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Introduction

Transmissible spongiform encephalopathies (TSEs) or prion 
diseases are a group of rare disorders affecting several mamma-
lian species, including humans.1,2 These diseases could be inher-
ited or acquired by infection, although the vast majority of cases 
in humans are sporadic.3 The main histopathological features of 
these disorders include spongiform brain degeneration and the 
accumulation of an abnormally folded protein, termed PrPSc.1 
In humans, one every million people is estimated to be affected 
by these diseases each year.4 This proportion is higher in some 
animal species, for example, Chronic wasting disease (CWD) 
which affect deer and elk is now epidemic in the United States 
and some Canadian provinces.5 The high increase and spread of 
CWD cases have placed forward important concerns in terms of 
the mechanisms of transmission and the putative consequences 
it could have in the case of strain mutation when other species 
(including humans) are in contact with affected animals. A sim-
ilar scenario, has been observed previously for sheep affected by 
scrapie.6

Susceptibility to TSEs has been associated to several risk 
factors, such as polymorphisms in the host’s prion protein, 
age, gender, and environmental factors, among others.7-12 The 

influence of the gender on prion infectivity has been tested 
with somehow contradictory results.12-16 Whereas two studies 
showed no differences in the incubation periods between male 
and female mice after intra-cerebral (i.c.) injection of ME7 prion 
strain,14,16 another study showed longer incubation periods for 
males infected by i.c. and intra-peritoneal (i.p.) routes using the 
same agent.15 While some strains have shown a gender depen-
dency in their incubation periods, others have shown no effect.16 
Importantly, it has been established for vCJD that the age of 
onset is two years earlier in females than in males after stratifica-
tion of the cohort by birth.15

As previously mentioned, one of the most important ques-
tions yet to answer in the prion field involves the mechanisms 
of spread and transmission of the agent, especially in natural 
cases. It has been proposed that carcasses from prion infected 
animals as well as excreta (saliva, urine, feces, and placenta) car-
rying infectious prions could enter and progressively accumu-
late in the environment.17 Prions bind tightly to soil and remain 
infectious after years in this material.18-21 Another mechanism 
proposed involves maternal transmission. Several lines of evi-
dence have been provided for this route. For example, infectious 
material has been detected in placenta and mammary glands 
of infected dams.22,23 Moreover, the presence of the infectious 
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material has also been identified by protein misfolding cyclic 
amplification (PMCA) in fetuses.24 In addition, it has been 
reported that lambs from infected dams are in a significant 
risk to develop scrapie.25 Although many studies have shown a 
positive correlation between infected mothers and the chance to 
develop scrapie, embryo transfer experiments suggested that if 
a mother-to-offspring transmission exists, it happens post-natal 
during lambing or suckling.26 Many of the mother-to-offspring 
prion transmission studies done in sheep or rodents, involve the 
use of inter-species prion infection or PrP polymorphic vari-
ants that could mask the contribution of these routes on disease 
transmission.25-27 A potential route for prion transmission that 
remains poorly explored involves sexual contact. Although few 
studies have been done to explore the presence of infectious pri-
ons in semen from scrapie affected animals,28,29 no infectivity (at 
least to our knowledge) has been reported in testes or any other 
sexual tissue from male or female animals.

The purpose of this study is to investigate sexual and paren-
tal transmission of prions using a well-established animal model 
of prion diseases (Syrian hamster). Experimental subjects were 
infected with the well-characterized 263K prion strain that has 
been previously reported to have PrPSc widely disseminated in 
several peripheral tissues.30,31

Results

Male and female Golden Syrian hamsters (Mesocricetus  
auratus) were i.p. inoculated with the 263K prion strain (Fig. 1A; 
Table 1). The female group showed clinical signs and incuba-
tion periods consistent with previous results obtained in our lab. 
Interestingly, males showed significantly longer incubation peri-
ods (~14%) compared with females (Fig. 2). Both groups were 
injected at the same age and date with the same 263K source, 
minimizing the chances of variability. These results, which were 
in agreement with previous reports in some mouse15,16 and ham-
ster12 prions strains as well as epidemiological data on vCJD,15 
suggest that males have a lower susceptibility to prion infectivity 
than females.

