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Abstract

Purpose of review—Although insulin is life-saving an sustaining for those with Type 1

diabetes (T1D) curing the disease will be much more complex than simple replacement of this

hormone. T1D is be an autoimmune disease orchestrated by T cells, and includes many arms of

the immune response. Tremendous effort has gone into understanding its underlying immune,

genetic and environmental causes, and this progress has led to immunologically-based clinical

trials in T1D. This review will focus primarily on the clinical trials of the past decade that have

attempted to translate these fundamental findings.

Recent findings—It is known that powerful, non-specific immune suppressants can temporarily

slow the course of newly diagnosed T1D, yet are too toxic for long-term use, especially in

children. Recent clinical trials to reverse T1D have used newly developed therapies which target

specific components of the immune process believed to be involved with T1D. Although well

justified and designed, no recent approach has resulted in clinical remission and few have had any

effect on disease course.

Summary—Advances in our fundamental understanding of how the human diabetes immune

response is activated and regulated coupled with lessons that have been learnt from the most

recent era of completed trials are guiding us toward development of more effective, multipronged

therapies to ablate diabetes autoimmunity, restore immune tolerance, preserve beta cells, and,

ultimately, improve the lives of patients with T1D.
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Introduction

Type 1 diabetes (T1D) affects up to 3 million North Americans, is primarily a disease of

childhood, and is increasing in incidence, especially in young children.(1-3) It is an
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autoimmune disease specific for the insulin-producing beta cells in the pancreas.(4)

Generally, all, or nearly all, beta cells are destroyed and individuals are left with the inability

to produce insulin, with life-threatening consequences. Insulin, discovered almost 100 years

ago, is life-saving but is required daily and even with the best-managed regimens, T1D

patients have increased risks for morbidity and mortality, reaffirming that insulin is not a

cure for this disease.(4, 5)

Steady progress since the 1970s has led to the recognition that T1D is an autoimmune

disease with an underlying genetic component and one or more unidentified environmental

triggers.(6-9) The current paradigm for initiation of T1D is that genetically susceptible

individuals encounter an environmental trigger that activates the beta-cell autoimmune

response, which expands over months or years and results in near-total beta cell loss.(10-12)

Recent studies have also suggested that individuals prone to T1D have heightened markers

of beta cell stress, although it is uncertain if these reflect inherent defects with repair of

cellular damage or are due to excess metabolic demands.(13, 14) It remains a possibility that

depending on the underlying genetics, different individuals may be susceptible to different

triggers.(15) The event or antigen that incites T1D has remained elusive, and it is currently

not possible to identify individuals prior to the onset of beta cell autoimmunity.

One of the significant successes in T1D over the past decades has been the identification of

autoantibodies to beta cell antigens.(16-18) These autoantibodies are required for the

diagnosis of T1D but it is unclear what role they play in T1D pathogenesis.(17)

Nevertheless, the presence of autoantibodies significantly predates the clinical onset of

disease, suggesting they may play a role in disease progression.(10, 16, 19) The odds of

developing and the time to clinical disease can be predicted in asymptomatic individuals

depending on the number of positive autoantibodies, which is now part of the entry criteria

in T1D preventative trials.

The area that has experienced the greatest advances and has provided the foundation for the

most promising clinical trials to prevent or reverse T1D is the study of the contribution of T

cells to T1D.(20-22) It is apparent that beta-cell antigen-specific T cells orchestrate other

components of the immune response to beta cells and are directly involved in beta cell

killing.(23, 24) In humans, both CD4 and CD8 T cells are found infiltrating islets in newly

diagnosed T1D.(25) In rodent models, either CD4 or CD8 T cells can adoptively transfer

disease. CD8 T cells likely are directly involved with beta cell killing, as MHC I is

expressed on beta cells, and CD4 T cells likely impact pathogenesis via an indirect route.

