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Granulocyte-macrophage colony-stimulating factor
(GM-CSF) and interleukin-3 (IL-3) are hematopoietic
growth factors which stimulate the proliferation and
differentiation of myeloid progenitor cells. There is a
considerable degree of overlap in target cell specificity
and the functional effects of GM-CSF and IL-3. GM-CSF
and IL-3 induce a nearly identical pattern of protein-
tyrosine phosphorylation in certain cell lines, although
their receptors have no kinase domains. Furthermore,
their receptor complexes share one subunit (designated
as (3). These observations raise the possibility that
GM-CSF and IL-3 have a common signaling pathway.
Here we show that both GM-CSF and IL-3 induce
tyrosine phosphorylation and kinase activity of the
c-fpsifes proto-oncogene product (p92°/**), a non-
receptor protein-tyrosine kinase, in a human erythro-
leukemia cell line, TF-1, which requires GM-CSF or IL-3
for growth. In addition, GM-CSF induces physical
association between p92/* and the 3 chain of the
GM-CSF receptor. p92° is therefore a possible signal
transducer of several hematopoietic growth factors
including GM-CSF and IL-3 through the common 3
chain.
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Introduction

Granulocyte-macrophage colony-stimulating factor (GM-
CSF) and interleukin-3 (IL-3) are potent hematopoietic
growth factors which stimulate the proliferation and
differentiation of various lineages of hematopoietic cells
including multipotent stem cells and granulocyte- and
macrophage-progenitor cells (Curtis et al., 1991; Gasson,
1991). The high-affinity receptors for GM-CSF and IL-3
are composed of two subunits designated as o« and 3
(Hayashida ez al., 1990; Kitamura ez al., 1991). Although
the a chains are specific for each factor (Gearing et al.,
1989; Kitamura et al., 1991), the 8 chain is shared by the
two receptors (Kitamura et al., 1991). It is now assumed
that it is the 3 chain that is essential for transducing GM-CSF
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and IL-3 growth signals (Lopez et al., 1992; Sakamaki
et al., 1992).

The o chains of the GM-CSF and IL-3 receptors and the
common {3 chain are all members of the cytokine receptor
superfamily which have no homology with known enzymes
involved in receptor-mediated signal transduction such as
protein-tyrosine kinases, protein-serine/threonine kinases or
GTPase activating proteins (Bazan, 1989; D’Andrea et al.,
1989). The molecular events that are activated following the
binding of GM-CSF and IL-3 to cell surface receptors are
still unknown. However, it has been shown that activation
of cytoplasmic protein-tyrosine kinases is crucial in trans-
mitting intracellular signals through cell surface receptors
that contain no kinase domains. For instance, CD4/CD8
(Rudd et al., 1988; Veillette er al., 1988), T-cell antigen
receptor (Samelson eral., 1990) and B-cell surface
immunoglobulin M (Yamanashi et al., 1990) are associated
with the src-family protein-tyrosine kinases, p56*, p595"
and p56™", respectively, and these kinases are considered
to be implicated in their signal transduction. Notably, the
interleukin-2 (IL-2) receptor 3 chain, a member of the
cytokine receptor superfamily, is associated with p56'*
(Hatakeyama et al., 1991). GM-CSF and IL-3 also induce
rapid tyrosine-phosphorylation of cellular proteins (Koyasu
et al., 1987; Isfort et al., 1988; Morla et al., 1988; Sorensen
et al., 1989; Kanakura et al., 1990; Quelle et al., 1992).
Therefore, receptor activation by the ligands should induce
tyrosine-kinase activity of unidentified cellular protein(s).
It seems reasonable to expect that that some protein-tyrosine
kinase(s) may also be associated with the GM-CSF and IL-3
receptors.

A number of non-receptor protein-tyrosine kinases are
expressed in hematopoietic cells. Among these, the c-fps/fes
proto-oncogene product is found to be expressed exclusively
in myeloid progenitor cells (Feldman et al., 1985;
MacDonald et al., 1985). Unlike the src-related protein-
tyrosine kinases, c-fps/fes encodes a larger product of 92 kDa
in mammals and lacks post-translational myristylation at its
N-terminus (Roebroek et al., 1985; Alcalay et al., 1990).
The biological function of c-fps/fes in hematopoietic cells
still remains unknown.

