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Summary

Natural vision often involves recognizing objects from partial information. Recognition of objects

from parts presents a significant challenge for theories of vision because it requires spatial

integration and extrapolation from prior knowledge. Here we recorded intracranial field potentials

of 113 visually selective electrodes from epilepsy patients in response to whole and partial objects.

Responses along the ventral visual stream, particularly the Inferior Occipital and Fusiform Gyri,

remained selective despite showing only 9–25% of the object areas. However, these visually

selective signals emerged ~100 ms later for partial versus whole objects. These processing delays

were particularly pronounced in higher visual areas within the ventral stream. This latency

difference persisted when controlling for changes in contrast, signal amplitude, and the strength of

selectivity. These results argue against a purely feed-forward explanation of recognition from

partial information, and provide spatiotemporal constraints on theories of object recognition that

involve recurrent processing.
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Introduction

During natural viewing conditions, we often have access to only partial information about

objects due to limited viewing angles, poor luminosity or occlusion. How the visual system

can recognize objects from limited information while still maintaining fine discriminability

between like objects remains poorly understood and represents a significant challenge for

computer vision algorithms and theories of vision.

Visual shape recognition is orchestrated by a cascade of processing steps along the ventral

visual stream (Connor et al., 2007; Logothetis and Sheinberg, 1996; Rolls, 1991; Tanaka,

1996). Neurons in the highest echelons of the macaque monkey ventral stream, the inferior

temporal cortex (ITC), demonstrate strong selectivity to complex objects (Ito et al., 1995;

Miyashita and Chang, 1988; Richmond et al., 1983; Rolls, 1991). In the human brain,

several areas within the occipital-temporal lobe showing selective responses to complex

shapes have been identified using neuroimaging (Grill-Spector and Malach, 2004; Haxby et

al., 1991; Kanwisher et al., 1997; Taylor et al., 2007) and invasive physiological recordings

(Allison et al., 1999; Liu et al., 2009; Privman et al., 2007). Converging evidence from

behavioral studies (Kirchner and Thorpe, 2006; Thorpe et al., 1996), human scalp

electroencephalography (Thorpe et al., 1996), monkey (Hung et al., 2005; Keysers et al.,

2001; Optican and Richmond, 1987) and human (Allison et al., 1999; Liu et al., 2009)

neurophysiological recordings has established that selective responses to and rapid

recognition of isolated whole objects can occur within 100 ms of stimulus onset. As a first-

order approximation, the speed of visual processing suggests that initial recognition may

occur in a largely feed-forward fashion, whereby neural activity progresses along the

hierarchical architecture of the ventral visual stream with minimal contributions from

feedback connections between areas or within-area recurrent computations (Deco and Rolls,

2004; Fukushima, 1980; Riesenhuber and Poggio, 1999).

Recordings in ITC of monkeys (Desimone et al., 1984; Hung et al., 2005; Ito et al., 1995;

Logothetis and Sheinberg, 1996) and humans (Liu et al., 2009) have revealed a significant

degree of tolerance to object transformations. Visual recognition of isolated objects under

certain transformations such as scale or position changes do not incur additional processing

time at the behavioral or physiological level (Biederman and Cooper, 1991; Desimone et al.,

1984; Liu et al., 2009; Logothetis et al., 1995) and can be described using purely bottom-up

computational models. While bottom-up models may provide a reasonable approximation

for rapid recognition of whole isolated objects, top-down as well as horizontal projections

abound throughout visual cortex (Callaway, 2004; Felleman and Van Essen, 1991). The

contribution of these projections to the strong robustness of object recognition to various

transformations remains unclear. In particular, recognition of objects from partial

information is a difficult problem for purely feed-forward architectures and may involve

significant contributions from recurrent connections as shown in attractor networks

(Hopfield, 1982; O’Reilly et al., 2013) or Bayesian inference models (Lee and Mumford,

2003).

Previous studies have examined the brain areas involved in pattern completion with human

neuroimaging (Lerner et al., 2004; Schiltz and Rossion, 2006; Taylor et al., 2007), the
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selectivity of physiological signals elicited by partial objects (Issa and Dicarlo, 2012;

Kovacs et al., 1995; Nielsen et al., 2006; Rutishauser et al., 2011) and behavioral delays

when recognizing occluded or partial objects (Biederman, 1987; Brown and Koch, 2000;

Johnson and Olshausen, 2005). Several studies have focused on amodal completion, i.e., the

linking of disconnected parts to a single ‘gestalt’, using geometric shapes or line drawings

and strong occluders that provided depth cues (Brown and Koch, 2000; Chen et al., 2010;

Johnson and Olshausen, 2005; Murray et al., 2001; Nakayama et al., 1995; Sehatpour et al.,

2008). In addition to determining that different parts belong to a whole, the brain has to

jointly process the parts to recognize the object (Gosselin and Schyns, 2001; Nielsen et al.,

2006; Rutishauser et al., 2011), which we study here.

We investigated the spatiotemporal dynamics underlying object completion by recording

field potentials from intracranial electrodes implanted in epilepsy patients while subjects

recognized objects from partial information. Even with very few features present (9–25% of

object area shown), neural responses in the ventral visual stream retained object selectivity.

