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Abstract

The purpose of this study is to identify metastasis- associated genes/signaling pathways in basal-
like breast tumors. Kaplan—Meier analysis of two public meta-datasets and functional
classification was used to identify genes/signaling pathways significantly associated with distant
metastasis free survival. Integrated analysis of expression correlation and interaction between
mRNAs and miRNAs was used to identify miRNAs that potentially regulate the expression of
metastasis-associated genes. The novel metastatic suppressive role of miR-17-5p was examined by
in vitro and in vivo experiments. Over 4,000 genes previously linked to breast tumor progression
were examined, leading to identification of 61 and 69 genes significantly associated with shorter
and longer DMFS intervals of patients with basal-like tumors, respectively. Functional annotation
linked most of the pro-metastatic genes to epithelial mesenchymal transition (EMT) process and
three intertwining EMT-driving pathways (hypoxia, TGFB and Wnt), whereas most of the anti-
metastatic genes to interferon signaling pathway. Members of three miRNA families (i.e., miR-17,
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miR-200 and miR-96) were identified as potential regulators of the pro-metastatic genes. The
novel anti-metastatic function of miR-17-5p was confirmed by in vitro and in vivo experiments.
We demonstrated that miR-17-5p inhibition in breast cancer cells enhanced expression of multiple
pro-metastatic genes, rendered cells metastatic properties, and accelerated lung metastasis from
orthotopic xenografts. In contrast, intratumoral administration of miR-17-5p mimic significantly
reduced lung metastasis. These results provide evidence supporting that EMT activation and IFN
pathway inactivation are markers of metastatic progression of basal-like tumors, and members of
miR-17, miR-200, and miR-96 families play a role in suppressing EMT and metastasis. The
metastasis-associated genes identified in this study have potential prognostic values and functional
implications, thus, can be exploited as therapeutic targets to prevent metastasis of basal-like breast
tumors.
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Introduction

Breast cancer-related death is responsible for about 3 % of female death in the USA and in
most cases attributable to distant metastasis [1]. Human breast tumors can be stratified based
on transcriptome data into five subtypes, including Luminal A, luminal B, ERBB2-enriched,
basal-like, and claudin-low [2, 3]. The molecular subtypes of breast cancer are likely defined
by the origin of cells that give rise to tumors, and differ in key genetic alterations,
chemotherapy response, metastatic propensity, organ tropism, and overall prognosis [4-9].
Subtype-specific markers have important diagnostic and prognostic values. However,
significant molecular heterogeneities and varied patient outcomes have been documented
within subtypes of breast cancer, and currently there are no reliable markers to identify
patients with high risk of metastasis within subtypes [7, 10, 11]. Therefore, specific
prognostic markers for each molecular subtype are needed to improve clinical management
of breast cancer patients.

The varied frequency, latency, and pattern of metastasis among different subtype of breast
tumors suggest that tumor cells may acquire metastatic competency through distinct
molecular mechanisms. Consequently, the likelihood is low to identify genes and pathways
that drive metastatic progression independent of tumor subtype. Reported metastatic
signatures are usually derived by comparing the expression profiles of metastatic tumors
with non-metastatic tumors using heterogeneous patient groups without considering
subtype-specific effects [12-16]. Due to multiple confounding factors (e.g., sample size,
composition of tumor subtypes, and metastatic latency), these signatures exhibit limited
overlap and are more discriminative in defining tumor subtypes than defining metastatic
potential independent of subtypes [16]. In this study, we aimed to identify genes associated
with distant metastasis survive interval (DMFS) in patients with basal-like tumors, which
represent 10-25 % of all breast tumors and exhibit a metastasis rate of ~40 % within 5 years
[7,17].
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By using two meta-datasets of primary tumor expression arrays, we identified a panel of
genes with both prognostic values and functional implications for distant metastasis of
basal-like breast tumors. Integrated analysis of microRNA (miRNA) and mRNA expression
suggested that miRNAs of three families (i.e., miR-17, miR-200 and miR-96) play a role in
restricting the expression of>60 % of the identified pro-metastatic genes. The anti-metastatic
activity of one of the miRNA (miR-17-5p) was confirmed by in vitro and in vivo
experiments.