(22, 26) Both cell types secrete a number of proinflammatory cytokines, such as TNFα,

IFNγ, IL-6 and IL-1, which not only recruit and activate accessory cells, thereby magnifying

the inflammatory process, but also are directly toxic to beta cells.(26-28)

Although it is believed that beta-cell antigen-specific T cells are a necessary component of

autoimmune diabetes, their very presence is not sufficient for disease because such cells are

also found in healthy individuals; and, not all genetically predisposed mice develop diabetes

(e.g. in NOD colonies only ∼50% of males and ∼80% of females develop disease despite

harboring autoreactive T cells).(20, 29, 30) This strongly suggests that there are critical

peripheral tolerance mechanisms that play a role in restraining self-reactive T cells that have
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escaped central (thymic) tolerance. Although there are a number of mechanisms of

peripheral tolerance (including anergy and exhaustion), evidence now points to active

regulation to be the primary mechanism of peripheral tolerance in T1D.

In the past decade, the concept of a T cell population that can suppress the activity effector T

cells has reemerged. Most focus has been on a subset of CD4 T cells that express the

transcription factor FoxP3.(31, 32) The role of FoxP3 and regulatory T cells (Tregs) is most

obvious in conditions where there is genetic disruption of FoxP3, leading to multisystem

autoimmunity in humans (the IPEX syndrome) and in mice (the Scurfy mouse), which lack

Tregs.(33-37) NOD mice appear to have a loss of (functional) Tregs early in life concordant

with the development of diabetes, and adoptive transfer of Tregs (either isolated directly

from congenic mice or ex vivo expanded) can prevent and even reverse disease.(33, 35)

Although the data from human studies has been more difficult to interpret, it now appears

that although healthy individuals and those with T1D have similar circulating levels of

Tregs, Tregs in T1D have functional deficits, i.e., reduced suppressive ability.(35, 38-41)

Tregs exert suppression through secretion of certain immunomodulatory cytokines (e.g.

IL-4, IL-10, and TGFβ) and via direct interaction with T cells or antigen presenting cells.

(42-45)

These observations have led to the concept that the development of autoimmunity (including

T1D) is dependent on the “balance” of self-reactive effector T cells and Tregs (Figure 1).

Although frequently thought of in terms of stoichiometric ratios, there are likely functional

considerations of the T cells that must also be accounted for. For example, simply having

sufficient numbers of Tregs may not be enough to prevent disease, and the functional state –

either baseline (genetically determined) suppressive activity or impaired activity due to

effects of the immunologic microenvironment – should be taken into consideration.

Alternatively, it is well known that there are differences in activation requirements of naïve

(Tn) and memory T (Tmem) cells, and that Tmems expand much more robustly than Tns

(Figure 1B). Thus, depending on the maturation stage and time after antigen encounter,

Tregs may have vastly different abilities to suppress the effector T (Teff) cell response.(46,

47) Indeed, recent studies have suggested that Teff resistance to suppression by Tregs may

be a primary defect in T1D.(46) Thus the paradigm of “re-balancing” the Teff/Treg ratio to

prevent, stabilize, or reverse diabetes autoimmunity may need to take into consideration

both quantitative and qualitative factors (Figure 1c).

It is now apparent that there are a number of cells and soluble factors that are involved in the

immune dysregulation responsible for beta cell loss in T1D. Most of the information on

contributions of immune-system components to diabetes pathogenesis has come from

preclinical models of T1D, most frequently the NOD mouse and related strains. Based on

these findings, approaches to modify the course of diabetes in these models have been

developed and have provided the rationale for a number of clinical trials. However, as

described in more detail below, although several interventions have been successful in

preclinical models, to date none has translated into similar success in humans. An

examination of these trials may provide important insights into human T1D and contribute

to the development of future intervention trials.
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Immune therapies in T1D

In the 1980s and early 1990s, several small-scale clinical intervention trials investigated the

use of general immune-suppressive agents on the course of newly diagnosed T1D. For

example, in 40 children with new-onset T1D, almost 2/3 were insulin-free about 6 weeks

after starting cyclosporine, and this effect persisted for over a year while on therapy.(48) Yet

once stopped, diabetes returned. Factors associated with response included shorter time from

diagnosis, less weight loss, lower HbA1c, and less DKA.(48, 49) In another study, children

treated with azathioprine and prednisone had evidence of improved glycemic control

compared to controls, and in some cases achieved insulin independence, but again these

benefits waned following discontinuation of therapy.(50) These and other examples

provided the “proof-of-principal” that the diabetes autoimmune response, in some cases,

could be slowed or even reversed using non-specific immune-suppressive agents.(51, 52)

Concern for immune and non-immune side effects associated with what would likely need to

be indefinite therapy precluded consideration of these as a viable approach. These studies

also suggested that there was a variable response to therapy, suggesting heterogeneity in

T1D, even in the pediatric population.