These visually selective responses to partial objects emerged about 100ms later than

responses to whole objects. The processing delays associated with interpreting objects from

partial information increased along the visual hierarchy. These delays stand in contrast to

position and scale transformations. Together, these results argue against a feed-forward

explanation for recognition of partial objects and provide evidence for the involvement of

highest visual areas in recurrent computations orchestrating pattern completion.

Results

We recorded intracranial field potentials (IFPs) from 1,699 electrodes in 18 subjects (11

male, 17 right-handed, 8–40 years old) implanted with subdural electrodes to localize

epileptic seizure foci. Subjects viewed images containing grayscale objects presented for

150 ms. After a 650 ms delay period, subjects reported the object category (animals, chairs,

human faces, fruits, or vehicles) by pressing corresponding buttons on a gamepad (Figure

1A). In 30% of the trials, the objects were unaltered (referred to as the ‘Whole’ condition).

In 70% of the trials, partial object features were presented through randomly distributed

Gaussian “bubbles” (Figure 1B, Experimental Procedures, referred to as the ‘Partial’

condition) (Gosselin and Schyns, 2001). The number of bubbles was calibrated at the start of

the experiment such that performance was ~80% correct. The number of bubbles (but not

their location) was then kept constant throughout the rest of the experiment. For 12 subjects,

the objects were presented on a gray background (the ‘Main’ experiment). While contrast

was normalized across whole objects, whole objects and partial objects had different

contrast levels because of the gray background. In 6 additional subjects, a modified

experiment (the ‘Variant’ experiment) was performed where contrast was normalized

between whole and partial objects by presenting objects on a background of phase-

scrambled noise (Figure 1B).

The performance of all subjects was around the target correct rate (Figure 1C, 79%±7%,

mean±SD). Performance was significantly above chance (Main experiment: chance = 20%,

5-alternative forced choice; Variant experiment: chance = 33%, 3-alternative forced choice)

even when only 9–25% of the object was visible. As expected, performance for the whole
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condition was near ceiling (95±5%, mean±SD). The analyses in this manuscript were

performed on correct trials only.

Object selectivity was retained despite presenting partial information

Consistent with previous studies, multiple electrodes showed strong visually selective

responses to whole objects (Allison et al., 1999; Davidesco et al., 2013; Liu et al., 2009). An

example electrode from the ‘Main’ experiment, located in the Fusiform Gyrus, had robust

responses to several exemplars in the Whole condition, such as the one illustrated in the first

panel of Figure 2A. These responses could also be observed in individual trials of face

exemplars (gray traces in Figure 2A, Figure 2B left). This electrode was preferentially

activated in response to faces compared to the other objects (Figure 2C, left). Responses to

stimuli other than human faces were also observed, such as the responses to several animal

(red) and fruit (orange) exemplars (Figure S1B).

The responses in this example electrode were preserved in the Partial condition, where only

11±4% (mean±SD) of the object was visible. Robust responses to partial objects were

observed in single trials (Figure 2A and 2B right). These responses were similar even when

largely disjoint sets of features were presented (e.g., compare Figure 2A, third and fourth

images). Because the bubble locations varied from trial to trial, there was significant

variability in the latency of the visual response (Figure 2B, right); this variability affected

the average responses to each category of partial objects (Figure 2C, right). Despite this

variability, the electrode remained selective and kept the stimulus preferences at the

category and exemplar level (Figure 2C and S1B).

The responses of an example electrode from the ‘Variant’ experiment support similar

conclusions (Figure 3). Even though only 21%±4% (mean±SD) of the object was visible,

there were robust responses in single trials (Figure 3A–B), and strong selectivity both for

whole objects and partial objects at the category and exemplar level (Figures 3C and S1C).

While the selectivity was consistent across single trials, there was significantly more trial-to-

trial variation in the timing of the responses to partial objects compared to whole objects

(Figure 3B, top right).

To measure the strength of selectivity, we employed two approaches. The first approach

(‘ANOVA’) was a non-parametric one-way analysis of variance test to evaluate whether and

when the average category responses differed significantly. An electrode was denoted

“selective” if, during 25 consecutive milliseconds, the ratio of variances across versus within

categories (F-statistic) was greater than a significance threshold determined by a

bootstrapping procedure to ensure a false discovery rate q<0.001 (F = 5.7) (Figure 2D, 3D).

Similar results were obtained when considering d′ as a measure of selectivity

(Experimental Procedures). The ANOVA test evaluates whether the responses are

statistically different when averaged across trials, but the brain needs to discriminate among

objects in single trials. To evaluate the degree of selectivity in single trials, we employed a

statistical learning approach to measure when information in the neural response became

available to correctly classify the object into one of the five categories (denoted ‘Decoding’;

Figure 2E, chance = 20%; Figure 3E, chance = 33%). An electrode was considered
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“selective” if the decoding performance exceeded a threshold determined to ensure q <

0.001 (Experimental Procedures).

