
267

Eishi Noguchi and Mariana C. Gadaleta (eds.), Cell Cycle Control: Mechanisms and Protocols, Methods in Molecular Biology, 
vol. 1170, DOI 10.1007/978-1-4939-0888-2_12, © Springer Science+Business Media New York 2014

    Chapter 12   

 Introductory Review of Computational Cell Cycle Modeling 

           Andres     Kriete     ,     Eishi     Noguchi    , and     Christian     Sell   

    Abstract 

   Recent advances in the modeling of the cell cycle through computer simulation demonstrate the power of 
systems biology. By defi nition, systems biology has the goal to connect a parts list, prioritized through 
experimental observation or high-throughput screens, by the topology of interactions defi ning intracellu-
lar networks to predict system function. Computer modeling of biological systems is often compared to a 
process of reverse engineering. Indeed, designed or engineered technical systems share many systems-level 
properties with biological systems; thus studying biological systems within an engineering framework has 
proven successful. Here we review some aspects of this process as it pertains to cell cycle modeling.  
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1      Introduction 

 The complexity of biological systems requires us to take a systems- 
level view in order to holistically understand the networks of cel-
lular regulation. Such approaches involve in silico modeling of 
biological systems and have a remarkable similarity to reverse 
engineering. Indeed, designed or engineered technical systems 
share many systems-level properties with evolved biological sys-
tems [ 1 ]. The cell cycle, which consists of an orderly sequence of 
events, is an example of biological complexity and involves both 
positive and negative feedback regulations. Such regulations are 
also at the core of other major oscillating systems including circa-
dian rhythms; thus computational systems biology has become an 
important area of cell cycle research [ 2 – 4 ]. Here we describe an 
introductory overview of the main steps required to develop cell 
cycle models.  
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2    Steps of the Modeling Process 

  Model development is an iterative process, whereby graphical 
representations, mathematical implementations, simulations, 
predictions, and experimental validations are continuously refi ned 
until all project goals are reached. Modeling can also help to pro-
vide consistency between different experimental efforts as well as 
to generate and test new hypotheses. The fi rst step in the modeling 
process is to defi ne the scope and objectives of the model, and to 
identify all state variables such as genes or proteins, which change 
their state or activity through transcription, phosphorylation, or 
other mechanisms. The most diffi cult part of a modeling process is 
to accurately defi ne all necessary rates and parameters and to make 
a decision on the most adequate level of complexity or comprehen-
siveness and scale. Most likely, the modeler is faced with a situation 
where some parameters are available, and some not. Parameters 
missing can be initially estimated, and experimental research can be 
guided to determine more precise values. This task is greatly 
enhanced by focusing on the most essential items required to build 
the model; it is essential to discern which components of a model 
are absolutely necessary and have to be prioritized. Obviously, it is 
also important to gauge which components can be omitted in the 
initial model and reintroduced in future extensions. In many areas, 
the development of models naturally follows a pattern from simple 
to more complex. For instance, an early model of the MAPK path-
way originally contained only nine state variables [ 5 ], but subse-
quently grew to a network representation with 202 proteins, and 
additional ions, oligomers, and genes [ 6 ]. However, the qualitative 
behavior of the pathway in terms of a negative feedback had already 
been captured correctly by the initial model. Cell cycle models are 
no exception. The fi rst models published by Tysen [ 7 ] and 
Goldbeter [ 8 ] in 1991 have grown steadily in complexity. The 
Goldbeter model is the most minimalistic model featuring three 
state variables; however, it captures the essential behavior of the 
core constituents of the cell cycle. While the examples of this model 
discussed below assume a continuous cycling, which is a suitable 
assumption for embryonic development, most cell cycles are differ-
ent from a continuous oscillatory system, since they depend on and 
are regulated by external cues and internal cell cycle checkpoints.  

