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Abstract

Identifying drug-drug interactions is an important and challenging problem in computational

biology and healthcare research. There are accurate, structured but limited domain knowledge and

noisy, unstructured but abundant textual information available for building predictive models. The

difficulty lies in mining the true patterns embedded in text data and developing efficient and

effective ways to combine heterogenous types of information. We demonstrate a novel approach

of leveraging augmented text-mining features to build a logistic regression model with improved

prediction performance (in terms of discrimination and calibration). Our model based on

synthesized features significantly outperforms the model trained with only structured features

(AUC: 96% vs. 91%, Sensitivity: 90% vs. 82% and Specificity: 88% vs. 81%). Along with the

quantitative results, we also show learned “latent topics”, an intermediary result of our text mining

module, and discuss their implications.

Introduction

Drug-drug interactions (DDIs) can lead to serious adverse events, and are a major cause of

morbidity and mortality. Predicting or detecting DDIs is therefore of concern to the

pharmaceutical industry, drug regulatory agencies, healthcare professionals and patients [1].

Unfortunately, predicting DDIs is a nontrivial task, and is becoming increasingly

challenging as more new drugs are being developed [2].

DDIs arise when the pharmacokinetics or pharmacodynamic properties of one drug are

altered by other drugs. A number of DDI-prediction works focus on careful evaluation of

molecular targets and metabolizing enzymes (e.g., P450 enzymes) [3] [4][5]. However, such

methods rely on expensive experiments and are limited by their relatively small scale as they

usually focus on a few drug pairs or a limited number of metabolizing enzymes a time.

Some other works perform domain-specific studies on DDIs (e.g., for anesthesia [6], for

inhibition of intestinal CYP3A4 or P-glycoprotein [7], and for calcium channel blockers
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[8]). Unfortunately it is difficult to generalize the knowledge to predict potential DDIs in a

different context. Recently, a number of works have leveraged data mining and statistical

methods to detect DDIs. These methods mine and analyze post-market data, such as

spontaneous reports, insurance claim databases or electronic medical records [9][10][11]. As

the time for sufficient post-market evidence to accumulate can be years, these methods do

not provide timely predictions at the early stages of drug discovery and development.

There is a need for inexpensive, general and scalable DDI prediction methods that are not

dependent on post-market data in order to provide early stage predictions. In this paper, we

leverage large scale text mining and statistical inference techniques to achieve the above

goals. We demonstrate that text mining techniques can augment existing domain knowledge

(in structured format) by retrieving useful information from unstructured text data and

synthesizing weak signals to provide strong evidence. The aim of this study was to develop

a novel data-driven text mining technique, which is robust to noise, for predicting DDIs

based on publicly available information.

Related Work

Various systems for identifying DDIs have been developed. Norén et al. implemented and

evaluated a shrinkage observed-to-expected ratio for exploratory analysis of suspected drug-

drug interaction in individual case safety reports, based on a comparison with an additive

risk model [11]. Hu et al. presented a systematic overview of the available drug interaction

information using a network approach [12]. Tari et al. integrated text mining and automated

reasoning to derive DDIs [13]. Takarabe et al. investigated the relations between the drug

groups and drug interaction mechanisms or symptoms using a drug interaction network

based on the Anatomical Therapeutic Chemical (ATC) classification [14]. Tatonetti et al.

used the FDA's Adverse Event Reporting System to build profiles and looked for pairs of

drugs that match these single-drug profiles in order to predict potential interactions [15].

As opposed to approaches that only use structured data, our method is largely based on text

mining. A similar work to ours is the recent paper [16] by Percha et al. to discover and

explain drug-drug interactions via text mining the Medline database, a respected source of

citations of peer-reviewed biomedical literature. This approach focused on the drug-gene

relations and cross-linked them to obtain drug-drug interactions. We hypothesized that

accurate identification of DDIs involves more factors and developed a novel method that

goes beyond a single type of entity relation to explore a rich set of entity relations.