Of the 1,699 electrodes, 210 electrodes (12%) and 163 electrodes (10%) were selective

during the Whole condition in the ANOVA and Decoding tests, respectively. We focused

subsequent analyses only on the 113 electrodes selective in both tests, (83 from the main

experiment and 30 from the variant; Table 1). As a control, shuffling the object labels

yielded only 2.78±0.14 selective electrodes (mean±s.e.m., 1,000 iterations; 0.16% of the

total). Similar to previous reports, the preferred category of different electrodes spanned all

five object categories, and the electrode locations were primarily distributed along the

ventral visual stream (Figure 4E–F) (Liu et al., 2009). As demonstrated for the examples in

Figures 2 and 3, 30 electrodes (24%) remained visually selective in the Partial condition

(Main experiment: 22; Variant experiment: 8) whereas the shuffling control yielded an

average of 0.06 and 0.04 selective electrodes in the Main and Variant experiments

respectively (Table 1).

The examples in Figure 2C and 3C seem to suggest that the response amplitudes were larger

in the Whole condition. However, this effect was due to averaging over trials and the

increased trial-to-trial variability in the response latency for the Partial condition. No

amplitude changes are apparent in the single trial data (Figure 2B and 3B). The range of the

IFP responses to the preferred category from 50 to 500 ms was not significantly different for

whole versus partial objects (Figure 4A, p=0.68, Wilcoxon rank-sum test). However, the

strength of category selectivity was suppressed in the Partial condition. The median F-

statistic was 23 for the Whole condition and 14 for the Partial condition (Figure 4B, p<10−4,

Wilcoxon signed-rank test, an F-statistic value of 1 indicates no selectivity). The median

decoding performance was 33% for the Whole condition and 26% for the Partial condition

(Figure 4C, p<10−4, Wilcoxon signed-rank test). Because the Variant experiment contained

only three categories, measures of selectivity such as the F-statistic or Decoding

Performance are scaled differently from the Main experiment, so Figure 4A–D only shows

data from the Main experiment. Analysis of the electrodes in the Variant experiment

revealed similar conclusions.

The observation that even non-overlapping sets of features can elicit robust responses (e.g.,

third and fourth panel in Figure 2A) suggests that the electrodes tolerated significant trial-to-

trial variability in the visible object fragments. To quantify this observation across the

population, we defined the percentage of overlap between two partial images of the same

object by computing the number of pixels shared by the image pair divided by the object

area (Figure 4D, insert). We considered partial images where the response to the preferred

category was highly discriminable from the response to the non-preferred categories

(Experimental Procedures). Even for these trials with robust responses, 45% of the 10,438

image pairs had less then 5% overlap, and 11% of the pairs had less than 1% overlap (Figure

4D). Furthermore, in every electrode, there existed pairs of robust responses where the

partial images had <1% overlap.

To compare different brain regions, we measured the percentage of electrodes in each gyrus

that were selective in either the Whole condition or in both conditions (Figure 4E–F).
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Consistent with previous reports, electrodes along the ventral visual stream were selective in

the Whole condition (Figure 4F, black bars) (Allison et al., 1999; Davidesco et al., 2013; Liu

et al., 2009). The locations with the highest percentages of electrodes selective to partial

objects were primarily in higher visual areas, such as the Fusiform Gyrus and Inferior

Occipital Gyrus (Figure 4F, gray bars, p = 2×10−6 and 5×10−4 respectively, Fisher’s exact

test). In sum, electrodes in the highest visual areas in the human ventral stream retained

visual selectivity to partial objects, their responses could be driven by disjoint sets of object

parts and the response amplitude but not the degree of selectivity was similar to that of

whole objects.

Delayed responses to partial objects

In addition to the changes in selectivity described above, the responses to partial objects

were delayed compared to the corresponding responses to whole objects (e.g. compare

Whole versus Partial in the single trial responses in Figure 2A–B and 3A–B). To compare

the latencies of responses to Whole and Partial objects, we measured both selectivity latency

and visual response latency. Selectivity latency indicates when sufficient information

becomes available to distinguish among different objects or object categories, whereas the

response latency denotes when the visual response differs from baseline (Experimental
Procedures).

Quantitative estimates of latency are difficult because they depend on multiple variables,

including number of trials, response amplitudes and thresholds. Here we independently

applied different measures of latency to the same dataset. The selectivity latency in the

responses to whole objects for the electrode shown in Figure 2 was 100±8 ms (mean ± 99%

CI) based on the first time point when the F-statistic crossed the statistical significance

threshold (Figure 2D, black arrow). The selectivity latency for the partial objects was 320±6

ms (mean ± 99% CI), a delay of 220 ms. A comparable delay of 180 ms between partial and

whole conditions was obtained using the single-trial decoding analyses (Figure 2E). Similar

delays were apparent for the example electrode in Figure 3.

We considered all electrodes in the Main experiment that showed selective responses to both

whole objects and partial objects (n=22). For the responses to whole objects, the median

latency across these electrodes was 155 ms, which is consistent with previous estimates

(Allison et al., 1999; Liu et al., 2009). The responses to partial objects showed a significant

delay in the selectivity latency as measured using ANOVA (median latency difference

between Partial and Whole conditions = 117 ms, Figure 5A, black dots, p < 10−5) or

Decoding (median difference = 158 ms, Figure 5B, black dots, p < 10−5). Similar effects

were observed when considering two-class selectivity metrics such as d′ (Figure S4A–B).