Identification of metastasis-associated genes in basal-like breast tumors

In order to identify genes associated with metastasis in basal-like breast tumors, a set of
4,439 genes was compiled to include: signatures of metastatic tumors [12, 14, 15, 18], breast
cancer subtypes [7, 19], cell subpopulations of mammary gland [20], and epithelial-
mesenchymal process (EMT) [21]; top 1,000 genes with the highest frequency of genomic
alterations [8]; and top 1,000 most variably expressed genes in basal-like breast tumors [8].
The correlation between expression levels of each gene and DMFS intervals of patients with
basal-like tumors was first examined by Kaplan—Meier analyses using the online database
GOBO (Gene expression-based Outcome for Breast cancer Online), which is based on a
meta-dataset containing expression data and metastasis information of 252 basal-like tumors
[22]. The molecular subtypes of tumors were defined by the PAMS50 classifier [2]. Genes
that were found to be significantly associated with DMFS (logrank test p value < 0.05) of
patients with basal-like tumors were further examined using Kaplan—Meier plotter, a second
program that contains expression data and distant metastasis information of 220 basal-like
tumors [23]. These two meta-datasets are composed of overlapping but different expression
array data (Supplementary Table 1). This analysis identified 130 genes whose mMRNA levels
are significantly associated with DMFS intervals of patients with basal-like tumors (logrank
test p value < 0.05 in both meta-datasets), among which 61 genes are associated with shorter
DMFS interval and 69 genes associated with longer DMFS, designated as pro-metastatic
(Table 1) and anti-metastatic genes (Table 2), respectively.

We next examined whether the metastasis-associated genes of basal-like tumors have
prognostic values for other subtypes of breast tumors. Log2 expression values of these genes
were standardized to have mean 0 and standard deviation 1 cross all tumor samples in the
GOBO database. Within each subtype of tumors, patients were split equally into two
cohorts, high-expression, and low expression based on mean of the standardized expression
values of the pro- or anti-metastatic genes. DMFS intervals of the two patient cohorts for
each subtype of tumors were compared by Kaplan—Meier survival plots and logrank p values
were calculated. Collectively as genesets, higher expression of the pro-metastatic genes was
found to be associated with shorter DMFS interval, whereas higher expression of the anti-
metastatic genes associated with longer DMFS interval, of patients with ERBB2-enriched
tumors (Fig. 1). However, the expression levels of these metastasis-associated genes were
not significantly associated with DMFS interval of patients with luminal tumors (Fig. 1). At
individual gene level, 16 genes were found to be coordinately associated with DMFS of
patients with basal-like or ERBB2-enriched tumors, including six pro-metastatic genes

Breast Cancer Res Treat. Author manuscript; available in PMC 2015 August 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Fan et al.

Page 4

(ACTN1, COL5A3, ITGA5, NOX4, SPOCK1, and WFDC1) and ten anti-metastatic genes
(AIM2, APOBEC3G, CCL8, CTSC, CXCL10, GPR65, ICAM3, LPXN, PLEK, and PTPRC).
These observations suggest that metastasis-associated molecular events of basal-like tumors
are also involved in metastasis of ERBB2-enriched tumors, but not critical for metastatic
progression of luminal tumors.

Signaling pathways driving metastatic progression of basal-like tumors

Functional classification uncovered that genes associated with EMT and components of
hypoxia, TGFB, and WNT signaling pathways were significantly overrepresented by the
pro-metastatic genes (Table 1). A thorough literature search on reported functions of the
pro-metastatic genes revealed that 43 genes (~70 %) have been linked to EMT process, and
46, 36, and 27 genes linked to TGFB, hypoxia, and WNT signaling pathways, respectively
(Fig. 2). Notably, among the genes linked to WNT pathways are primarily components of
the non-canonical Wnt-planar cell polarity pathway (Wnt-PCP, e.g., CAMK1D, DACT1,
LMNA, LPP and TAOK1), and genes known to be suppressed by p-catenin (e.g., ANGPTLA4,
COL1A2, INS G2, MMP10, NDEL1, SPP1, and TRIO), indicating a role of Wnt-PCP
activation, coupled with reduced transcription regulatory activity of f-catenin, in metastatic
tumors. The innate immune response genes, especially those induced by interferon (IFN)
[24], were found to be significantly overrepresented by the anti-metastatic genes (Table 2),
implicating a role of IFN pathway inactivation in metastasis. Together, these findings
suggest that EMT activation and IFN signaling pathway inactivation are markers of
metastatic progression of basal-like tumors.