As diabetes-associated autoantigens were identified, the concept of disrupting specific

autoimmune processes by administering these antigens – in essence overwhelming and

dampening the autoimmune response by presenting autoantigens in a tolerogenic context –

was examined in preclinical models. In some cases autoantigen therapy prevented or

reversed diabetes and thus provided the justification for clinical trials.(53-55) A number of

medium- to large-scale trials have been conducted evaluating insulin, Hsp60, and GAD on

the progression of T1D. In the case of insulin, this has been tested by the oral, intranasal,

and parenteral routes with no significant effect.(56-59) In some studies, Hsp60 peptide (also

known as DiaPep277) given SQ has slowed beta cell loss, but minimally.(60-62) In phase II

studies in children and adolescents, GAD65 bound to the adjuvant Alum given SQ appeared

to slow beta cell loss, but this could not be confirmed in larger Phase III trials.(63, 64) Some

studies evaluated immune responses in participants. Patients receiving the Hsp60 peptide did

have increases in IL-10 and dampened T cell responses to antigen, and those receiving

GAD-alum had increases in GAD antibodies and increases in proinflammatory cytokines, T

cell proliferation, as well as Tregs (65, 66) in response to GAD. Taken together, although

autoantigen treatment was successful in preclinical diabetes and may modulate specific

aspects of the T1D autoimmune response, after much study there is little evidence that given

as a monotherapy this approach can modulate the course of disease in humans. Further, in no

other autoimmune disease has antigen therapy been shown to slow, prevent or reverse

disease. These and other data presented below would strongly suggest that diabetes

autoantigens alone are not able to significantly modify the course of T1D.

Although it appears that diabetes autoantibodies have little role in the pathogenesis or

progression of T1D, murine studies demonstrated that agents that deplete B cells can prevent

diabetes.(67) Rituximab is a monoclonal antibody to CD20, specifically depletes B cells and

is used clinically to treat B cell lineage malignancies, autoimmune disease and organ

transplant rejection. This agent was tested in those 8-40 years old (yo) diagnosed with T1D

within the past 100 days.(68) A 4-dose course was associated with what appeared to be a
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pause in beta cell loss, which resumed at 3 months post enrollment. At 12 months, the

rituximab group had higher endogenous insulin production than placebo patients, but still

lower than baseline. Rituximab caused significant B cell depletion, but the effect on

autoantibodies was not reported. It is unclear if the B cell depletion mediated by rituximab

produced clinical efficacy due to their function as antigen presenting cells, producers of

antibodies, or another mechanism.(68, 69)

Neutralizing proinflammatory and Th1 cytokines has been a successful approach to prevent

diabetes in preclinical models and has been one of the most successful approaches to

manage other human autoimmune diseases. Both TNFα and IL-1β are secreted by

immunocytes infiltrating inflamed islets, and both not only assist in propagating

inflammation but are toxic to beta cells, and thus may be both directly and indirectly

involved in T1D.(27, 28, 70, 71) Some studies have shown elevations in these cytokines in

humans with T1D, and treating mice with neutralizing antibodies prevents, and in some

cases reverses, disease. In 2009 a small-scale trial of 18 children 7-18 yo studied the effect

of etanercept (a recombinant TNFα receptor fusion protein) on disease progress.(72) After 6

months of treatment, those treated with etanercept showed lower HbA1c levels with lower

insulin needs and a rise (versus a drop) in C-peptide compared to placebo-treated

participants. A larger, confirmatory study has not been conducted. Last year, a publication

reported results of two trials using different agents to antagonize IL-1β.(73) One conducted

in Europe used anakinra (an IL-1 receptor antagonist) and enrolled adolescents and adults