  The second major step is to lay out the topology of the connectivity 
or network wiring in a graphical fashion. While the interactions of 
proteins are typically defi ned by biochemical reactions rates, the 
topology can be defi ned in terms of control elements or regulatory 
network motifs, such as feedback loops [ 9 ,  10 ]. In combination, 
rates and network topologies determine the overall dynamic of the 
system. Both amplifying positive and inhibitory negative feedback 

2.1  Scope and Goals

2.2  Model Topology
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motifs are relevant for cell cycle regulation, and their fi ne-tuned 
interaction gives rise to a cyclic behavior. 

 Using formal graphical notations, as compared to pathway car-
toons, promotes model exchange and enhances the process of 
deriving mathematical formulations. Among the early    schematic 
representations used in biology, specifi cally in ecology, are Forrester 
diagrams and Petri Nets with different level of abstraction [ 11 ]. 
Forrester diagrams make use of only one graphical element for 
state variables with sources and sinks limiting the representation of 
more complex diagrams in which state variables of different kinds 
have to be discerned. Another limitation is that these diagrammatic 
concepts were developed when computer graphics and user inter-
faces were still in initial development; thus no convenient com-
puter programs were available to support the development of such 
diagrams, and the application was limited to simpler models. 

 Figure  1  shows a diagram for a simple cell cycle model using 
Forrester Diagram notation. This model, which is proposed by 
Goldbeter, is a minimalistic model of a mitotic oscillator during 
the cell cycle [ 8 ]. In this model, the mathematical representation 
uses three state variables of interest: Cyclin (C), active dephos-
phorylated Cdc2 (also known as CDK1) kinase (M), and active 
phosphorylated protease (X). The Cyclin protein (C) is a key ingre-
dient in the cell cycle, since its periodic buildup and breakdown 
drives cell cycle progression. When Cyclin exceeds a certain 
threshold, it begins to combine with and activate a protein kinase 
Cdc2 to form a complex called “maturation-promoting factor 
(or M-phase promoting factor, MPF: M),” which stimulates mitosis. 
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  Fig. 1    Schema for the mitotic oscillator from Goldbeter [ 8 ] using Forrester dia-
gram notations. The state variables [Cyclin (C), maturation promotion factor (M), 
and protease (X)] are shown by boxes, with in- and outfl ows denoted by valves 
of defi ned molecular reaction rates. The cloud symbols represent sources or 
sinks, and  dotted lines  indicate regulatory connections       
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The Cdc2 kinase stimulates degradation of Cyclin by activating a 
protease (X). Since Cyclin promotes its own degradation by a pro-
tease related to MPF, this constitutes a negative feedback. The bio-
chemical reactions r1–r7 based on enzyme kinetics constitute the 
in- and outfl ows, which in combination determine the behavior of 
each state variable. The cloud symbols denote undefi ned sources 
and sinks; these are outside the scope of the Goldbeter model. 
In this circuit, Cyclin (C) is constantly synthesized (r1), while non-
specifi c degradation of Cyclin also occurs constantly (r2). When 
the concentration of Cyclin is below the threshold, Cyclin does not 
form a complex with Cdc2, keeping Cdc2 inactive (M + ). In r4, 
when Cyclin (C) concentration rises over the threshold, Cyclin 
activates the Cdc2 kinase by increasing the velocity of the phospha-
tase that activates the kinase (M +  → M). In this reaction, the phos-
phatase (Cdc25 protein, not modeled) converts inactive Cdc2 
(M + ) to the active form (M), by removing the inhibitory phosphate 
groups (r4). In r5, although it is not explicitly modeled, the Wee1 
kinase deactivates Cdc2 by adding the inhibitory phosphate group 
to Cdc2. Here, the amount of Wee1 is considered to be constant 
(r5). When the Cdc2 kinase is activated (M), it directly promotes r6 
without other intervening factors. In this reaction, Cdc2 phos-
phorylates and activates Cyclin-specifi c protease (X +  → X), which 
promotes r3 that degrades Cyclin. Finally, in r7, Cyclin-specifi c 
protease is deactivated, and the amount of deactivating phosphatase 
(not modeled) for the cyclin protease (X) is considered to be con-
stant. In this reaction, the activating phosphate groups are removed 
from the Cyclin-specifi c protease. Taken together, the total 
amounts of (M + M + ) and (X + X + ) are constant, thus completing 
the mitotic oscillator cycle, which is caused by negative feedback.