We examined several potential factors that might correlate with the observed latency

differences. Stimulus contrast is known to cause significant changes in response magnitude

and latency across the visual system (e.g. (Reich et al., 2001; Shapley and Victor, 1978)). As

noted above, there was no significant difference in the response magnitudes between Whole

and Partial conditions (Figure 4A). Furthermore, in the Variant experiment, where all the

images had the same contrast, we still observed latency differences between conditions
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(median difference = 73 ms (ANOVA), Figure 5A, and median difference = 93 ms

(Decoding), Figure 5B, gray circles).

Because the spatial distribution of bubbles varied from trial to trial, each image in the Partial

condition revealed different visual features. As a consequence, the response waveform

changed from trial to trial in the partial condition (e.g. compare the strikingly small trial-to-

trial variability in the responses to whole objects with the considerable variability in the

responses to partial objects, Figure 3B). Yet, the latency differences between Whole and

Partial conditions were apparent even in single trials (e.g. Figure 2A, 3A). These response

latencies depended on the sets of features revealed on each trial. In a subset of trials where

we presented repetitions of partial objects with one fixed position of bubbles (the ‘Partial

Fixed’ condition), the IFP timing was more consistent across trials (Figure 3C, right

bottom), but the latencies were still longer for partial objects than for whole objects.

To further investigate the role of stimulus heterogeneity, we measured the response latency

in each trial by determining when the IFP amplitude exceeded a threshold set as three

standard deviations above the baseline activity (Figure 2F, 3F). The average response

latencies in the Whole and Partial condition for the preferred category for the first example

electrode were 172 and 264 ms respectively (Figure 2F, Wilcoxon rank-sum test, p < 10−6).

The distribution of response latencies in the Whole condition was highly peaked (Figure 2F,

3F), whereas the distribution of latencies in the Partial condition showed a larger variation,

driven by the distinct visual features revealed in each trial. This effect was not observed in

all the electrodes; some electrodes showed consistent, albeit delayed, latencies across trials

in the Partial condition (Figure S3). Across the population, delays were observed in the

visual response latencies (Figure 5C, rank-sum test, p < 10−15), even when the latencies

were measured with only the most selective responses (Figure S6).

We asked whether the observed delays could be related to differences in the IFP response

strength or the degree of selectivity by conducting an analysis of covariance (ANCOVA).

The latency difference between conditions was significant even when accounting for

differences in IFP amplitude (p < 10−9) or strength of selectivity (p < 10−8). Additionally,

subpopulations of electrodes with matched-amplitude or matched-selectivity still showed

significant differences in the selectivity latency (Figure 5D and Figure 5E).

Even though the average amplitudes were similar for whole and partial objects (Figure 4A),

the variety of partial images could include a wider distribution with weak stimuli that failed

to elicit a response. To further investigate whether such potential weaker responses could

contribute to the latency differences, we performed two additional analyses. First, we

subsampled the trials containing partial images to match the response amplitude distribution

of the whole objects for each category. Second, we identified those trials where the decoder

was correct at 500 ms and evaluated the decoding dynamics before 500 ms under these

matched performance conditions. The selectivity latency differences between partial and

whole objects remained when matching the amplitude distribution or the decoding

performance (p <10−5, Figure S4,C–D; p<10−7, Figure S4,E–G).
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Differences in eye movements between whole and partial conditions could potentially

contribute to latency delays. We minimized the impact of eye movements by using a small

stimulus size (5 degrees), fast presentation (150 ms) and trial order randomization.

Furthermore, we recorded eye movements along with the neural responses in two subjects.

There were no clear differences in eye movements between whole versus partial objects in

these two subjects (Figure S5), and those subjects contributed 5 of the 22 selective

electrodes in the Main experiment. To further characterize the eye movements that subjects

typically make under these experimental conditions, we also recorded eye movements from

20 healthy volunteers and found no difference in the statistics of saccades and fixation

between Whole and Partial conditions (Figure S5; note that these are not the same subjects

that participated in the physiological experiments).

Several studies have documented visual selectivity in different frequency bands of the IFP

responses including broadband and gamma band signals (Davidesco et al., 2013; Liu et al.,

2009; Vidal et al., 2010). We also observed visually selective responses in the 70–100 Hz

Gamma band (e.g. Figure S2). Delays during the Partial condition documented above for the

broadband signals were also observed when measuring the selectivity latency in the 70–100

Hz frequency band (median latency difference = 157 ms, n = 14 electrodes, Figure 5F).

To compare delays across different brain regions and different subjects, we mapped each

electrode onto the same reference brain. Delays in the response latency between Partial and

Whole conditions had a distinct spatial distribution: most of the delays occurred in higher

visual areas such as the fusiform gyrus and inferior temporal gyrus (Figure 6A). There was a

significant correlation between the latency difference and the electrode position along the

anterior-posterior axis of the temporal lobe (Spearman’s correlation = 0.43, permutation test,

p = 0.02). In addition, the latency difference was smaller for electrodes in early visual areas

(occipital cortex) versus late visual areas (temporal lobe), as shown in Figure 6B (p=0.02, t-

test). For the two gyri where we had n>5 electrodes selective in both conditions, delays were

more prominent in the Fusiform Gyrus than the Inferior Occipital Gyrus (p=0.01, t-test).