Main Proposal

We model the DDI prediction problem as a binary classification task, where a query drug

pair is classified as “1” if the two drugs interact with each other, and “0” otherwise. We start

by collecting DDI ground truth for model training and evaluation. In this work, we collected

the ground truth data from DrugBank. Next, we collect features of each individual drug.

Such features include both accurate but limited domain knowledge from structured data, and

noisy but abundant information based on text mining results. Then we express a drug pair by

merging the features of the two drugs into one feature vector, and train a binary classifier
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accordingly. At query time, given one drug pair query, the trained model predicts “1” or “0”

based on the probability that the two drugs will interact.

A. Data Preparation

We downloaded DrugBank data to collect our DDI ground truth for the purpose of training

and evaluation. DrugBank contains 6,710 drugs, which make up the collection of drugs

under consideration in this work. We randomly sample 5,000 drug pairs from a list of known

interacting drug pairs to be used as positive training examples, and additional 5,000 drugs

pairs that do not interact according to DrugBank as negative training examples. When

evaluating the prediction accuracy of the model, we randomly sample positive and negative

drug pairs from DrugBank in a similar fashion (5,000 of each), while ensuring that none of

the evaluation drug pairs were used for training.

We collected Medline abstracts over a 5-year period (published from 2006 to 2010) as the

corpus for mining drug-related information. This corpus contains more than 3.6 million

abstracts, with over 0.7 million per year.

B. Model a Drug with Structured Information

Existing work has shown that drug targets [17] and the molecular structure similarity

analysis [18][19] of drugs provide useful information in DDI prediction. We therefore

choose drug targets and molecular structures as two types of structured domain knowledge

explored in this work. Concretely, using a bag-of-words model (widely used in Information

Retrieval) to incorporate the target information, we represent each drug as a binary-valued

vector, for which every element is a unique target. The value 1 means that the target is

associated with a given drug, and 0 means no association. The drug-target association

information is downloaded from DrugBank. The total number of unique targets is 3,573. If

the target information of a drug is not available, the corresponding drug-target vector is all

0s.

Similarly, to incorporate the molecular structure information, we use the bag-of-words

model to represent each drug as a binary-valued vector, for which every element is a unique

substructure1. The drug substructure information is downloaded from DrugBank. The total

number of unique substructures is 309. If the substructure information of a drug is not

available in DrugBank, then the corresponding drug-substructure vector is all 0s.

C. Drug-related Textual Information

To augment the aforementioned structured information, we resort to textual data to retrieve

additional drug features. We extract three types of textual information from each Medline

abstract. The first type of information is genes (in the form of gene names or gene symbols).

We build a gene annotator based on the conditional random field (CRF) technique [20] to

extract all the appearances of gene names/symbols from text. After information extraction, a

normalization step follows to assign all the name/symbol variations of one gene to a unique

gene ID2. We then record the number of occurrences of each unique gene in every abstract.

1The substructures of drug “Abacavir” include “Hydroxy Compounds”, “Alkanes and Alkenes”, “Aliphatic and Aryl Amines” etc.
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The second type of information is disease names. We use a dictionary lookup-based method

to extract disease names. To compose a disease dictionary, we merge the PharmGKB [21]

disease dictionary with the OBO disease ontology [22] that ends up with 10,397 disease

names. We record the number of times that a disease is mentioned in each abstract. The

synonyms are captured in the normalization step, where all the synonyms of one disease are

assigned to a unique disease ID.

The third type of information is MeSH concepts. MeSH concepts are provided by PubMed3

along with the Medline abstracts. Such concepts are manually curated by domain experts to

support various types of search over the PubMed database. We use concepts from the four

MeSH subtrees (A, B, C, and D) which are most related to drug interactions. Figure 1 shows

the increases in size of the Medline corpus over the five-year period and the sizes of the

three types of extracted information for each year.