Upstream regulators of pro-metastatic genes

To gain insights into the regulation of the metastasis-associated genes, we performed
upstream regulator analysis using the ingenuity pathway analysis (IPA) program (Fig. 3a).
Among the top 10 transcription factors predicted to regulate the pro-metastatic genes were
SMAD?2/3 and HIF1A, the master transcription regulators of the TGFB and hypoxia
signaling pathways, respectively. The additional eight transcription factors have been shown
to play a role in gene regulation in response to hypoxia and/or TGFB [25, 26]. IFNG and
IFNA were identified as upstream regulators of anti-metastatic genes. This result reinforces
the notion that hypoxic response, TGFB activation, and IFN pathway inactivation promote
metastasis of basal-like tumors.

Since not all TGFB and hypoxia responsive genes are associated with DMFS, activation of
transcription factors of TGFB, and hypoxia pathways alone may not be sufficient to
establish the expression pattern of metastatic genes. miRNAs have been increasingly
recognized as key regulators of metastasis [27]. We previously showed that DROSHA
knockdown promoted lung metastasis of basal-like breast cancer cells (MDA-MB-231) in an
orthotopic xenograft model, suggesting a role of DROSHA-dependent miRNAS in
repressing metastasis [28]. Therefore, we examined whether specific miRNAs play a role in
regulating the expression of pro-metastatic genes. We performed integrated analysis of
miRNA and mRNA expression to identify inversely correlated mRNA-miRNA pairs in
basal-like tumors using the expression data in The Cancer Genome Atlas (TCGA) database
[8]. Individual miRNAs were ranked according to the number of prometastatic genes that
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are inversely correlated with their expression based on Pearson’s correlation analysis. This
analysis identified members of three miRNA families as potential regulators of the pro-
metastatic genes, including members of miR-17, miR-200 and miR-96 families. Over 60 %
of the pro-metastatic genes are predicted targets of the above-mentioned 14 miRNAs (Table
1). The number of putative targets of each of these miRNAs among the prometastatic genes
is significantly greater than expected by chance (x2 p value<0.001), supporting a functional
link between these miRNAs and pro-metastatic genes. The Pearson’s correlation efficient of
paired miRNA-mRNA is presented in Fig. 2 and Supplementary Table 1. The inverse
correlation between the expression of these miRNAs and the pro-metastatic genes was also
observed in basal-like tumors included in dataset GSE28884 [29].

Inhibiting miR-17-5p function enhances cell migration, invasion, and anoikis resistance in
vitro, and accelerates lung metastasis in vivo

It is known that miRNAs of the miR-200 and miR-96 families inhibit EMT by targeting
EMT transcription factors (e.g., SNAI2, ZEB1 and ZEB?2) [30, 31]. However, the functions
of miR-17 family members in EMT and metastasis have not been well studied. Therefore,
we examined whether miR-17-5p functions as metastatic repressor in breast cancer cells.
Among the six miRNAs encoded by MIRL7HG, miR-17-5p targets the most of the pro-
metastatic genes involved in TGFB and hypoxia pathways. Consistently, genes involved in
TGFB and hypoxia response were found to be significantly overrepresented by genome-
wide targets of miR-17-5p (Supplementary Fig. 1). Thus, we hypothesized that miR-17-5p
inhibits metastasis of basal-like tumors through inhibiting EMT activated by TGFB and
hypoxia.