The analyses presented thus far only measured selectivity latency for individual electrodes,

but the subject has access to activity across many regions. To estimate the selectivity latency

from activity across different regions, we combined information from multiple electrodes

and across subjects by constructing pseudopopulations (Hung et al., 2005). For each trial,

electrode responses were randomly sampled without replacement from stimulus-matched

trials (same exemplar and condition) and then concatenated to produce one response vector

for each pseudopopulation trial (Experimental Procedures). This procedure involves

several assumptions including independence and ignores potentially important correlations

between electrodes within a trial (Meyers and Kreiman, 2011). Electrodes were rank-ordered

based on their individual decoding performance, and varying population sizes were

examined. Decoding performance using electrode ensembles was both fast and accurate

(Figure 6C). Category information emerged within 150 ms for whole objects (black thick

line) and 260 ms for partial objects (gray thick line), and reached 80% and 45% correct rate,

respectively (chance = 20%). Even for the more difficult problem of identifying the stimulus

exemplar (chance = 4%), decoding performance emerged within 135 ms for whole objects

(black dotted line) and 273 ms for partial objects (gray dotted line). Exemplar decoding
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accuracy reached 61% for whole objects and 14% for partial objects. These results suggest

that, within the sampling limits of our techniques, electrode ensembles also show delayed

selectivity for partial objects.

In sum, we have independently applied several different estimates of latency that use

statistical (ANOVA), machine learning (Decoding), or threshold (Response latency)

techniques. These latency measures were estimated using information derived from both

broadband signals and specific frequency bands, using individual electrodes as well as

electrode ensembles, taking into account changes in contrast, signal strength and degree of

selectivity. Each definition of latency requires different assumptions and emphasizes

different aspects of the response, leading to variations in the absolute values of the latency

estimates. Yet, independently of the specific definition, the latencies for partial objects were

consistently delayed with respect to the latencies to whole objects (the multiple analyses are

summarized in Figure 6D, see also Figure S6).

Discussion

The visual system must maintain visual selectivity while remaining tolerant to a myriad of

object transformations. This study shows that neural activity in the human occipitotemporal

cortex remained visually selective (e.g. Figure 2) even when limited partial information

about each object was presented (on average, only 18% of each object was visible). Despite

the trial-to-trial variation in the features presented, the field potential response waveform,

amplitude and object preferences were similar between the Whole and Partial conditions

(Figures 2–4). However, the neural responses to partial objects required approximately 100

ms of additional processing time compared to whole objects (Figures 5–6). While the exact

value of this delay may depend on stimulus parameters and task conditions, the requirement

for additional computation was robust to different definitions of latencies including single-

trial analyses, different frequency bands and different statistical comparisons (Figure 6D)

and persisted when accounting for changes in image contrast, signal strength, and the

strength of selectivity (Figure 5). This additional processing time was more pronounced in

higher areas of the temporal lobe including inferior temporal cortex and the fusiform gyrus

than in earlier visual areas (Figure 6A).

Previous human neuroimaging, scalp electroencephalography, and intracranial field

potentials recordings have characterized object completion by comparing responses to

occluded objects with feature-matched scrambled counterparts (Lerner et al., 2004;

Sehatpour et al., 2008) or by comparing responses to object parts and wholes (Schiltz and

Rossion, 2006; Taylor et al., 2007). Taking a different approach, neurophysiological

recordings in the macaque inferior temporal cortex have examined how robust shape

selectivity or encoding of diagnostic features are to partial occlusion (Issa and Dicarlo,

2012; Kovacs et al., 1995; Missal et al., 1997; Nielsen et al., 2006). Comparisons across

species (monkeys versus humans) or across different techniques (intracranial field potential

recordings versus fMRI) have to be interpreted with caution. However, the locations where

we observed selective responses to partial objects, particularly inferior temporal cortex and

fusiform gyrus (Figure 4E–F), are consistent with and provide a link between macaque
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neurophysiological recordings of selective responses and human neuroimaging of the

signatures of object completion.

Presentation of whole objects elicits rapid responses that show initial selectivity within 100

to 200 ms after stimulus onset (Hung et al., 2005; Keysers et al., 2001; Liu et al., 2009;

Optican and Richmond, 1987; Thorpe et al., 1996). The speed of the initial selective

responses is consistent with a largely bottom-up cascade of processes leading to recognition

(Deco and Rolls, 2004; Fukushima, 1980; Riesenhuber and Poggio, 1999; Rolls, 1991). For

partial objects, however, visually selective responses were significantly delayed with respect

to whole objects (Figures 5–6). These physiological delays are inconsistent with a purely

bottom-up signal cascade, and stand in contrast to other transformations (scale, position,

rotation) that do not induce additional neurophysiological delays (Desimone et al., 1984; Ito

et al., 1995; Liu et al., 2009; Logothetis et al., 1995; Logothetis and Sheinberg, 1996).

Delays in response timing have been used as an indicator for recurrent computations and/or

top-down modulation (Buschman and Miller, 2007; Keysers et al., 2001; Lamme and

Roelfsema, 2000; Schmolesky et al., 1998). In line with these arguments, we speculate that

the additional processing time implied by the delayed physiological responses can be

ascribed to recurrent computations that rely on prior knowledge about the objects to be

recognized (Ahissar and Hochstein, 2004). Horizontal and top-down projections throughout

visual cortex could instantiate such recurrent computations (Callaway, 2004; Felleman and

Van Essen, 1991). Several areas where such top-down and horizontal connections are

prevalent showed selective responses to partial objects (Figure 4E–F).