D. Model a Drug with Textual Information

We address the problem of identifying drug-entity association based on the semantics of

drug-entity relations and propose a Drug-Entity-Topic (DET) model, which is an extension

of the Latent Dirichlet Allocation (LDA) [23] topic model that has shown great success in

the text mining domain. Concretely, DET is a generative statistical graphical model that

captures the relation between drugs and other entities by explicitly modeling the latent

semantics of entities.

Let us assume disease is our focus entity for easy presentation. The same technique is

applicable to genes and MeSH concepts. For each Medline document dori, we build an

artificial document, d = {ad, ed}|entity (e.g., entity = disease) that contains two sections: a

subject section ad and a content section ed. A “word” is the basic component of the

document. A word in section ad is a drug name that is extracted from the original Medline

document dori. The word repeats n times if the drug is mentioned n times in dori. A word in

section ed is a disease name that is extracted from dori. Similarly, the word repeats the same

number of times as the number of times that the disease is found in dori. Conceptually, we

consider the artificial document d to be talking about drugs, but the content of d is entirely

conveyed by diseases.

In a DET model, given a document d, the collection of drugs in ad determines the document

content that is observable as a list of diseases. We assume the existence of K disease topics

that summarize the latent semantics of diseases, and use variable z to represent the topics.

Each drug is associated with a statistical distribution over the topics. We treat latent topics

as drug features, so that our goal is then to learn the probability distribution of the drugs

given the latent topics p(drug|z). Note that by Bayes's rule:

2E.g.: “RHO”, “rhodopsin”, “RP4”, “retinitis pigmentosa 4, autosomal dominant”, “opsin 2, rod pigment”, and “OPN2” are variants
of one gene and are assigned to a single ID.
3PubMed is a free database that provides access to the Medline database and other services. http://www.ncbi.nlm.nih.gov/pubmed
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(1)

The right-hand side can be directly estimated in the DET model. Interested readers are

referred to [24] Appendix B for technical details.

This generative process of the DET model can be represented as the hierarchical Bayesian

model shown in Figure 2 using plate notations. Interested readers are referred to [23] for

details of plate notation of topic models. In the model, latent variables are light-colored

while the observed ones are shadowed. D is the number of documents of a corpus. w denotes

a specific disease word observed in document d and Nd is the number of disease words in d.

K and A represent the number of topics and drugs. ad is the observed set of drugs for d. In

the DET model, each drug x is a probabilistic multinomial distribution over topics

parameterized by θ. The observable parameter λ controls the sampling of drugs. Given a

drug, each topic z is a multinomial distribution over disease words parameterized by ϕ. The

prior distributions of topics and disease words follow Dirichlets parameterized respectively

by α and β. To “generate” a document d, a drug x is sampled from ad, a topic z is then

chosen based on the drug-topic distribution θ, and finally a “disease word” w is chosen

based on the topic-word distribution ϕ corresponding to the chosen topic.

In order to learn the probability p(drug|z), we need to estimate model parameter θ. To

accomplish this task we use Gibbs sampling, which is a an algorithm to approximate the

joint distribution of multiple variables by drawing a sequence of samples.

E. Model Drug-Drug Relation

Given a pair of drugs q and r, we measure five types of relations. The structure relation is

expressed as R(q, r)struct = {qstruct, rstruct}, where the structure vectors of the two drugs are

concatenated with a fixed order. Similarly, the target relation is expressed as R(q, r)target =

{qtarget, rtarget}. Drug-drug relations based on topic features can be handled in the same

way. For example, by concatenating the disease-topic (dz) vectors of two drugs, we get the

disease-topic relation expressed as R(q, r)dz = {p(q|z1) … p(q|zK), p(r|z1) … p(r|zK)}|disease.