Sexual related organs including testes, uteruses and ovaries 
were collected from terminally sick male and female subjects and 
their PrP27-30 content was analyzed by western blot (WB) and 
PMCA. As shown in Figure 3A, the disease-associated form of 
the protein was absent in the sexual organs analyzed. To fur-
ther study the presence of low concentrations of PrPSc in these 
tissues, we subjected the samples to PMCA. One or 2 rounds 
of PMCA cycles did not show any positive signal in the sexual 
organs (Fig.  3B). As a control, eyes and intestines were also 
tested for their PrPSc content, showing positive results even in the 
first round of PMCA. Our positive control using serial dilutions 
of 263K infected hamsters brain, showed that after 2 rounds 
of PMCA we were able to detect the equivalent to a 10-12 brain 
dilution (Fig. 3C), which is ~1000–10 000 times lower than the 
last dilution expected to cause disease by the i.c. route.32 The 
level of amplification using the current, optimized PMCA set-
ting is substantially more sensitive than the previous versions of 
the PMCA technology,31,33,34 and permits much faster detection, 

minimizing the possibility for cross-contamination. Un-seeded 
PMCA controls, done in 8 replicates, did not show presence of 
contamination/de novo PrPSc generation (Fig. 3D).

To investigate the putative transmission of prions through 
sexual contact, we arranged breeding groups using selected 
263K infected and un-infected hamsters (Fig.  1). Two of the 
experimental groups described in this study involved the use 
of symptomatic males and females at 110 d post inoculation 
(dpi), which were bred with un-infected subjects. Another group 
involved breeding of un-infected males with infected females 
before showing clinical signs (70 dpi). The objectives of the 
first two groups were to (1) evaluate the possibility of transmis-
sion after sexual contact with individuals reaching the clinical 
stages of the disease, and (2) in the case of the groups involving 
the infected male and un-infected female, see the possibility of 
paternal transmission to new pups. For the experiment involv-
ing the pre-symptomatic mother, the purposes were to evaluate  
(1) whether an individual incubating the disease could trans-
mit the illness to sexual partners, and (2) maternal transmis-
sion, allowing enough time for these mothers to carry and feed 
their pups before succumbing to prion pathology. As shown in 
Table 1, breeding was successful in 88.8% of early-symptomatic 
(males) or pre-symptomatic (females) animals (8/9; Table  1). 
However, due to the specific signs of the 263K strain (including 
aggressiveness and hyper-sensitivity to tact, among others) only 
1 out of 4 un-infected males were able to mate with symptomatic 
females. All un-infected sexual partners and pups were observed 
for clinical signs for ≥500 d after sexual contact or days of age, 
respectively. None of the un-infected sexual partners, nor any 
of the pups, showed any type of prion associated clinical signs 
during the course of the experiment (Table  1). After sacrific-
ing, brain samples were collected from all experimental subjects 
and the presence of sub-clinical prion disease was evaluated by 
analyzing the content of PrP27-30 by WB and PMCA. As shown 
in Figure 4, all results were negative. Importantly, PMCA effi-
ciency in the setting used for this specific experiment was the 
same as the one depicted in Figure 3, i.e., capable to detect up to 
a 10-12 dilution of 263K brain homogenate, which corresponds 
to the equivalent of a single particle of PrPSc.34

Discussion

One of the main concerns in the prion field is the elucida-
tion of the mechanisms responsible for the spreading of natu-
ral prion diseases. Currently, several hypotheses have been 
proposed, including: horizontal transmission through direct 
contact,17 environmental contamination,17 spread by scaven-
gers,35,36 and sexual and parental exposure.25,27,29,37 Related to the 
vertical routes, many reports involved inter-species and inter- 
polymorphic prion transmissions, which confuse the interpreta-
tion of the results due to the barriers and strain variation expected 
to appear as a consequence.38

The main purpose of this work was to evaluate a possible sex-
ual and parental transmission of prion disease using a cloned and 
widely characterized prion strain (263K) in the homologous spe-
cies (Syrian hamster). Experimentally infected hamsters have been 
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extensively used in prion research and are considered an excellent 
disease model. In addition, 263K prions have been proved to be 
widely disseminated in peripheral tissues,30,31 which accumulate 
the infectious agent even before animals show any clinical sign 
of the disease.39 In order to increase the chances of peripheral 
dissemination, animals were i.p. injected. Infected subjects were 
analyzed for the appearance of prion disease, as well as their 
potential to transmit the disease by sexual contact or to their 
progeny.

Our results showed that males exhibit a significantly longer 
incubation period than females when both genders were infected 
with the same quantity and under the same conditions (Fig. 2). 
As previously mentioned, these results were consistent with those 
previously reported by Kimberlin and Walker,12 as well as for 
other rodent prion models,15,16 and vCJD cases in humans.15 One 
of these reports suggested that androgens might be responsible for 
the delayed disease onset in males.15 It is important to mention 
that the PrP levels and other neuropathological changes were not 
different between males and females, regardless of the incubation 
periods.16 Although our results showed a clear difference in the 
incubation periods between males and females, it is possible that 
the gender effect in prion disease could be strain dependent.