Here we show that both GM-CSF and IL-3 induce tyrosine
phosphorylation and kinase activity of the c-fps/fes product
(p92“'f"‘) in a human erythroleukemia cell line, TF-1. In
addition, we demonstrate that GM-CSF induces physical
association between p92°#* and the 8 chain of the GM-CSF
receptor (GM-CSFRR).

Results

GM-CSF and IL-3 induce tyrosine phosphorylation of
p92 in a time- and dose-dependent manner

TF-1 cells require GM-CSF or IL-3 for growth, and they
die within several days when deprived of GM-CSF and IL-3,
even in medium supplemented with fetal calf serum
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Fig. 1. (A) Western blot analysis of phosphotyrosine-containing proteins (lanes 1—4) and p92°#** (lanes 4—8) in GM-CSF- or IL-3-treated TF-1
cells. Lane 4 was cut in the middle of the lane; the left half was immunoblotted with anti-Ptyr (PY20) and the right half with anti-p92°'f“ (F115).
(B) Time dependency of protein-tyrosine phosphorylation in TF-1 cells. Lysates of TF-1 cells treated with 10 ng/ml GM-CSF for the indicated times
were analyzed by Western blotting with anti-Ptyr (PY20). (C) Dose dependency of protein-tyrosine phosphorylation in TF-1 cells. Lysates of TF-1
cells treated with GM-CSF at the indicated concentrations for 5 min were analyzed by Western blotting with anti-Ptyr (PY20).

(Kitamura et al., 1989). We analyzed tyrosine-phosphory-
lated proteins in TF-1 cells treated with GM-CSF or IL-3.
As shown in Figure 1A, a 92 kDa protein (p92) was tyrosine-
phosphorylated upon the addition of GM-CSF and IL-3. p92
was tyrosine-phosphorylated within 1 min of GM-CSF
treatment of the cells at 37°C, with maximum levels of
phosphorylation attained at 5 min, and dephosphorylated
after 30 min (Figure 1B). Tyrosine phosphorylation of p92
was dose-dependent and the phosphorylation occurred at
physiological concentrations of GM-CSF (Figure 1C). We
obtained similar results when cells were treated with IL-3
(data not shown).

To investigate whether p92 is any of the known tyrosine
kinases, we compared the mobility of p92 with that of
p92°/. On Western blot analysis, the mobility of p92
probed with a mouse monoclonal anti-phosphotyrosine
antibody (anti-Ptyr) PY20 was identical to that of p92°%
probed with a rat monoclonal anti-p92°#* antibody F115
(Veronese et al., 1982) (Figure 1A). Although a distinct
94 kDa protein (p94°%"), antigenically related to p92°#,
has been identified in a number of hematopoietic and non-
hematopoietic human cells (MacDonald et al., 1985;
Feldman et al., 1986), F115 antibody did not recognize
p94°*" (data not shown).

GM-CSF and IL-3 induce tyrosine phosphorylation and
kinase activity of p92°'e*

To determine whether p92 is p92°*°, we purified p92°%
immunologically using the antibody F115 and tested the
phosphorylation level of the protein by Western blotting with
the antibody PY20. p92°%S was induced to be tyrosine-
phosphorylated by treatment with GM-CSF or IL-3
(Figure 2), whereas the amount of p92°'f“ was not affected
(Figure 1A).

We then evaluated the effect of GM-CSF and IL-3 on the
kinase activity of p92°" in TF-1 cells. The factor-starved
cells were incubated for 5 min in the presence or absence
of GM-CSF or IL-3. The cell lysates were subjected to
immunoprecipitation with polyclonal anti-p92°%* antibody
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and the in vitro immune-complex kinase assay detected
phosphorylation of p92°% induced by GM-CSF or IL-3
(Figure 3). v

These results show that GM-CSF and IL-3 induced
tyrosine phosphorylation and kinase activity of p92°** in
TF-1 cells. As shown in Figure 3, several bands other than
that corresponding to p92°# appear to be phosphorylated
in response to GM-CSF and IL-3. It is presently unknown
whether these bands represent specific proteins associated
with p92°# or just non-specific phosphorylated substrates.