18-35 yo, 35 in the treatment arm and 34 in the placebo arm. The other was conducted in

North America and studied canakinumab (an anti-IL-1β MAb) in those 6-45 yo, 47 in the

treatment arm. Neither trial showed any metabolic effect of IL-1β antagonism on T1D

course within one year. Again, as exemplified for IL-1β blockade, not all agents that can

successfully interfere with autoimmunity in murine or other human autoimmune diseases are

effective in human T1D; but, in the case of TNFα antagonism there are opportunities for

future study.

To date, agents that selectively target T cells have comprised the most numerous T1D

intervention trials. In the 1980s and ′90s, monoclonal antibodies against T cells were

developed and proved successful to treat organ allograft rejection. In rodent models,

antibodies to CD3 can prevent and reverse diabetes.(53, 74) The first trials using a biologic

agent in T1D used monoclonal antibodies to the CD3. In 2002 a modified form of OKT3

with a mutated (non-Fc receptor binding) Fc region called hOKT3 γ1(Ala-Ala) (teplizumab)

was tested in 12 new-onset patients 7-27 yo.(75) Compared to placebo-treated patients,

drug-treated participants had better maintenance of C-peptide secretion, lower insulin

requirements, and lower HbA1c at 12 months. A follow-up study repeating dosing at 12

months (the AbATE trial) showed lasting metabolic improvement at 24 months, and post

hoc analysis was able to identify responders from non-responders by lower HbA1c and

insulin requirements, lower levels of some types of memory and naïve T cells, and lower

IFNγ-producing CD8 T cells at baseline.(76) A large (n=516), industry-sponsored,

multinational Phase III RCT (Protégé) of teplizumab that tested multiple treatment regimens

did not meet its primary endpoint (which was the percent of patients with both insulin use of

<0.5 U/kg/day and HbA1c <6.5%) at 12 months.(77) Post-hoc analysis identified factors at
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baseline associated with C-peptide preservation, including better metabolic control, higher

C-peptide response, and time from diagnosis to enrollment.

A nonglycosylated form of anti-CD3 (ChAglyCD3; otelixizumab) was tested in the early

2000s in 40 patients 12-39 yo, and it was found to partially preserve beta cell function,

resulting in less insulin requirements at 6, 12, and 18 months after treatment. Two follow-up

Phase III industry-sponsored RCTs (DEFEND-1 and -2) enrolled participants 12-45 yo, yet

these too failed to meet their primary endpoints, the change in C-peptide levels at 12

months, perhaps because the studied dose was too low.(78, 79)

In order for T cells to become fully activated, they require both antigen-specific signals (i.e.

binding of MHC:peptide from antigen presenting cells (APC) to the T cell receptor) and

antigen non-specific, costimulatory signals (i.e. binding of CD40 and B7 molecules on the

APC to CD154 and CD28 on T cells).(80-84) Blocking T cell costimulation can prevent or

dampen T cell responses and is an effective means to modify or prevent diabetes in rodent

models. CTLA4-Ig (abatacept) is a fusion protein that binds to B7 molecules and interrupts

CD28 signaling in T cells. This agent is a component of therapies in organ transplantation

and is approved for a number of human autoimmune diseases.(85) Abatacept was given for

two years to 77 patients 6-45 yo and produced a delay in C-peptide decline and lower

HbA1c levels with similar insulin use at 2 years compared to placebo subjects.(86)

Statistical modeling suggested a number of factors, including younger (6-12) or older

(18-45) age, lower baseline C-peptide, and white race, were associated with a more robust

response. However, despite continuous therapy for 2 years, the C-peptide decline resumed in

the abatacept group at 6 months.

During the 2000s, technical improvements and advances in immunomodulation resulted in

major strides in human islet cell transplantation (ICT).(87) A variation of the ICT immune

protocol from the Edmonton group was assessed in reversing diabetes in new-onset T1D.