The next aim was to investigate whether the prion infec-
tious agent was present in sexually-related organs. Our results 

showed no presence of the infectious agent by WB and PMCA in 
testes, ovaries and uteruses (Fig. 3). Our PMCA detection limit 
after 2 rounds of the optimized technology reached an equivalent 

Figure 1. Breeding schemes and experimental groups. Three experimental groups were designed in order to investigate a possible sexual and parental 
transmission of prion disease. (A) Male and female hamsters were i.p. injected with 263K prions. Animals were sacrificed at stage 4 of the disease as previ-
ously reported46 and sexual organs were collected to assess PrPSc content by WB and PMCA. (B) Breeding pairs using different combinations of infected 
and un-infected males and females were set in order to assess a putative prion transmission by sexual contact. (C) Pups generated from breeding in  
(B) were kept and observed for appearance of prion disease.

Figure 2. Survival curves of intra-peritoneally infected 263K male and 
female Syrian hamsters. ~40 d old male (n = 10) and female (n = 11)  
hamsters were intra-peritoneally infected with 263K prions as described 
in Materials and Methods. Animals were sacrificed at advanced stage 
of clinical disease. Numbers in parenthesis note average incubation  
periods ± standard error. Survival curves were significantly different  
(P value = 0.0007).
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to a 10–12 brain dilution, which according to mathematical esti-
mations would contain between 20–50 units of PrP monomers, 
which would be in the expected range for a single particle of PrPSc 
oligomer.34 Thus, the lack of detection by PMCA suggests that 
no molecules of the infectious agent were present in these tissues. 
Although, we cannot rule out the presence of PMCA inhibitors 
in the tissues analyzed that could make PMCA less efficient, we 
processed the samples with sarkosyl coupled to ultracentrifuga-
tion, a procedure that has been previously described to reduce 
the concentration of blood components and other molecules able 
to interfere with in vitro prion replication by PMCA.32,40 The 
known low levels of PrPC expression present in many periph-
eral tissues may provide a possible explanation for the lack of 
PrPSc presence in these organs. A previous study showed that 
although PrPC levels in the hamster ovaries have been described 
as undetectable by WB, testes exhibit a detectable signal, similar 
to the one found for intestines.41 Interestingly, in our study we 
observed a clear PrPSc signal in intestines (Fig. 3B), suggesting 
that the low level of PrPC expression does not completely explain 
the lack of prions in sexual organs. The results presented in this 
report show no indication of sexual transmission of 263K prions. 
Sub-clinical disease was also discarded by the negative results 
obtained after WB and PMCA assessment.

Another possible mechanism of prion spread between ani-
mals involves a parents-to-offspring transmission. In our experi-
ment, pups coming from both, infected mothers or fathers 
did not generate clinical or sub-clinical prion disease (Fig. 4B  
and D). In the case of pups from infected fathers, previous stud-
ies in sheep suggested that lambs coming from infected rams are 
not at increased risk of scrapie.25 However, risk strongly increases 
when dams were clinically or sub-clinically affected by the dis-
ease.25 Previous reports indicated that a possible maternal trans-
mission of prions occurs after birth and not during gestation.26,42 
In our experiment, infected mothers were bred before showing 
clinical signs in order to allow sufficient time for gestation and 
feeding the pups, before the terminal stage of the disease. All 
mothers included in this part of the experiment showed signs 
after delivery and fed pups at their clinical stage. Other experi-
ments have shown the presence of protease resistant PrP and 
infectivity in the mammary glands and milk of sheep suffer-
ing from mastitis,22,43 event that could increase the chances of 
prion transmission to newborns. Inflammation processes in the 
mammary glands of female hamsters were not included in this 
study. Although the presence of PrPSc has been recently reported 
in sheep fetuses by PMCA,24 it was not addressed whether the 
agent was present in quantities sufficient to cause disease. Our 

Figure 3. Western blotting and PMCA assessment of PrPSc in sexual organs. Male and female 263K infected hamsters were sacrificed at the clinical stage 
of the disease and sexual organs (ovaries, uteruses and testes) were collected. (A) WB analyses of PK treated tissue homogenates from selected animals. 
(B) PMCA analyses of same organs showed in (A) plus ocular and intestinal tissue homogenates. For space constrains, the results of 2 representative 
animals of the 10 studied are shown (1 and 2). (C) PMCA of brain dilutions from a sarkosyl cleared brain homogenate used as a positive control of in vitro 
amplification. (D) Un-seeded PMCA reaction used as a negative control. All PMCA generated samples (B–D) were PK treated before WB. PrPC correspond 
to brain homogenates from healthy hamsters (no PK treated) used as a control of electrophoretic mobility. Black horizontal lines at the right of each gel 
represent a 26 KDa molecular weight marker. Dotted line depicts splicing of two different gels. Numbers in (B) and (D) indicate samples from different 
animals.
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negative results are consistent with the lack of disease in people 
born from CJD-affected mothers.44,45