To elucidate, the function of miR-17-5p in basal-like breast cancer cells, a MDA-MB-231
subline (MB231- 17IN) was established by transduction with lentivirus expressing miArrest
inhibitor of miR-17-5p (miR-17IN) and mCherry as fluorescent marker. Control cells
(MB231- C) were transduced with lentivirus expressing mCherry only. To examine that
ectopic expression of miR-17IN can effectively block the function of endogenous miRNA,
we measured the interaction of miR-17-5p target mRNAs with RISC (RNA-induced silence
complex) by AGO2-immunoprecipitation followed by qPCR analysis. As showed in Fig. 4a,
miR-17IN expression reduced RISC binding of three miR-17-5p target mMRNAS (ATGS5,
PFKFB3 and PFKP) that harbor conserved exact matches to positions 2-8 of mature
miR-17-5p in their 3’-untranslated regions. The reduced RISC binding was coupled with
increased expression levels of these MRNAs and their corresponding proteins (Fig. 4b). We
next examined the effect of miR- 17IN on RISC binding and expression levels of several
putative targets of miR-17-5p that were identified as pro-metastatic genes. Among the seven
genes examined (CAV2, LPP, NDEL1, SERPINE1, SPOCK1, TAOK1 and TGFB1I1), six
mRNAs showed reduced RISC binding and elevated expression levels in MB231-17IN cells
compared to control MB231-C cells (Fig. 4c). The RISC binding and expression level of
TGFBR?2, a validated target of miR-17- 5p [32], were examined as positive control.

Since most of the pro-metastatic genes targeted by miR- 17 are involved in migration,
invasion, and apoptotic resistance [26, 33], we examined the effects of miR-17 inhibition on
these cell properties. As shown in Fig. 5, miR-17IN substantially increased cell migration
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(scratch wound healing assay), invasion (Boyden Chamber transwell invasion assay), and
survival (under glucose depletion or anchorage-independent culture). We next examined the
in vivo role of miR-17-5p on lung metastasis using an orthotopic xenograft model, in which
4-wk old female NSG (NOD.Cg Prkdcscid 112rgtm1W;jl/SzJ) mice were inoculated with 5 x
10° cells in the 4th mammary gland fat pads. As shown in Fig. 6, miR-17IN expression had
no significant effect on primary tumor growth in mammary gland fat pads, but substantially
accelerated spontaneous lung metastasis, increasing tumor burden in lungs by ~6- fold 6
weeks after orthotopic inoculation (percentage of tumor area in lungs: MB231-17IN 19.74 £
6.12 vs. MB231-C 3.34 + 2.40; p value<0.001, n = 8). Taken together, these experiments
provided evidence supporting a role of miR-17-5p in suppressing metastatic activity of
breast tumor cells.

Intratumoral delivery of miR-17-5p mimic reduces lung metastasis

Having demonstrated that miR-17-5p inhibition accelerates lung metastasis of MDA-
MB-231 cells in vivo, we next examined whether miR-17-5p mimic can be used to block
metastasis of a MDA-MB-231 variant (MB231-LM) that was isolated from spontaneous
lung metastases of an orthotopic xenograft model. MB231-LM cells were inoculated in both
sides at the fourth mammary glands of 4-week old NSG mice to establish orthotopic
xenografts. 3 weeks after inoculation, tumors (~150 mm3) received direct injection of
miR-17-5p mimic or control oligonucleotides, formulated as neutral lipid-based liposome.
Lung metastasis was examined 3 weeks after treatment. As shown in Fig. 6b, intratumoral
delivery of miR-17-5p mimic substantially reduced lung metastasis compared to treatment
with control oligonucleotides, but showed no significant effect on primary tumor growth.
Gene expression analysis of primary tumors at 7 days post-treatment showed that miR-17-5p
mimic reduced expression of prometastatic genes ITGA5 and SPOCK1, and a validated
miR-17-5p target TGFBR2, in comparison to control tumors (Fig. 6¢). These results further
support a metastasis-repressive role of miR-17-5p.

Expression of miR-17-5p is inversely correlated with activation of TGFB, hypoxia, and non-
canonical WNT pathways in basal-like tumors