(88, 89) This trial used anti-CD25 (daclizumab) to target CD25-expressing (activated) T

cells and mycophenolate mofetil (MMF) as a non-specific immunosuppressant. In patients

8-45 yo, neither MMF alone nor MMF+daclizumab had any effect on beta cell loss or

metabolic parameters over 24 months.(90) This was surprising as this regimen met with

some success in ICT (which comprises both allo- and auto-immune responses (87)), and

anti-CD25 and MMF in alone and in combination can delay or prevent autoimmune diabetes

in the BioBreeding (BB) rat.(91) One possibility is that this regimen inhibited of Tregs,

which are strongly dependent on signaling through the high-affinity IL-2 receptor that

includes the α subunit (CD25).(92)

A number of recent trials have provided insight on how therapies may modulate Tregs. A

phase I trial of interleukin 2 (IL-2) and rapamycin was tested in 9 adults specifically to

evaluate if this could increase Tregs, and its effect on beta cell function.(93) IL-2 is known

to be involved in Treg survival and function (they express high levels of CD25), while

rapamycin inhibits activation and function of Th1 and Th17 effector T cells, and is effective

in preventing diabetes in mouse models.(94) This approach transiently increased the

numbers of Tregs in the first month after therapy, but concomitantly metabolic parameters

were worsened, likely due to unintended Teff activation. A trial of anti-thymocyte globulin
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(ATG; the START trial) was based on the concept that significant T cell depletion might

eliminate diabetogenic T cells and “reset” the autoimmune response and the effector to

regulatory T cell balance, resulting in long-term remission.(95) ATG is a rabbit antiserum

that depletes human T cells, and is used in organ transplantation and some autoimmune

diseases, and analogous therapies can prevent and reverse diabetes in preclinical models.

Multiple doses of ATG were given to 38 participants 12-35 yo with new-onset T1D over one

week. Most recipients acutely developed cytokine release syndrome (CRS) and serum

sickness 7-10 days later. ATG had no effect on C-peptide preservation or metabolic control.

In mechanistic evaluations, recipients had acute serum elevations in a number of

proinflammatory cytokines during therapy and, interestingly, a preferential depletion of

Tregs over effector CD4 and CD8 T cells. In a post-hoc analysis, it appears that older

participants may have had beta cell sparing, while the younger subjects treated with ATG

had an acute loss of beta cells in the first 6 months.[76] A clinical trial of ATG and GCSF is

being planned.

An ongoing trial evaluating specific depletion of effector and memory T cells (the T1DAL

trial) recently published its 12-month results.(96) Alefacept is a fusion protein consisting of

an LFA3 head and an IgG tail. The drug preferentially targets memory and effector CD4 and

CD8 T cells (which express high levels of CD2, the cognate receptor for LFA3), the cells

that appear to be most involved in beta cell destruction. The trial randomized 49 participants

12-40 yo (33 to alefacept, 16 to placebo) and found that treated subjects had lower insulin

requirements, fewer hypoglycemic episodes and, in some analyses, preservation of C-

peptide at 12 months. In the mechanistic evaluation it was shown that alefacept significantly

depleted CD4 and CD8 effector and memory cells, while sparing Tregs, leading to a

favorable Treg:Teff ratio.[77] Additional data from this trial will be forthcoming.

Conclusions

Armed with the knowledge of the immune basis for T1D, the observations that the course of

T1D could be modified with non-specific immune suppressants, and the advent of novel

agents to target specific immune processes, the past decade was filled with promise that an

approach to reverse and stabilize T1D would be discovered. Unfortunately, despite

tremendous effort with nearly a dozen trials enrolling many hundreds of participants, none

has been found. In many cases, despite well-founded preclinical data and/or experiences

from other human auto- or allo-immune conditions, there was no apparent impact on the

course of T1D. Even in those trials showing some impact on disease course, no approach to

induce true clinical remission (i.e. insulin independence) has been found.