Although our in vitro analysis of the animals confirmed 
the in vivo results, the limited number of subjects used in our 
experiments does not permit to rule out a low level of transmis-
sion by sexual or parental routes. We also cannot rule out that 
distinct results may be obtained using a different host or prion 
strain, considering the widely known differences of tropisms and 
peripheral distribution of diverse prion strains.

Materials and Methods

Inoculum preparation and characterization
263K prions were obtained from the brain of a clinically sick 

(stage 4 of the disease, as described below) animal produced 
by i.p. prion infection. Frozen brain was homogenized at 10% 
(w/v) in phosphate buffer (PBS; HyClone. SH30256.01) con-
taining a cocktail of protease inhibitors (Roche, 11697498001). 
Homogenate was spun down at 805 g for 45 s and resulting pel-
let was discarded. Presence of PrP27-30 was confirmed by WB as 
explained below. Samples were stored at –20 °C.

Hamster inoculation, breeding procedures, and weaning
Syrian Golden hamsters (Mesocricetus auratus) were obtained 

from Harlan®. An amount of 100 µL of 263K brain homog-
enate were i.p. injected into ~40 d old male (n = 10) and female  
(n = 11) hamsters. Animals were evaluated 5 d per week for 
appearance of prion clinical signs as previously described.46 
Briefly, clinical signs were assessed using the following scoring 

system: (1), normal animal; (2), mild behavioral abnormali-
ties including hyperactivity and hypersensitivity to noise;  
(3), moderate behavioral problems including head tremors, 
ataxia, wobbling gait, head bobbing, irritability, and aggressive-
ness; (4), severe behavioral abnormalities including all of the 
above plus head and body jerks and spontaneous backrolls; and 
(5), terminal stage of the disease in which the animal lies in the 
cage and is no longer able to stand up. Animals staying at stage 
4 for longer than 1 week were sacrificed by CO

2
 inhalation and 

tissues were collected for histopathological analyses. Incubation 
periods were defined from injection to sacrifice. Selected 263K 
infected male and female hamsters were bred with non-infected 
animals (~60 d old) in different groups (Fig. 1). (1) non-infected 
females × infected males at 110 d post-inoculation (dpi) (early 
stage of prion disease); (2) non-infected males × infected females 
at 70 dpi (pre-symptomatic stage, without clinical signs); and  
(3) non-infected males × infected females at 110 dpi (early/
medium stage 2 of prion disease). Breeding was performed by 
placing together 1 male and 1 female in a clean cage for ~1h, 
repeating the process for 2 weeks. Females were receptive for 
breeding approximately every 4 d. They were identified by a 
thick secretion in the genital area and by breeding posture (low-
ering their chests and raising their tails) when in contact with 
males. When sexual contact was positive, it occurred repeatedly 
over the session. Animals were housed in groups of 5. Pregnant 
females were separated from cage mates as soon as identified 
and weaning of pups was performed 21 d after birth (separated 
by gender). Un-infected subjects and pups were observed for 

Table 1. Summary of groups, conditions and results obtained

Source of infection Breeding group Sex Sick/total animals
Animal death¥ 

(days post inoculation/contact)

263K brain homogenate None Male 10/10 140.5 ± 4.7

263K brain homogenate None Female 11/11 127.3 ± 7.0

Sexual Contact
symptomatic male × 

uninfected female
Female 0/4 337*, 342*, 475*, 500

Sexual Contact
uninfected male × pre-
symptomatic femaleφ Male 0/5 255*, 430*, 476*, 555, 559