Given the metastasis-suppressing activity of miR-17-5p and its inverse correlation with pro-
metastatic genes associated with EMT process, we hypothesized that miR-17-5p plays a role
in restraining activation of EMT. Our gene expression data analysis suggests EMT
activation in basal-like breast tumors is primarily driven by three intertwining pathways,
TGFB, hypoxia, and non-canonical WNT. Therefore, it is likely that miR-17-5p plays a role
in repressing the activation of these EMT-driving pathway. To test this, we examined
whether miR-17-5p expression level is correlated with activation status of hypoxia, TGFB,
and non-canonical WNT activation signaling pathways by examine the protein and gene
expression data of previously defined signature genes of these pathways [34]. The TCGA
database contains data of 133 proteins/phosphoproteins measured by reverse phase protein
array in breast tumors. Correlation analysis within basal-like tumors revealed that
miR-17-5p expression is inversely correlated with the abundance of 15 proteins, among
which are known targets of TGFB (i.e., CAV1, COL6A1 and MAPK14), hypoxia (i.e.,
phosphorylated EGFR, ROPS6KB1 and PDK1), or non-canonical WNT pathways (i.e.,
YAP1 and phosphorylated PRKCA) (Fig. 7a). Next, we examined the correlation between
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the expression of miR-17-5p and signature genes of TGFB, hypoxia, or non-canonical WNT
pathways. The expression data of these signatures were obtained from TCGA database and
analyzed to obtain mean expression values for each tumor samples. As shown in Fig. 7b, the
expression level of miR-17-5p is inversely correlated with the mean expression values of the
signature genes of TGFB, hypoxia, and non-canonical WNT pathways. These correlations
are statistically significant, suggesting that TGFB, hypoxia and non-canonical WNT
pathways are inactivated in tumors with higher miR-17-5p expression.

Discussion

During metastasis process, tumor cells undergo reversible transitions between epithelial and
mesenchymal states [35]. EMT facilitates the execution of early steps in the metastasis
cascade by potentiating invasive migration and apoptotic resistance. Most of the pro-
metastatic genes identified in our meta-analysis have been linked to the EMT process and
three intertwining signaling pathways that are known to activate the EMT program in breast
cancer cells, including TGFB, hypoxia, and non-canonical Wnt signaling pathway. Our
findings provide evidence supporting a role of EMT driven by hypoxia, TGFB, and non-
canonical WNT signaling pathways in metastatic progression of basal-like breast tumors.

Hypoxia is frequently encountered by cells in solid tumors due to insufficient and/or
aberrant blood vessel development. Multiple mechanisms have been proposed for hypoxia-
induced MET in tumor cells, including activation of latent growth factors and cytokines
(e.g., TGFB, EGF, TNFA and TNFSF11) and generation of reactive oxygen species [25,
36]. Release of active TGFBs from tumor stroma is a prominent EMT-promoting event
triggered by hypoxia [36]. Non-canonical Wnt-PCP mediated by WNT11 and RYK is
known to promote metastasis by coordinating cell polarity, protrusive activity, and
directional migration [37-40]. WNT11 was reported to be induced by TGFB [41], providing
a direct link between Wnt-PCP activation and TGFB-mediated EMT. Future studies on the
regulation of pro-metastatic genes by these signaling pathways will advance our
understanding of metastatic progression and provide therapeutic targets.

Most of the metastasis-associated genes exhibit no or low frequency (<10 %) of genomic
alterations in basal-like tumors according to the TCGA database. Only five prometastatic
genes showed copy number gains in more than 10 % of basal-like tumors, with ECM1,
S100A10, THBS3, and LMNA located at 1g21-22 and CAMK1D at 10p13. This observation
suggests that expression of metastasis-associated genes is primarily controlled by epigenetic
mechanisms, consistent with the transient and reversible nature of metastatic events. Three
chromatin modifiers were found to be associated with metastasis, with LAMBTL1 associated
with poor DMFS, whereas MECP2 and WHSC1 associated with better prognosis. In
addition, six transcription factors (EGR1, ELF3, EMX2, HES1, HOXD1, and GLI1) are
associated with poor DMFS, all of which, with the exception of HOXD1, have been linked
to TGFB, hypoxia, or Wnt signaling pathway (Table 1). Whether these transcription factors
play a role in establishing and maintaining the chromatin structures poised for dynamic
transcription regulation during metastasis remain to be examined.
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Besides transcription regulators, miRNASs are increasingly recognized as key regulators of
metastasis [27]. Integrated analysis of expression correlation and predicted interaction of
miRNA-mRNA identified members of three miRNA families (miR-17, miR-200 and
miR-96) as repressors of the pro-metastatic genes in basal-like tumors. Unlike the members
of the miR-200 and miR-96 families that have been reported to inhibit EMT [30, 31],
conflicting results were reported for the role of miRNAs encoded by MIR17HG in metastatic
progression of breast cancer [32, 42, 43]. Our experiment results provide evidence
supporting a role of miR-17-5p in repressing metastasis of breast cancer.