Physical association between GM-CSFR3 and p92°s
GM-CSF binds to specific cell-surface receptors consisting
of two subunits designated o and 3 (Chiba et al., 1990a;
Hayashida et al., 1990). The « chain binds to GM-CSF with
low affinity, whereas the § chain does not bind to GM-CSF
by itself. The « and 3 chains together form the high-affinity
GM-CSF receptor. It is now assumed that GM-CSFRg
transmits the signal for proliferation (Lopez et al., 1992;
Sakamaki er al., 1992). We then looked to ascertain the
physical association between GM-CSFR@ and p92°7*s.
Factor-starved TF-1 cells were incubated for 5 min in the
presence or absence of GM-CSF or IL-3. The cell lysates
were mixed with polyclonal anti-GM-CSFRg antibody and
the immunoprecipitates were immunoblotted with PY20
antibody. The § chain itself was revealed to be tyrosine-
phosphorylated, indicating the direct interaction between the
B chain and certain protein-tyrosine kinase(s) (Figure 4A).
In addition, p92 was co-immunprecipitated with GM-CSFRS3
by treatment with GM-CSF and IL-3 (Figure 4A). The
immunoprecipitates with anti-GM-CSFRB were then
immunoblotted with F115 antibody (Figure 4B). p92°#
was shown to be co-immunoprecipitated with GM-CSFR@3
by treatment with GM-CSF, whereas it could not be co-
immunoprecipitated with GM-CSFRg without this treatment.
This result suggests that binding of the ligand to the GM-CSF
receptor induces physical association between GM-CSFR(3
and p92°*. The major bands in Figure 4A and B with
molecular weights of ~55 kDa represent the immuno-
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Fig. 2. GM-CSF and IL-3 induce tyrosine phosphorylation of p92°7,
Lysates of untreated (lane 1), GM-CSF-treated (lanes 2 and 3) and
IL-3-treated (lane 4) TF-1 cells were mixed with anti-p92°7¢s (F115)
(lanes 1, 3 and 4) or normal serum (lane 2). The immunoprecipitates
were collected with protein A —Sepharose, subjected to 7%
SDS—PAGE and immunoblotted with anti-Ptyr (PY20).

globulin heavy chain detected due to the cross-reaction of
secondary alkaline phosphatase-conjugated antibodies.

To analyze conversely whether GM-CSFRS could be
co-immunoprecipitated with anti-p92°%* antibody, we
cross-linked radiolabeled GM-CSF to its receptor on TF-1
cells in order to label the GM-CSF receptor. If the 3 chain
is associated with p92°'f“, it should be detected on
autoradiography when the cross-linked sample is subjected
to immunoprecipitation with an anti-p92°/* antibody
(Figure 5SA). TF-1 cells showed two cross-linked proteins
at 95 and 150 kDa on autoradiography (Figure 5B, lane 1).
Since the molecular weight of human GM-CSF is 15 kDa,
the 95 kDa band represents the complex of GM-CSF and
the GM-CSF receptor « chain (80 kDa), and the 150 kDa
band represents the complex of GM-CSF and GM-CSFRS
(135 kDa) (Chiba er al., 1990b). When the cross-linked
sample was subjected to immunoprecipitation with F115
antibody, only the 3 chain was detected (Figure 5B, lane 4).
As a control, when the cross-linked sample was subjected
to immunoprecipitation with anti-GM-CSF antibody, both
the o and 3 chains were detected (Figure 5B, lane 3).

From these observations, we conclude that p92<# is
physically associated with the § chain of the GM-CSF
receptor and that this association is induced by ligand
binding. It is likely that p92°/* is associated with the
chain by treatment with IL-3 as well, since the two receptors
are considered to share the 8 chain (Kitamura et al., 1991).

c-fps/fes implicated in the signal transduction of GM-CSF and IL-3
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Fig. 3. The effect of GM-CSF and IL-3 on the kinase activity of
p92°7%s . Immunoprecipitates with polyclonal anti-p92¢** antibody from
lysates of untreated (lane 1), GM-CSF-treated (lane 2) and IL-3-treated
(lane 3) TF-1 cells were subjected to an in vitro kinase assay.