   One instructional implementation and description of the 
Goldbeter model is available from Mathworks (  http://www.math-
works.com    ). The model from    Tyson [ 7 ] has also been available as 
an educational resource [ 12 ]. To handle the increasing complexity 
of molecular data several graphical modeling tools, such as 
CellDesigner [ 6 ], still based on the principles used in Forrester 
diagrams, are now available to conveniently design molecular net-
works graphically. Based on a Systems Biology Graphical Notation 
(SBGN) standard, such programs use different symbols for vari-
ables (genes, proteins, and phenotypes); they allow for entering 
functions and reaction rates to defi ne the mathematical model, and 
subsequently support to execute the simulation. As part of these 
developments model sharing through using standardized formats 
such as Systems Biology Markup Language (SBML) and the use of 
model repositories (such as CellML or BioModels at EMBL-EBI) 
has become essential to advance the fi eld.  

  The mathematical equations resulting from graphical models are 
typically linear or nonlinear ordinary differential equations (ODE). 

2.3  Simulation 
and Prediction
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Each ODE represents one state variable and its change during each 
time step, which means for most systems several ODEs have to be 
solved at each time step. The connection to other state variables is 
expressed in any of the terms defi ning either an increase or decrease 
of the state variable, or expressed in auxiliary equations. Rate equa-
tions are solved by ODE solvers such as Euler, Runga-Kutta, or 
Stiff solvers. Stiff solvers with variable time steps are most adequate 
and computationally effi cient for systems that have a fl uctuating 
dynamic consisting of regimes of smooth change with more rapid 
changes. User-defi ned error thresholds will force the computation 
to take small step sizes when the system changes, and will relax the 
step size when the change is more linear, as demonstrated in Fig.  2  
for the parameter M.

   However, using classical mathematical modeling can pose limi-
tations. Not all parameters might be available, specifi cally if there is 
an understanding about the role of other factors, external 
 regulators, or interaction with other networks. The understanding 
of the topology of a network can grow more rapidly than the abil-
ity to quantify all required parameters. The two alternative 
approaches are Boolean logic [ 13 ] and Fuzzy-logic [ 14 ,  15 ]; 
both are used to develop rule-based representations. In these cases, 
the qualitative known regulatory mechanisms of interactions are 
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  Fig. 2    Example of a cell cycle simulation using the Goldbeter model. Shown are 
the oscillations of Cyclin (C), the maturation promoting factor (M), and the activity 
of the protease (X). As C increases, it activates M and X, which subsequently 
degrades C. The simulation has been performed with a stiff solver of variable 
step size, as demonstrated for M       
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implemented as defi ned rules into the model. Fuzzy-logic rule-based 
models can be adjusted to the granularity of available quantitative 
data; i.e., they can start with a low resolution (ON/OFF) but can 
be calibrated to a higher resolution if more discernable states 
are provided.  