It is unlikely that these delays were due to the selective signals to partial objects propagating

at a slower speed through the visual hierarchy in a purely feed-forward fashion. Selective

electrodes in earlier visual areas did not have a significant delay in the response latency,

which argues against latency differences being governed purely by low-level phenomena.

Delays in the response latency were larger in higher visual areas, suggesting that top-down

and/or horizontal signals within those areas of the temporal lobe are important for pattern

completion (Figure 6A). Additionally, feedback is known to influence responses in visual

areas within 100–200 ms after stimulus onset, as evidenced in studies of attentional

modulation that involve top-down projections (Davidesco et al., 2013; Lamme and

Roelfsema, 2000; Reynolds and Chelazzi, 2004). Those studies report onset latencies of

feedback effects similar to the delays observed here in the same visual areas along the

ventral stream. Cognitive effects on scalp EEG responses that presumably involve feedback

processing have also been reported at similar latencies (Schyns et al., 2007). The differences

reported here between approximately early and high parts of the ventral visual stream are

reminiscent of neuroimaging results that compare part and whole responses along the ventral

visual stream (Schiltz and Rossion, 2006; Taylor et al., 2007).

The selective responses to partial objects were not exclusively driven by a single object

patch (Figure 2A–B, 3A–B). Rather, they were tolerant to a broad set of partial feature

combinations. While our analysis does not explicitly rule out common features shared by

different images with largely non-overlapping pixels, the large fraction of trials with images

with low overlap that elicited robust and selective responses makes this explanation unlikely
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(Figure 4D). The response latencies to partial objects were dependent on the features

revealed: when we fixed the location of the bubbles, the response timing was consistent

from trial to trial (Figure 3C).

The distinction between purely bottom-up processing and recurrent computations confirms

predictions from computational models of visual recognition and attractor networks.

Whereas recognition of whole objects has been successfully modeled by purely bottom-up

architectures (Deco and Rolls, 2004; Fukushima, 1980; Riesenhuber and Poggio, 1999),

those models struggle to identify objects with only partial information (Johnson and

Olshausen, 2005; O’Reilly et al., 2013). Instead, computational models that are successful at

pattern completion involve recurrent connections (Hopfield, 1982; Lee and Mumford, 2003;

O’Reilly et al., 2013). Different computational models of visual recognition that incorporate

recurrent computations include connections within the ventral stream (e.g. from ITC to V4)

and/or from pre-frontal areas to the ventral stream. Our results implicate higher visual areas

(Figure 4E, 6A) as participants in the recurrent processing network involved in recognizing

objects from partial information. Additionally, the object-dependent and unimodal

distribution of response latencies to partial objects (e.g. Figure 2F) suggest models that

involve graded evidence accumulation as opposed to a binary switch.

The current observations highlight the need for dynamical models of recognition to describe

where, when and how recurrent processing interacts with feed-forward signals. Our findings

provide spatial and temporal bounds to constrain these models. Such models should achieve

recognition of objects from partial information within 200 to 300 ms, demonstrate delays in

the visual response that are feature-dependent, and include a graded involvement of

recurrent processing in higher visual areas. We speculate that the proposed recurrent

mechanisms may be employed not only in the context of object fragments but also in visual

recognition for other types of transformations that impoverish the image or increase task

difficulty. The behavioral and physiological observations presented here suggest that the

involvement of recurrent computations during object completion, involving horizontal and

top-down connections, result in a representation of visual information in the highest

echelons of the ventral visual stream that is selective and robust to a broad range of possible

transformations.

Experimental Procedures

Physiology Subjects

Subjects were 18 patients (11 male, 17 right-handed, 8–40 years old, Table S1) with

pharmacologically intractable epilepsy treated at Children’s Hospital Boston (CHB),

Brigham and Women’s Hospital (BWH), or Johns Hopkins Medical Institution (JHMI).

They were implanted with intracranial electrodes to localize seizure foci for potential

surgical resection. All studies described here were approved by each hospital’s institutional

review boards and were carried out with the subjects’ informed consent. Electrode locations

were driven by clinical considerations; the majority of the electrodes were not in the visual

cortex.
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Recordings

Subjects were implanted with 2mm diameter intracranial subdural electrodes (Ad-Tech,

Racine, WI, USA) that were arranged into grids or strips with 1 cm separation. Each subject

had between 44 and 144 electrodes (94±25, mean±SD), for a total of 1,699 electrodes. The

signal from each electrode was amplified and filtered between 0.1 and 100 Hz with sampling

rates ranging from 256 Hz to 1000 Hz at CHB (XLTEK, Oakville, ON, Canada), BWH

(Bio-Logic, Knoxville, TN, USA) and JHMI (Natus, San Carlos, CA and Nihon Kohden,

Tokyo, Japan). A notch filter was applied at 60 Hz. All the data were collected during

periods without any seizure events. In two subjects, eye positions were recorded

simultaneously with the physiological recordings (ISCAN, Woburn, MA).