Discussion

In this study, we have demonstrated that p92°%* is activated
by stimulation with GM-CSF and IL-3, and that p92°%*
becomes associated with GM-CSFRS upon stimulation with
GM-CSF. A number of investigators have noted that GM-
CSF and IL-3 induce tyrosine phosphorylation of a protein,
or proteins, of ~90—100 kDa (Morla ez al., 1988; Sorensen
et al., 1989; Kanakura et al., 1990; Quelle er al., 1992).
The identity of these phosphotyrosine-containing proteins is
a great concern in the field of cytokine research. We have
shown that one such protein is p92°*. The biological
function of the hematopoietic cell-specific c-fps/fes protein-
tyrosine kinase has been searched for many years. The data
in this paper provide a possible clue as to the function of
c-fpsifes in hematopoietic cells. Similarly, the mechanism
by which cytokine receptors transduce signals is an important
issue. We have identified the c-fps/fes product as a protein-
tyrosine kinase implicated in a signaling pathway triggered
by GM-CSF and IL-3. However, it should be noted that the
c-fpsi/fes product may be only one of the protein-tyrosine
kinases involved in the signal transduction of GM-CSF and
IL-3, like IL-2 which can regulate the activity of more than
one member of protein-tyrosine kinases (p56'* and p56°™)
(Torigoe et al., 1992).

Our results are consistent with previous reports which
suggested the possible involvement of p92°*S in the
signaling pathway in myeloid cells. First, expression of
p92°#s at relatively high levels is restricted to human
hematopoietic cell lineages including granulocyte —macro-
phage progenitor cells and erythroleukemia cell lines which
retain the capacity to differentiate into erythroid or
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Fig. 4. Co-immunoprecipitation of p92°#* with anti-GM-CSFRS antibody. Cell lysates of TF-1 treated or untreated with GM-CSF or IL-3 were
subjected to immunoprecipitation with anti-GM-CSFRS antibody and the immunoprecipitates were immunoblotted with anti-Ptyr (PY20) (A) and anti-
p92°'f“ (F115) (B). (A) Lysates of untreated (lane 1), GM-CSF-treated (lane 2) and IL-3-treated (lane 3) TF-1 cells were mixed with a polyclonal
anti-GM-CSFRg antibody. Immunoprecipitates were collected with protein A —Sepharose, subjected to SDS—PAGE and immunoblotted with PY20
antibody. (B) Untreated (lane 1) or GM-CSF-treated (lanes 2—4) TF-1 cells were lysed in lysis buffer (20 mM Tris—HCI pH 8.0, 1% digitonin,

50 mM NaF, 500 U/ml aprotinin, 1 mM PMSF, 2 mM EDTA and 1 mM Na;VO,) and subjected to immunoprecipitation with a polyclonal anti-
GM-CSFR@ antibody. The immune complexes were collected using protein A —Sepharose, and the associated proteins were eluted with RIPA

(50 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% deoxycholic acid and 0.1% SDS), subjected to SDS—PAGE and immunoblotted with F115
antibody. A total lysate of GM-CSF-treated TF-1 cells was also applied (lane 4).

macrophage-like cells (Feldman et al., 1985; MacDonald
et al., 1985), and the distribution of the c-fps/fes expression
is very similar to that of the GM-CSF receptor. Second,
chicken myeloid stem cells infected with retroviruses
carrying the v-fps oncogene do not require exogenous growth
factors for in vitro differentiation (Carmier and Samarut,
1986). Third, the expression of c-fps/fes, its tyrosine kinase
activity and the binding of GM-CSF are coordinately
increased in human myeloid leukemia HL-60 cells when they
are induced by dimethyl sulfoxide to undergo granulocytic
differentiation (Smithgall et al., 1988). Finally, human
erythroleukemia K562 cells, which do not express the
c-fps/fes gene and also do not respond to GM-CSF, acquire
the ability to undergo myeloid differentiation when trans-
fected with the human c-fps/fes gene (Yu et al., 1989).