Drug-drug relations based on gene topics (gz) and MeSH concepts topics (mz) are

constructed in the same way. The five types of relations are treated as five types of candidate

features to model and predict DDIs. One can use all the features or a subset of the features in

the predictive model as desired. Now the question is how to fit R(q, t)x x ∈ (struct, target,

dz, gz, mz) features into a predictive model. We adopt the Binary Logic Regression model

for this task. Let  be an n-dimensional vector that represents the

relation between drugs q and r. Logistic regression is able to learn a mapping of the form f: x

→ y, where y is a binary prediction. For example, in our problem, y = 1 means drugs q and r

have interactions and y = 0 means no interaction between the two drugs is predicted.
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Experiments

F. Experiment Setup, Parameter Setting and Evaluation Metrics

With data prepared as described in Section-A, for each year, we conduct 5 independent runs

of the experiments and report the average of the 5 runs as the result. Experiment results over

the five-year period are pretty consistent. We therefore report results of years 2006 and 2010

only (the boundary years) to be concise.

For the DET model, we set the number of topics for each entity type as K = 50. Following

the convention for topic models, we set the hyper-parameters as α = 50/K, β = 0.01.

Typically, the value of hyper-parameters does not influence model performance much.

We adopt sensitivity, specificity, accuracy, ROC curves and Area Under the Curve (AUC) to

evaluate the performance of our proposed method. Sensitivity evaluates a method's ability to

identify positives, which in our case are pairs of drugs that interact with each other.

Specificity on the other hand measures a method's ability to identify negatives, pairs of

drugs that have no interaction. Accuracy measures the percentage of correct predictions

combining both the positives and negatives. All three metrics take values in [0, 1]. The ROC

curve and AUC are widely used measurements for evaluating predictive models. For a better

performing model the ROC curve will be closer to the upper-left corner in the ROC plot, and

the AUC value will be closer to 1.

G. Examples of Topic and Drug Distributions

Tables I and II illustrate 6 topic examples that are learned by DET from the 2010 Medline

corpus. Each topic is illustrated with: (a) the top 10 (most likely) entities conditioned on the

topic, and (b) the top 10 drugs conditioned on the topic. Every result is reported with the

probability value determined by DET. The three disease topics are about kidney disease,

diabetes and depression. DET does a good job of identifying the latent semantics in entities.

For example, topic 17 reveals a strong relation between vitamin D and kidney disease,

which is correct. The topic also indicates there is a relation between kidney disease and

hyperparathyroidism. Checking domain knowledge shows that (secondary)

hyperparathyroidism is a consequence of having end-stage renal disease, which is kidney

related. For each topic, the top 10 most likely drugs are also reasonably identified. For

example, cinacalcet is used to treat secondary hyperparathyroidism, saxagliptin treats high

blood sugar value in patients with type-2 diabetes, and desvenlafaxine is used for major

depressive disorder. These validation demonstrates DET's power in identifying the latent

semantics in large corpora. The three MeSH concept topics are about ecosystems,

tomography and infection. Note that, as we mentioned before, text mining results are

typically noisy. For example, we see disease “blind” ranked No. 4 in the topic about

depression. However, as we will show later, our prediction solution is robust and can still

benefit from such topic features.

H. Performance Evaluation

We train eight DDI prediction models. The first (Target) and second (Structure) models use

chemical structure information and known drug target information collected from
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DrugBank, respectively, as features. The third model (Structure+Target) uses both types of

features in prediction. These models are based on structured domain knowledge only and do

not use any text mining results. The fourth (Gene), fifth(Disease) and sixth(MeSH) models

use gene topics, disease topics and MeSH concepts topics, respectively, as features. These

three models use only a single type of text mining data as features without the guidance of

any domain knowledge. The seventh (Combined text features) model uses all three types of

textual features in prediction. In the last model (Combined all data), we combine domain

knowledge and multiple types of textual features. The performance of each model is

reported in Table III. Note that we used 0.5 as the cutoff for all eight models to calculate

evaluation metrics. As the results illustrate, models using individual features generate less

balanced prediction results. For example, the model based on drug target domain knowledge

achieves high specificity (≈ 91%) but low sensitivity (≈ 47%). The model based on

combined text mining data performs comparably to (a little better than) the model based on

combined structured data. This shows that text mining is able to automatically extract useful

information embedded in large corpora without relying on any domain knowledge or costly

manual examination. As one might expect, the best DDI prediction is achieved when

combining both domain knowledge in the form of structured data and text mining data. The

best model achieves high prediction accuracy (8% more accurate than without using textual

data) and produces highly balanced results (sensitivity=90%, specificity=88%).