Neurophysiology experiments

After 500 ms of fixation, subjects were presented with an image (256×256 pixels) of an

object for 150 ms, followed by a 650 ms gray screen, and then a choice screen (Figure 1A).

The images subtended 5 degrees of visual angle. Subjects performed a 5-alternative forced

choice task, categorizing the images into one of five categories (animals, chairs, human

faces, fruits, or vehicles) by pressing corresponding buttons on a gamepad (Logitech,

Morges, Switzerland). No correct/incorrect feedback was provided. Stimuli consisted of

contrast-normalized grayscale images of 25 objects, 5 objects in each of the aforementioned

5 categories. In approximately 30% of the trials, the images were presented unaltered (the

‘Whole’ condition). In 70% of the trials, the visual features were presented through

Gaussian bubbles of standard deviation 14 pixels (the ‘Partial condition, see example in

Figure 1B) (Gosselin and Schyns, 2001). The more bubbles, the more visibility. Each

subject was first presented with 40 trials of whole objects, then 80 calibration trials of partial

objects, where the number of bubbles was titrated in a staircase procedure to set the task

difficulty at ~80% correct rate. The number of bubbles was then kept constant throughout

the rest of the experiment. The average percentage of the object shown for each subject is

reported in Figure 1C. Unless otherwise noted (below), the positions of the bubbles were

randomly chosen in each trial. The trial order was pseudo-randomized.

Six subjects performed a variant of the main experiment with three key differences. First,

contrast was normalized between the Whole and Partial conditions by presenting all objects

in a phase-scrambled background (Figure 1B). Second, in 25% of the Partial condition trials,

the spatial distribution of the bubbles was fixed to a single seed (the ‘Partial Fixed’

condition). Each of the images in these trials was identical across repetitions. Third, because

experimental time was limited, only objects from three categories (animals, human faces and

vehicles) were presented to collect enough trials in each condition.

Data Analyses

Electrode Localization—Electrodes were localized by co-registering the preoperative

magnetic resonance imaging (MRI) with the postoperative computer tomography (CT)

(Destrieux et al., 2010; Liu et al., 2009). For each subject, the brain surface was

reconstructed from the MRI and then assigned to one of 75 regions by Freesurfer. Each

surface was also co-registered to a common brain for group analysis of electrode locations.

The location of electrodes selective in both Whole and Partial conditions is shown in Table
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S2. In Figure 6A, we computed the Spearman’s correlation coefficient between the latency

differences (Partial - Whole) and distance along the posterior-anterior axis of the temporal

lobe. In Figure 4F, we partitioned the electrodes into three groups: Fusiform Gyrus, Inferior

Occipital Gyrus, and Other. We used the Fisher’s exact test to assess whether the proportion

of electrodes selective in both conditions is greater in the Fusiform Gyrus versus Other, and

in Inferior Occipital Gyrus versus Other.

Visual response selectivity

All analyses in this manuscript used correct trials only. Noise artifacts were removed by

omitting trials where the intracranial field potential (IFP) amplitude exceeded five times the

standard deviation. The responses from 50 to 500 ms after stimulus onset were used in the

analyses.

ANOVA—We performed a non-parametric one-way analysis of variance (ANOVA) of the

IFP responses. For each time bin, the F-statistic (ratio of variance across object categories to

variance within object categories) was computed on the IFP response (Keeping, 1995).

Electrodes were denoted ‘selective’ in this test if the F-statistic crossed a threshold

(described below) for 25 consecutive milliseconds (e.g. Figure 2D). The latency was defined

as the first time of this threshold crossing. The number of trials in the two conditions (Whole

and Partial) was equalized by random subsampling; 100 subsamples were used to compute

the average F-statistic. A value of 1 in the F-statistic indicates no selectivity (variance across

categories comparable to variance within categories) whereas values above 1 indicate

increased selectivity.

Decoding—We used a machine learning approach to determine if, and when, sufficient

information became available to decode visual information from the IFP responses in single

trials (Bishop, 1995). For each time point t, features were extracted from each electrode

using Principal Component Analysis (PCA) on the IFP response from [50 t] ms, and keeping

those components that explained 95% of the variance. The features set also included the IFP

range (max – min), time to maximum IFP, and time to minimum IFP. A multi-class linear

discriminant classifier with diagonal covariance matrix was used to either categorize or

identify the objects. Ten-fold stratified cross-validation was used to separate the training sets

from the test sets. The proportion of trials where the classifier was correct in the test set is

denoted the ‘Decoding Performance’ throughout the text. In the Main experiment, a

decoding performance of 20% (1/5) indicates chance for categorization and 4% (1/25)

indicates chance for identification. The number of trials in the Whole and Partial conditions

was equalized by subsampling; we computed the average Decoding Performance across 100

different subsamples. An electrode was denoted ‘selective’ if the decoding performance

crossed a threshold (described below) at any time point t, and the latency was defined as the

first time of this threshold-crossing.