MY C is the predominant transcription activator of MIR17HG [44-46]. Consistently, the
expression levels of MIR1L7HG and MYC were found to be closely correlated in breast
tumors (Fig. 8a). Since MY C universally enhances transcription of all active genes in a
given cell [47], genes downregulated by MYC are likely targets of transcriptional repressors
or miRNAs activated by MYC. Intriguingly, we found that the expression of MYC is
inversely correlated with that of the pro-metastatic genes containing target sites of
MIR17HG-miRNAs (Fig. 8b). Therefore, we propose that MIR17HG-miRNAs play a role
in sustaining MY C-driven proliferative state by targeting genes/pathways involved in EMT,
a process that can be activated by a various types of stress through TGFB activation and is
intrinsically linked to MY C inactivation and cell growth arrest. This is in line with previous
observations that MY C suppresses cell invasive migration and tumor metastasis, whereas
TGFB and hypoxia inactivate MY C [48, 49], Taken together, these findings implicate a
regulatory network, composed of MYC, MIR17HG, and TGFB pathway, in governing cell
phenotypic switch between proliferative and mesenchymal states (Fig. 8c). Downregulation
of MIRL7HG expression and consequently de-repression of TGFB pathway may be a
prerequisite for onset of EMT and metastasis.

Functional analysis of the anti-metastatic genes revealed that downregulation of immune
response, especially inactivation of interferon signaling pathway, plays a role in metastatic
progression. This observation is consistent with a previous report that higher expression of
immune response genes is associated with better prognosis of ESR1/ ERBB2-negative breast
tumors [50, 51]. In addition, a recent study showed that inactivation of type 1 IFN signaling
pathway in tumor cells promoted, whereas activation of the signaling pathway by IFN
treatment suppressed, metastasis of breast tumor xenografts [52]. The suppression of
intrinsic IFN signaling pathway of tumor cells may enable metastasis by restricting
immunosurveillance during tumor cells circulation and homing in foreign organs. Additional
studies are warranted to define the molecular events responsible for IFN pathway
inactivation.

In summary, we identified a panel of genes significantly associated with DMFS of patients
with basal-like tumors. The pro-metastatic genes are functionally linked to TGFB, hypoxia,
and non-canonical WNT signaling pathways and EMT process, whereas the anti-metastatic
genes linked to IFN signaling pathway. In addition, members of three miRNA families were
identified as potential regulators of the pro-metastatic genes. The novel anti-metastatic
function of one of these mMiRNAs, miR-17-5p, was confirmed by in vitro and in vivo
experiments. These metastasis- associated genes have prognostic values and functional
implications and can be exploited as potential therapeutic targets for metastasis prevention.
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Materials and methods

Cell culture and stable transfection

MDA-MB-231 and MCF7 cells (ATCC, Manassas, VA, USA) were maintained in MEM
medium supplemented with 100 units/ml penicillin, 200 pg/ml streptomycin, and 10 % fetal
bovine serum. To facilitate tumor imaging, cells were transduced with lentivirus (pEZX-
AMO03, GeneCopoeia) and selected in medium contained Hygromycin B (200 pg/ml) to
stably express mCherry. The mi- Arrest inhibitor of has-miR-17-5p encoded by a lentiviral
vector that co-expresses mCherry (HmiR-AN0230-AMO03, GeneCopoeia, Rockville, MD,
USA) was used to establish sublines defective in miR-17-5p activity.