We have also shown that GM-CSF and IL-3 induce
tyrosine phosphorylation of the (8 chain of their receptors.
It has been reported that the IL-2 receptor 8 chain
(Hatakeyama et al., 1991) and the erythropoietin receptor
(Dusanter-Fourt et al., 1992) are also tyrosine-phosphory-
lated by ligand binding. For the IL-2 receptor, the 3 chain
is assumed to be phosphorylated by p56'* which associates
with the § chain in its tyrosine-kinase domain (Hatakeyama
et al., 1991). Whether the 8 chain of the GM-CSF and IL-3
receptors is phosphorylated by the associated p92°# is
presently unknown.
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The c-fps/fes proto-oncogene has been captured many
times from acutely transforming RNA tumor viruses (Snyder
and Theilen, 1969; Gardner et al., 1970; Hanafusa et al.,
1980; Lee et al., 1980). All of these viruses involve the
N-terminal modification of the c-fps/fes product by fusion
with viral gag sequences (Hampe et al., 1982; Shibuya and
Hanafusa, 1982). This fusion with gag at the N-terminus
results in activation of its enzymatic activity and in
unmasking of its oncogenic potential, suggesting that the
N-terminal region is a regulatory domain which may interact
with certain cellular protein(s) (Foster et al., 1985; Feldman
et al., 1987). It is therefore possible that the N-terminal
region of p92°% is used for the association with
GM-CSFRB and that p92°% then becomes activated.
Further experiments are needed to elucidate the site of
interaction.

It has been shown that the receptor for interleukin-5 (IL-5)
also shares the same 3 chain (Tavernier et al., 1991), and,
therefore, it is likely that p92°/ also becomes associated
with the § chain upon stimulation with IL-5 in cells
expressing the IL-5 receptor. If this is the case, expression
of the & chain of each receptor may determine the specificity
of response to a growth factor. Our observations, combined
with previous experimental evidence, suggest an involvement
of the c-fps/fes product in a signaling system for GM-CSF,
IL-3 and IL-5 through their receptors, common 3 chain.
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SOLUBILIZATION

Fiz%. 5. Co-immunoprecipitation of GM-CSFR3 with anti-p92°/* antibody. (A) Affinity labeling of a cell surface receptor by '2I-labeled GM-CSF.
['®IIGM-CSF is cross-linked to the & or § chain of the GM-CSF receptor. If the § chain is associated with p92°**, it can be detected on
autoradiography when the cross-linked sample is subjected to immunoprecipitation with an anti-p92°#¢* antibody. (B) The 8 chain was co-immuno-
precipitated with anti-p92°/* (F115). The cross-linked samples were mixed with normal rabbit serum (lane 2), polyclonal anti-GM-CSF antibody
(lane 3) or F115 antibody (lane 4). The immunoprecipitates were collected using protein A —Sepharose and then subjected to SDS—PAGE and
autoradiography. A total lysate of the cross-linked sample was also applied (lane 1).

Materials and methods

Cell lines and growth factors

TF-1 cells were maintained in RPMI medium 1640 containing 10% fetal
calf serum (FCS) and 5 ng/ml GM-CSF. Recombinant human GM-CSF
was supplied by Kirin Brewery Co. Ltd (Tokyo, Japan). Recombinant human
IL-3 was provided by Schering Plough Co. Ltd. (Osaka, Japan).

Antibodies
Polyclonal anti-p92°/%* antibody was prepared from serum of a rabbit
immunized against a synthetic peptide which was conjugated with keyhole
limpet hemocyanin (KLH) (Pierce). The peptide sequence was LLLQD-
DRHSTSSSEQEREGG, corresponding to amino acid residues 424 —443
of p92°#es, an upstream region of the SH2 domain (Alcalay er al., 1990).

Polyclonal anti-GM-CSFRS antibody was prepared from serum of a rabbit
immunized against a synthetic peptide which was conjugated with KLH.
The peptide sequence was ELPPIEGRSPRSPRNNPVPPE corresponding
to amino acid residues 769 —789 of KH97, the cytoplasmic domain near
the C-terminus (Hayashida ez al., 1990).

Polyclonal anti-GM-CSF antibody was prepared from serum of a rabbit
immunized against recombinant human GM-CSF (Chiba er al., 1990b).

F115 antibody is a rat monoclonal anti-p92°7%s antibody (Oncogene
Science). F115 antibody recognizes a region within the kinase domain and
it blocks the kinase activity (Veronese et al., 1982).

PY20 antibody is a mouse monoclonal anti-phosphotyrosine antibody
(ICN).