Although no approach has been able to achieve frank remission or prolonged beta cell

preservation, there are a number of lessons from these trials that may help guide the next

phase of studies (Table 1). The human T1D immune response has proven resistant to a

number of potent immune interventions that are effective in other human conditions and

preclinical models. It thus appears that on a relative scale, T1D autoimmunity is more

intractable than a number of other autoimmune diseases or the alloimmune response to

organ transplantation, including that to islet allografts. It is also clear that what is shown to

be effective in preclinical (rodent) models does not necessarily correlate with efficacy in
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humans – further putting into question the utility of these models as a litmus test for clinical

trials.(97) Certainly, rodent studies have provided critical information for a general

understanding of the pathogenesis of T1D, but more translational studies in the clinic are

urgently needed.

Because the immune response in T1D is more robust and complex than previously

considered, trials which interfere with a number of pathways (i.e. through the use of

combination therapies) are warranted, and the use of therapies that are likely to have

minimal immunological effect (e.g. dietary modification or vitamin supplementation) may

be futile. In-depth mechanistic evaluation from some studies has suggested that therapies

may differentially impact effector and regulatory cells. There is an emerging consensus that

an effective therapy must combine inhibition of Teff cells (by depletion, enhanced

suppressibility, or both) with stimulation of Tregs (by increased frequency or function,

including ablation of the proinflammatory milieu). Further, if possible, such changes in

effector and regulatory cells should be antigen-specific. Such an outcome may require

combinations comprising a Teff-depleting agent, a Treg-boosting agent, and an antigen.(45,

98) While such combinations will present substantial practical and regulatory challenges,

they will likely be our best shot at inducing a durable remission of autoimmunity in this

disease.
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Key Points

1. Type 1 diabetes (T1D) is the result of a multifaceted immune attack on

pancreatic beta cells.

2. Agents that directly affect the immune system (immune suppressants and

modulators) have had the most and most reliable success in modifying the

course of T1D.

3. Although well founded and successful in rodent models of T1D, recent trials

using agent targeting T cells, B cells or cytokines have had less then the

expected effect on the course of T1D.

4. Future trials incorporating data from more detail studies in human T1D and

combining targeted therapies, specifically those which combine targeting

effector cells and enhancing regulation, may hold the most promise for inducing

durable remission in T1D.
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Figure 1.
Balancing effector and regulatory T cells in health, T1D, and with therapies. (A) Individuals

free from diabetes may have no circulating beta-cell specific effector T cells (Teff; left) or

have sufficient, functional peripheral regulatory T cells (Tregs) to counterbalance Teffs

(right) and keep beta cells free from autoimmune damage. (B) In subjects who develop T1D,

Teffs may become resistant to Tregs (left), Treg numbers may diminish (center), or, despite

sufficient numbers, Tregs may become dysfunctional (right) resulting in T cell-mediated

destruction of beta cells. (C) Therapies which temporarily suppress Teffs (left) or bolster

Treg number or function (center) may be able to temporarily slow beta cell decline, but it

may take therapies that both target Teffs and increase beta-cell-specific Tregs (right) to have

a substantive and long-lasting effect.
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Table 1
Lessons Learned to Date from Targeted Immunotherapy Trials in T1D

1. Treatments that are effective in other human auto- or allo-immune conditions have marginal or little efficacy in T1D. Possible explanations
include: T1D has a unique immunopathogenesis compared to other autoimmune conditions; short-term immune-modulation does not restore
tolerance and autoimmunity resumes after a variable interval once treatment ends; the residual beta cell mass has fallen below a critical
threshold and cannot recover even after successful ablation of the autoimmune attack.

2. As powerful immune modulatory agents have little or no effect in changing the course of T1D, the immune process in T1D appears to be
extremely robust, and thus agents with minimal impact on immune responses are unlikely to alter the progression of T1D.

3. Many interventions that are effective in rodent (primarily NOD) models of T1D are not similarly effective in humans, and therefore the use of
rodent models as the prerequisite rationale for human trials may not be appropriate.

4. In some cases, different subpopulations of patients with T1D appear to respond differently to immune interventions, suggesting significant
heterogeneity in human T1D.

→
Taken together, more in depth evaluation of existing studies is warranted and further fundamental study of human T1D is needed to guide the

next phases of intervention trials in this area.
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