Because accuracy, sensitivity and specificity are calculated based on a single cutoff value,

they might not truly reflect the performance of a predictive model in a comprehensive

manner. We therefore evaluate the predictive models' discrimination and calibration

performance by plotting ROC curves and calculate AUC to evaluate discrimination. Figure 3

shows the plots with AUC values reported. For all the evaluations, the model augmented

with textual information (Combined all data) significantly outperforms all the other models.

It outperforms the model using structured data only (Struct+Target) with a large margin near

the upper-left corner. This observation validates our motivation for this work that text

mining results, although noisy, can benefit DDI prediction significantly, as long as they are

handled properly.

Discussion

Structured domain knowledge about drugs is limited in comparison to the abundant

information available in text. In this paper, we introduce a novel solution to exploit a large

amount of unstructured text data, identify intrinsic patterns, and use text mining to augment

limited domain knowledge in predicting drug-drug interactions. Although noise is inevitable

in automatically generated text mining data, our method is robust and capable of leveraging

textual information to significantly improve DDI prediction performance. Our DET model is

also able to extract the latent semantics (statistically) to model the relations between drugs

and entities like diseases, genes, and MeSH concepts, providing a new way to explore large

corpora in the biomedical domain.

Our study has limitations. First, the SVD-based feature reduction technique makes it

difficult to interpret the results (i.e., the significance of the attributes) because reduced-

dimension features do not preserve physical meanings. Second, we only focus on scientific
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literature in this study. For some commercial drugs that were not revealed to the academic

community, only limited information can be mined. Third, we evaluated our results with a

limited database containing only a fraction of confirmed drug-drug interactions. Despite

these limitations, this pilot work still shows good promise to better detect DDIs with text

mining techniques.

Conclusion and Future work

We demonstrated a novel approach of leveraging text-mining augmented features to build a

logistic regression model with improved prediction performance (in terms of discrimination

and calibration). There are several paths we would like to explore in our future work. We

would like to investigate other drug-related textual data sources, such as patents. Due to the

specialization in drug development research, some of the new drugs and new compounds are

reported in patents only. We expect a performance improvement when patent information is

considered. Second, some of the drug domain knowledge is semi-structured, such as a

paragraph that describes the pharmacodynamics or mechanism of action, protein binding, or

experimental properties of a drug in the DrugBank database. It is currently not clear how to

best make use of such information automatically in building predictive models, and we plan

to extend our method to incorporate such semi-structured data.
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Fig. 1. Size of different types of extracted information (The size for MeSH is downscaled by 1e-4
to fit in the graph)
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Fig. 2. Drug-Entity-Topic model (DET)
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Fig. 3. Performance comparision between models trained on features retrieved from various
sources. The model trained using combined data demonstrates significant advantages in both
cases
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Table III
Performance evaluation

2006 sensitivity specificity accuracy

Structure 83.11% 78.84% 80.98%

Target 46.29% 91.10% 68.69%

Structure+Target 82.37% 81.70% 82.03%

Gene 77.37% 75.63% 76.50%

Disease 84.13% 74.47% 79.30%

MeSH 74.47% 87.85% 81.16%

Combined text feature 79.25% 86.85% 83.05%

Combined all data 90.29% 88.61% 89.45%

2010 sensitivity specificity accuracy

Structure 82.67% 80.32% 81.50%

Target 47.47% 91.38% 69.43%

Structure+Target 83.58% 81.83% 82.71%

Gene 84.71% 72.10% 78.40%

Disease 90.45% 71.45% 80.95%

MeSH 73.31% 92.54% 82.93%

Combined text feature 80.16% 88.24% 84.20%

Combined all data 91.19% 87.85% 89.52%

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2014 August 15.