Preparation of cell lysates

Cells were incubated in RPMI medium 1640 containing 0.1% bovine serum
albumin (BSA) without FCS or growth factors for 8 — 15 h prior to stimulation
with growth factors and then resuspended in RPMI medium 1640 containing
100 pM Na;VO,. The cells were treated with 10 ng/ml GM-CSF or
10 ng/ml IL-3 for 5 min at 37°C unless otherwise specified and then lysed
at 4°C in lysis buffer [20 mM Tris—HCI pH 8.0, 150 mM NaCl, 1%
Nonidet P40 (NP-40), 1 mM phenylmethylsulfonyl fluoride (PMSF),
500 U/ml aprotinin, 2 mM EDTA, 50 mM NaF and 1 mM Na3;VO,].
Unsolubilized materials were removed by centrifugation for 10 min at
15 000 g at 4°C.

Immunoprecipitation

To immunoprecipitate p92°/, cell lysates were mixed with a polyclonal
anti-p92°7%s antibody, or F115 antibody (rat IgM) with a secondary rabbit
anti-rat IgM (Fc) antibody (Nordic). To immunoprecipitate GM-CSFRg,
cell lysates were mixed with polyclonal anti-GM-CSFR@ antibody. The
immune complexes were collected using protein A —Sepharose (Sigma).
All of the immunoprecipitates were intensively washed with the lysis buffer
before resuspension in Laemmli’s sample buffer.

Western blotting

Samples were subjected to 7% SDS—PAGE and electrotransferred onto
polyvinylidene difluoride (PVDF) filters (Millipore). Filters were blocked
with buffer containing 10 mM Tris—HCI pH 8.0, 150 mM NaCl, 3% BSA
and 0.05% Triton X-100. For Western blotting for phosphotyrosine-
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containing proteins, filters were incubated with PY20 antibody and then
with goat alkaline phosphatase-conjugated anti-mouse IgG (Fc) antibody
(Promega). For Western blotting for p92°7*, filters were sequentially
incubated with F115 antibody (rat IgM), rabbit anti-rat IgM (Fc) antibody
(Nordic) and an alkaline phosphatase-conjugated goat anti-rabbit IgG (Fc)
antibody (Promega). After each incubation, filters were washed four times
in the buffer containing 10 mM Tris—HCI pH 8.0, 150 mM NaCl and 0.05%
Triton X-100. The color reaction was performed using nitro blue tetrazolium
(NBT) and 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) (Promega).

Kinase assays

Cell lysates were mixed with polyclonal anti-p92°/ antibody and immune
complexes were collected using protein A —Sepharose and suspended in
kinase buffer (25 mM HEPES pH 7.5, 0.1% NP-40 and 3 mM MnCl,).
After addition of 10 uCi [y->2P] ATP, the mixture was incubated for 15
min at room temperature and subjected to 7% SDS—PAGE. Phosphorylated
proteins were detected by Fujix BAS 200 Bio-image Analyzer (Fuji Film
Co. Ltd).

Radioiodination and cross-linking

Radioiodination of GM-CSF was performed using Bolton —Hunter reagent
(ICN) as described previously (Chiba et al., 1990a). The binding
characteristics and biological activities of ['ZIJGM-CSF were fully
retained.

Factor-starved TF-1 cells were incubated in binding buffer (o-modified
Dulbecco’s medium, 50 mM HEPES pH 7.4, 0.1% BSA and 0.02%
NaN;) with 3 nM [25])GM-CSF for 90 min on ice. After binding, the cells
were pelleted down at 1500 g and resuspended in the same volume of
phosphate-buffered saline; disuccinimidyl suberate (DSS) was immediately
added at a final concentration of 400 uM. After a 20 min incubation at 4°C,
the reaction - 2z quenched by adding quenching buffer (10 mM Tris pH 7.5,
1 mM EDTA and 150 mM NaCl). The cells were centrifuged at 12 000 g
for 30 s at 4°C and resuspended in lysis buffer (50 mM HEPES pH 7.4,
1% Triton X-100, 1 mM PMSF, 200 U/ml aprotinin, 1 mM EDTA, 50 mM
NaF and 1 mM Na;VO,). After a 20 min incubation on ice, the detergent-
soluble fractions were separated by centrifugation at 12 000 g for 10 min
at 4°C.
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