Primary tumor growth and lung metastasis in orthotopic xenograft model

Tumor cells (5 x 10°, 2.5 x 10°, and 1 x 10° for MDA-MB- 231, MB231-LM and MCF?7,
respectively) were surgically inoculated into the 4th inguinal mammary glands of 4-week
old female NSG mice (The Jackson Laboratory). To monitor primary tumor growth, mice
were inspected twice a week for tumor appearance by manual palpation. Primary tumor
sizes were measured by digital calipers and tumor volume was calculated as: Volume =
(width? x - length)/2. To examine metastases in lungs, the dorsal surface of the left lung lobe
was imaged using a fluorescent microscope at 10x magnification (NIKON, CFI60), and
metastatic foci of mCherry expressing cells were quantified using ImageJ program [53]. The
presence of tumor cells in the left lobes was further confirmed by Hematoxylin and Eosin
(H&E) staining of formalin-fixed lung sections (10 uM thick) as described previously [28].
All animal studies adhered to protocols approved by the Institutional Animal Care and Use
Committee of University of Tennessee Health Science Center.

Intratumoral administration of miR-17-5p mimic

When xenografts of MB231-LM cells reached a volume of ~150 mm3, we injected directly
in the tumor mass 1 nmol of miR-17-5p mimic or control RNA oligonucleotides (HM10264
or HMCO0002, respectively; Sigma-Aldrich), formulated as neutral lipid-based liposome by
using the MaxSuppressor In Vivo RNA-LANCET Il reagent (Bioo Scientific, Austin, TX,
USA). Gene expression-treated tumors and lung metastasis were examined at 7-day and 3-
week post-treatment, respectively.

Quantitation of MRNA and miRNA expression using gPCR

Total RNA was prepared using TRIzol (Life Technologies). mMRNAs were converted to
cDNA by using iScript cDNA Synthesis Kits (BioRad, Hercules, CA, USA). gPCR was
performed on the CFX96™ Real-Time PCR Detection System using SYBR Green supermix
(BioRad). Expression data of mMRNA were normalized to RPL13A using the 272ACT method.
Primer sequences for mMRNAs were obtained from PrimerBank [54].

Migration, invasion, and viability assays

For scratch wound healing assay, confluent cells were put in medium supplemented with 2
% FBS, wound scratches on cell monolayer were generated by using cell combs (Millpore)
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and imaged at 0 and 20 h. Invasive and cell viability assays were performed as described
previously [28].

Statistical analysis

Kaplan—Meier analyses were conducted to identify genes significantly associated with
DMFS of patients with basal-like tumors by using two meta-datasets (GOBO and Kaplan—
Meier plotter [22, 23]), in which the molecular subtypes of tumors were defined by the
PAMDGO classifier [2]. The original datasets included in GOBO and Kaplan—Meier plotter
that contain expression data and clinical information of basal-like tumors were listed in
Supplementary Table 2. Gene function annotation and enrichment analysis were performed
by using QIAGEN’s IPA program and molecular signatures database (MSigDB) [34].
miRNA target site mapping was performed using IPA, TargetScan, DIANA-microT- CDS,
and miRDB programs [55, 56]. For correlation analysis with genesets, mean expression
value of all genes included in a given geneset was used. The expression data of breast tumor
samples used for miRNA-mRNA correlation analysis were retrieved from TCGA and GEO
(Gene Expression Omnibus, GSE28884). Correlation analysis of expression data and
statistical analysis of experiment data were performed using GraphPad Prism 5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Kaplan—Meier plots of pro-metastatic genes in different subtypes of breast tumors.
Collectively as genesets, mean expression values of the pro- and anti-metastatic genes were
used to generate Kaplan—Meier plots by using the GOBO program
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EGR1
GBET
PPL

Upstream regulators of metastasis-associated genes. a Anti-metastatic genes are
predominately regulated by interferon, whereas pro-metastatic genes are regulated by
transcription factors involved in TGFB and Hypoxia signaling pathways. The top 10
regulatory transcription factors of pro-metastatic genes are presented. b Inverse correlation
of pro-metastatic genes and miRNAs. The heatmap displays the Pearson correlation
coefficients of each pairwise combination of mMRNA and/or miRNA. Expression Z-scores of
mMRNAs and miRNAs in basal-like breast tumors (n = 81) were retrieved from the TCGA
database and used to calculate Pearson correlation coefficient
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Functional annotation links pro-metastatic genes to epithelial- mesenchymal transition
(EMT) process and TGFB, hypoxia and noncanonical Wnt signaling pathways. Functional
annotation was conducted by using the ingenuity pathway analysis program (IPA) and gene
set enrichment analysis (GSEA) based on molecular signatures database (MSigDB). Genes

involved in EMT are marked in blue
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Fig. 4.