  An objective analysis of the relevance of components and proper-
ties can be made once the model is complete. A mathematical rep-
resentation has the ability to identify how defi ned perturbations 
infl uence the overall behavior of the model. Such a computational 
task can be done repeatedly and iteratively in a manner not avail-
able in the wet laboratory. One goal could be to    identify state vari-
ables most amenable to experimental perturbation for the purpose 
of experimental model validation. Another goal could be to iden-
tify targets most suitable for intervention and drug development. 
In addition, it may be useful to identify unnecessary components 
in the overall model to reduce model complexity. A sensitivity 
 analysis, which allows a ranking of all model parameters, is the 
most commonly applied. In such an analysis, each parameter is 
changed by a defi ned degree, and compared to a defi ned output 
parameter. One defi nition is the Sensitivity Objective Function 
(SOF), a ration of % change in outcome and % change of rate. An 
example of a sensitivity analysis for the Goldbeter model is shown 
in Table  1 . V2 is the parameter with the greatest sensitivity out of 
all the parameters when the initial value is perturbed by 10 %, using 
the amount of C at the end of the calculation as a reference. This 
is the case because the V2 parameter is involved in the enzyme 
kinetics of reaction r5 ( see  Fig.  1 ), which determines the outfl ow or 
conversion of the active into the inactive form of MPF. As long as 
M is active, it activates the protease (r6 in Fig.  1 ), and herewith 
infl uences the cyclic behavior. V4, which is involved in reaction r7 
and represents degradation of the active protease, has the least 
effect on the simulation outcome, and requires a stronger pertur-
bation to cause a noticeable effect.

   The investigation of sensitivities can lead to broader questions 
such as robustness of the biological system. Robustness is a systems- 
level property, not determined by a single factor alone, but by the 
overall behavior of the system, its circuitry, and connectivity. 
Fluctuations can arise from stochastic effects in gene transcription 
and protein concentrations [ 16 ], as well as environmental pertur-
bations. A high sensitivity in certain parameters can make the sys-
tem fragile to specifi c perturbations, while the topology of a 
network can contribute to an enhancement of stability. It can be 
assumed that the evolved design of an essential process such as cell 
cycle regulation is stable and provides robustness against many 
common fl uctuations [ 17 ]. Thus, mathematical modeling has 
become an important tool to conveniently study and compare 
responses to perturbations and noise [ 18 – 21 ].   

2.4  Model Analysis
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3    Conclusions and Outlook 

 The reverse engineering of the cell cycle has been a successful 
enterprise in systems biology. The mathematical models can be 
executed conveniently and repeatedly to study the infl uence of specifi c 
or random perturbations. The model revisited here is minimalistic 
and had been chosen to demonstrate essential steps involved in the 
modeling process. The reader is referred to systems biology text-
books for an in-depth discussion of computational modeling and 
applications [ 22 – 25 ]. 

 The growing complexity of cell cycle models is mostly driven 
from experimental insights, and panels of genetically engineered 
strains in model organisms allow validation of hundreds of model 
parameters [ 26 ]. Current model development strides are designed 
to integrate cell cycle models into a larger scope of cellular mecha-
nisms and functions, which includes identifi cations of cell cycle 
regulators and checkpoints, which are hooks to connect other 
models representing signaling, transcriptional regulation, or 
metabolism [ 27 ,  28 ]. Functional and hierarchical modularity can 

   Table 1  
  Example of a sensitivity analysis using the mitotic oscillator model by 
Goldbeter   

 Perturbation 
target 

 End amount 
of cyclin 

 % Change 
in outcome  S.O.F 

 None  0.54  0  0 

 K1 (r4)  0.53  0.016  0.165 

 K2 (r5)  0.52  0.031  0.317 

 K3 (r6)  0.54  0.007  0.071 

 K4 (r7)  0.53  0.021  0.213 

 Kc (r4)  0.33  0.379  3.790 

 Kd (r3)  0.53  0.012  0.123 

 Kdd (r2)  0.53  0.011  0.113 

 V2 (r5)  0.06  0.880  8.800 

 V4 (r7)  0.54  0.006  0.058 

 Vd (r3)  0.56  0.043  0.428 

 VM1 (r4)  0.26  0.518  5.182 

 VM3 (r6)  0.51  0.050  0.496 

  Each parameter or constant involved in the molecular reactions is perturbed by 10 %. 
V2, part of the reaction r5 ( see  Fig.  1 ), is the most sensitive parameter, and V4, part of 
reaction r7, is the least sensitive.  
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keep the growing model complexity manageable [ 29 ]. Finally, 
such aggregated models will allow studying the involvement of the 
cell cycle regulation in development, aging, and disease.     
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