Sexual Contact
uninfected male × 

symptomatic femaleδ Male 0/4 548, 548, 548, 548

Father-to-offspring
symptomatic male × 

uninfected female
Male 0/5 556, 556, 556, 553, 553

Father-to-offspring
symptomatic male × 

uninfected female
Female 0/5 494*, 553, 553, 556, 556

Mother-to-offspring
uninfected male × pre-

symptomatic female
Male 0/9

556, 556, 556, 556, 560, 
560, 560, 560, 560

Mother-to-offspring
uninfected male × pre-

symptomatic female
Female 0/9

535, 543, 563, 563, 563, 
563, 563, 564, 564

¥Values showed underscored indicate the time in which animals were sacrificed with clinical signs of terminal prion disease. Numbers bolded indicate the 
times in which animals were sacrificed without signs of the disease. *Animal was sacrificed before experimental endpoint (≥500 d after inoculation/contact) 
due to non-prion related health issues. No prion clinical signs observed at the moment of sacrificing. fOut of the 5 uninfected males that were in contact 
with pre-symptomatic females, only 4 had effective sexual contact. δOut of the 4 uninfected males that were in contact with symptomatic females, only 1 
had effective sexual contact.
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clinical signs ≥500 after contact or birth, respectively. Animals 
were sacrificed by CO

2
 inhalation and tissues were collected, 

stored at –80 °C, and used for WB and PMCA analyses. Some 
animals were sacrificed before the experimental endpoint due to 
health issues unrelated to prion infection. All animal procedures 
were in agreement with NIH guidelines and approved by the 
Animal Welfare Committee of the University of Texas Medical 
School at Houston.

Western blotting of PrP27-30

Western blotting of PrP27-30 was performed as previously 
described.40 Briefly, 10% w/v brain homogenates were prepared 
as mentioned above and 19 µL of the sample were mixed with pro-
teinase K (PK) (Sigma-Aldrich, P2308) at 50 µg/mL final concen-
tration. Samples were digested for 1h at 37 °C in an Eppendorf® 
Thermomixer (450 rpm). PK reaction was stopped by adding  
10 µL of LDS (4×) loading buffer (Invitrogen,) and samples were 
fractionated in NuPAGE gels (Invitrogen, NP0321BOX). Gels 
were transferred to nitrocellulose membranes (GE Healthcare, 

RPN303D) and probed with the 6D11 monoclonal antibody 
(Covance, SIG-39810). After incubation with secondary anti-
body (GE Healthcare, NA931V) and washing, PrP27-30 was visu-
alized by chemoluminescence using ECL plus (GE Healthcare, 
RPN2132) in a dark chamber (BioRad®).

PMCA assay
A detailed explanation of the PMCA procedures can be 

reviewed in Morales et al.40 For tissues from infected animals, 
samples were homogenized at 10% w/v and 1 mL was mixed 
with the same volume of a 20% sarkosyl solution (prepared in 
water) and concentrated by ultracentrifugation (146 000 g for 
1 h at 4 °C) in a L8-70M Beckman-Coulter® ultracentrifuge. 
Supernatant was discarded and pellet was washed (without resus-
pension) with 2 mL of PBS. A new centrifugation procedure was 
performed at the same speed and temperature explained above 
for 30 min. Pellets were resuspended in 100 µL hamster PMCA 
substrate and 2 rounds of PMCA were performed. In order to 
dissociate pellets, the first PMCA round was performed for  

Figure 4. Biochemical assessment of PrPSc after sexual and parental prion contact. Brain homogenates from males and females having sexual contact 
with infected animals were tested for WB (A) and PMCA (C). The brain of the uninfected animal depicted in the breeding is the one tested for PrP27-30 by 
either WB or PMCA. Brain homogenates of pups coming from infected mothers or fathers were also tested by WB (B) and PMCA (D). All PMCA gener-
ated samples (C, D) were PK treated before WB. The samples showed in panel d correspond to the brain of either male or females born from the breed-
ing illustrated in the respective blot. 263K brain and PrPC (PK and non-PK treated, respectively) corresponds to brain homogenates from infected and 
healthy hamsters used as a control of electrophoretic mobility. Black horizontal lines at the right of each gel represent a 26 KDa molecular weight marker. 
Numbers 1 and 2 in (A) and (B) and samples 1 and 2 in panels (C) and (D) indicate samples coming from different animals, which are representative of 
all animals analyzed.
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72 h. Second round was performed for 24 h. An amount of  
10 µL of brain homogenates from un-infected breeding partners 
and offspring was mixed with 90 µL of hamster PMCA sub-
strate and submitted to 2 PMCA rounds (48 h each). Positive 
control consisted of a serially diluted “sarkosyl cleared” 263K 
brain homogenate.31,40 Unseeded PMCA reactions were used to 
control contamination/de novo generation of prions. Presence of 
PMCA amplified PrPSc was evaluated by WB after PK digestion 
as explained above.

Statistical analysis
Data were expressed as means ± standard error (SEM). 

Log-rank (Mantel-Cox) test was used to determine differences 
among the groups using the Graph Pad prism software, version 
5.0. Statistical differences were considered significant for values 
of P < 0.05.
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