E(?topic expression of miArrest inhibitor of has-miR-17-5p (miR-17IN) in MDA-MB-231
cells (MB231-17IN) resulted in reduced binding to RNA-induced silencing complex (RISC)
and elevated expression of target mMRNAs. a miR-17IN reduced RISC binding of mRNAs
that harbor conserved target sites in their 3’-UTRs with exact match to positions 2-8 of the
mature miR-17-5p. RISC binding was examined by AGO2-immunoprecipitation (AGO2-IP)
followed by gPCR analysis (upper panel). b miR-17IN increased expression of miR-17-5p
target genes at mRNA and protein levels. Expression levels of mRNAs and proteins were
examined by qPCR and immunoblotting analysis, respectively. The average fold changes of
protein levels from two independent experiments were indicated. ¢ Effect of ectopic
expression of miR-17IN on RISC binding and expression of mMRNAs that are encoded by
pro-metastatic genes and contain miR-17 target sites in their 3-UTRs. TGFBR2, a validated
miR-17 target, is included as a positive control
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Fig. 5.
Ectopic expression of miArrest inhibitor of has-miR-17-5p (miR-17IN) enhanced metastatic

potential of MDA-MB-231 cells. a miR-17IN increased cell mobility as determined by
wound scratch healing assay. Cells were imaged at 0 and 20 h after scratch wounds were
generated. b miR-17IN enhanced cell invasion as determined by transwell invasion assay
with Matrigel-coated Boyden Chambers. ¢ miR-171IN protected cells against apoptosis
induced by glucose depletion (6 h). d miR-17IN increased number of viable cell after 4-day
suspension culture
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Fig. 6.

m?R-l?-Sp suppresses lung metastasis of orthotopic xenografts. a Growth curves of primary
tumors generated from cells expressing miR-17IN (MB231-17IN) or control cells (MB231-
C). The results were presented as mean + SE (n = 10). b Metastatic foci of mCherry
expressing cells on the dorsal surface of the left lung lobe from mice inoculated with
MB231-17IN or control MB231-C cells. The presence of tumor cells in lungs was visualized
by H&E staining of formalin-fixed lung section (10 pM). The lung area occupied by
metastases foci were quantified using ImageJ program. ¢ Metastatic foci of mCherry
expressing cells on the dorsal surface of the left lung lobe from mice inoculated with
MB231-LM cells and received intratumoral injection of miR-17-5p mimic or control RNA
oligonucleotides. The lung area occupied by metastases foci were quantified using ImageJ
program. d Gene expression levels of primary tumors 7-day after treatment with miR-17-5p
mimic or control RNA oligonucleotides
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Fig. 7.

Cc?rrelation between expression of miR-17-5p and activation status of TGFB, hypoxia and
non-canonical WNT pathways. a miR- 17-5p expression is inversely correlated with
abundance of proteins/ phosphoproteins known to be targeted by TGFB (CAV1, COL6A1
and MAPK14), hypoxia (phosphorylated EGFR, RPS6KB1 and PDK1) or non-canonical
WNT pathways (YAPL and phosphorylated PRKCA). Expression data of proteins/
phosphoproteins in basal-like breast tumors, measured by reverse phase protein array, were
retrieved from the TCGA database. B. miR-17-5p expression is inversely correlated with
mean expression values of signature genes TGFB, hypoxia and non-canonical WNT
pathways. Expression data of previously defined signature genes of these pathways in basal-
like tumors were retrieved from the TCGA database
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Correlation between expression of MYC and pro-metastatic genes targeted by MIR17HG-
miRNAs. a Positive correlation between expression of MYC and MIRL7HG in basal-like
breast tumors (TCGA database, n = 81). b Inverse correlation between expression of MYC
and pro-metastatic genes potentially targeted by MIR17HG-miRNAs in basal-like breast
tumors. Mean expression values of targets of MIR17HG-miRNAs in basal-like tumors
(TCGA database, n = 81) were used for the correlation analysis. ¢ A proposed model to
depicture a regulatory network composed of MYC, MIR17HG, TGFB, and hypoxia
pathways in governing metastatic progression of basal-like breast tumors
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