appear 
to be required for the tangential migration of cortical 
GABA neurons, but is required for postnatal expression 
of GAD67.71 Postnatally, Dlx1 continues to be expressed 
by somatostatin neurons, but not parvalbumin neurons, 
and a complete loss of Dlx1 leads to a failure of cortical 
somatostatin, but not parvalbumin neurons, to survive 
into adulthood.71 In addition, after neuronal migration is 
complete, most cortical parvalbumin and somatostatin, 
but not calretinin, neurons begin to express the nuclear 
matrix and genome organizer Special AT-rich DNA 
Binding Protein 1 (SATB1).72 A complete loss of SATB1 
does not appear to affect parvalbumin neurons but 
instead leads to substantially lower somatostatin mRNA 
and protein levels without affecting cell number, which 
indicates a role in the terminal differentiation and matu-
ration of somatostatin neurons.72

Altered Expression of Transcription Factors and 
Other Developmental Regulators Might Contribute 
to Cortical Parvalbumin and Somatostatin Neuron 
Dysfunction in Schizophrenia

Taken together, the critical and varied roles of these (and 
many more) ontogenetic transcriptional regulators and 
chemokine receptors in the different stages of develop-
ment of cortical parvalbumin and somatostatin neurons 
suggest that a disturbance in their expression or function 
could plausibly produce the pattern of deficits in parval-
bumin and somatostatin neurons observed in the prefron-
tal cortex in schizophrenia. Interestingly, recent studies 
have reported abnormalities in these developmental regu-
lators in schizophrenia. For example, lower Dlx1 mRNA 
levels have been reported in the orbital frontal cortex in 
subjects with schizophrenia.73 Given the important role 
that Dlx1 has been reported to play in the postnatal devel-
opment and survival of cortical somatostatin neurons,71 
deficits in Dlx1 may potentially contribute to some of the 
disturbances reported in somatostatin neurons, including 
lower somatostatin mRNA levels and fewer detectable 
somatostatin neurons, in schizophrenia.45 In contrast, 
higher mRNA levels for a splice variant of ErbB4, 
termed JMa, have been reported in the prefrontal cortex 
in multiple cohorts of schizophrenia subjects.74–76 Because 
the ErbB4-JMa splice variant is extracellular and is sus-
ceptible to proteolytic cleavage,77 Weickert and colleagues 
have hypothesized that higher ErbB4-JMa levels may 
interfere with neuregulin signaling in schizophrenia,76 
which may in turn disrupt the migration of, and devel-
opment of excitatory inputs to, cortical parvalbumin 
neurons in the disorder.66–68 Furthermore, DISC1, which 
is important for the tangential migration of future cor-
tical parvalbumin neurons,64,65 was previously identified 
as a susceptibility gene for schizophrenia.78 In addition, 
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recent genome-wide association studies have implicated 
Zeb2, another ontogenetic transcription factor involved 
in cortical parvalbumin and somatostatin neuron devel-
opment,59,60 as a candidate gene that provides increased 
risk for schizophrenia.79

However, the prenatal ontogeny of  cortical parval-
bumin and somatostatin neurons cannot be directly 
studied in schizophrenia and instead requires a mul-
tifaceted approach to investigate the role of  prenatal 
disturbances in the development of  cortical GABA 
neuron dysfunction in schizophrenia. First, the use of 
postmortem human brain tissue studies allows the iden-
tification of  developmental factors that are consistently 
altered in expression in schizophrenia and the determi-
nation of  whether the pattern of  deficits in developmen-
tal factors is consistent with the observed alterations 
in cortical parvalbumin and somatostatin neurons in 
schizophrenia. Second, the use of  postmortem brain 
tissue studies from a wide range of  postnatal ages of 
monkeys, which have a more similar composition of 
cortical GABA neuron subpopulations and extended 
period of  postnatal development to humans, allows a 
determination of  whether altered expression of  tran-
scription factors in schizophrenia is more similar to an 
altered postnatal developmental trajectory, as has been 
reported for other parvalbumin neuron markers.10,11,80 
Finally, animal models that mirror the magnitude and 
cell-type specificity of  the deficits in ontogenetic factors 
observed in schizophrenia are needed to provide con-
struct validity for models of  disrupted prenatal ontog-
eny of  cortical parvalbumin and somatostatin neurons 
in schizophrenia.

In this issue, we utilize this cross-species approach 
to investigate another important transcription factor, 
Lhx6, that is selectively expressed by, and involved in 
the prenatal developmental of, cortical parvalbumin and 
somatostatin neurons.32,81–83 Investigating the expression 
level of Lhx6 in the prefrontal cortex in schizophrenia 
subjects, the pattern of postnatal development of Lhx6 
in the prefrontal cortex of monkeys, and the effects of a 
partial, cell-type specific loss of Lhx6 that mimics Lhx6 
deficits in schizophrenia helps provide a framework for 
the process of investigating potential disruptions in pre-
natal development in schizophrenia. This approach may 
serve as a useful strategy for defining the pathogenesis of 
cortical circuit dysfunction in schizophrenia and for iden-
tifying the molecular mechanisms that are vulnerable to 
environmental events at different stages of development. 
This knowledge may inform both the type and timing 
of preemptive interventions for cognitive dysfunction in 
schizophrenia.
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