Pseudopopulation—Decoding performance was also computed from an ensemble of

electrodes across subjects by constructing a pseudopopulation, and then performing the

same analyses described above (Figure 6C). The pseudopopulation pooled responses across

subjects (Hung et al., 2005; Mehring et al., 2003; Pasupathy and Connor, 2002). The
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features for each trial in this pseudopopulation were generated by first randomly sampling

exemplar-matched trials without replacement for each member of the ensemble, and then

concatenating the corresponding features. The pseudopopulation size was set by the

minimum dataset size of the subject, which in our data was 100 trials (4 from each

exemplar). Because of the reduced data set size, four-fold cross-validation was used.

d-prime—We compared the above selectivity metrics against d′ (Green and Swets, 1966).

The value of d′ was computed for each electrode by comparing the best category against the

worst category, as defined by the average IFP amplitude. d′ measures the separation between

the two groups normalized by their standard deviation. The latency of selectivity for d′ was

measured using the same approach as the ANOVA (Figure S4A–B).

Significance Thresholds—The significance thresholds for ANOVA, Decoding and d′,

were determined by randomly shuffling the category labels 10,000 times, and using the

value of the 99.9 percentile (ANOVA: F = 5.7, Decoding: 23%, d′ = 0.7). This represents a

false discovery rate q = 0.001 for each individual test. As discussed in the text, we further

restricted the set of electrodes by considering the conjunction of the ANOVA and Decoding

tests. We evaluated this threshold by performing an additional 1,000 shuffles and measuring

the number of selective electrodes that passed the same selectivity criteria by chance. In

Table 1, we present the number of electrodes that passed each significance test and the

number of electrodes that passed the same tests after randomly shuffling the object labels.

The conclusions of this study did not change when using a less strict criterion of q=0.05

(median latency difference for ANOVA: 123 ms, n=45 electrodes selective in both

conditions, Figure S6).

Latency Measures—We considered several different metrics to quantify the selectivity

latency (i.e. the first time point when selective responses could be distinguished), and the

visual response latency (i.e. the time point when a visual response occurred). These

measures are summarized in Figure 6D and Figure S6.

Selectivity latency: The selectivity latency represented the first time point when different

stimuli could be discriminated and was defined above for the ANOVA, Decoding and d′

analyses.

Response Latency: Latency of the visual response was computed at a per-trial level by

determining the time, in each trial, when the IFP amplitude exceeded 3 standard deviations

above the baseline activity. Only trials corresponding to the preferred category were used in

the analysis. To test the multimodality of the distribution of response latencies, we used

Hartigan’s dip test. In 27 of the 30 electrodes, the unimodality null hypothesis could not be

rejected (p > 0.05).

Frequency Band Analyses—Power in the Gamma frequency band (70–100 Hz) was

evaluated by applying a 5th order Butterworth filter bandpass, and computing the magnitude

of the analytical representation of the signal obtained with the Hilbert transform. The same

analyses (ANOVA, Decoding, Per-Trial Latency) were applied to the responses from all

electrodes in different frequency bands.
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Bubble Overlap Analyses—For each pair of partial object trials, the percent of overlap

was computed by dividing the number of pixels that were revealed in both trials by the area

of the object (Figure 4D). Because low degree of object overlap would be expected in trials

with weak physiological responses, we focused on the most robust responses for these

analyses by considering those trials when the IFP amplitude was greater than the 90th

percentile of the distribution of IFP amplitudes of all the non-preferred category trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental design and behavioral performance
(A) After 500 ms fixation, an image containing a whole object or a partial object was

presented for 150 ms. Subjects categorized objects into one of five categories (5-Alternative

Forced Choice) following a choice screen. Presentation order was pseudo-randomized.

(B) Example images used in the task. Objects were either unaltered (Whole) or presented

through Gaussian bubbles (Partial). For 12 subjects, the background was a gray screen

(Main experiment), and for 6 subjects the background was phase-scrambled noise (Variant

experiment). In this example, the object is seen through 5 bubbles (18% of object area

shown). The number of bubbles was titrated for each subject to achieve 80% performance.

Stimuli consisted of 25 different objects belonging to five categories (for more examples,

see Figure S1).

(C) Above, percentage of the object visible (mean±SD) for each subject in the Main

experiment (left) and the contrast-normalized Variant (right). Below, percentage of correct

trials (performance) for Whole (black) and Partial (gray) objects.
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Figure 2. Example physiological responses from Main experiment
Example responses from an electrode in the left Fusiform Gyrus.

(A) Intracranial field potential (IFP) responses to an individual exemplar object. For the

Whole condition, the average response (green) and single trial traces (gray) are shown. For

the Partial condition, example single trial responses (green, n=1) to different partial images

of the same exemplar (top row) are shown. The response peak time is marked on the x-axis.

The dashed line indicates the stimulus onset time and the black bar indicates stimulus

presentation duration (150 ms).

(B) Raster of the neural responses for Whole (left, 52 trials) and Partial (right, 395 trials)

objects for the category that elicited the strongest responses (human faces). Rows represent

individual trials. Dashed lines separate responses to the 5 face exemplars. The color

indicates the IFP at each time point (bin size = 2 ms, see scale on top).

(C) Average IFP response to Whole (left) and Partial (right) objects belonging to five

different categories (animals, chairs, human faces, fruits, and vehicles, see color map on

top). Shaded areas around each line indicate s.e.m. The gray rectangle denotes the image

presentation time (150 ms). The total number of trials is indicated on the bottom right of

each subplot.
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(D) Selectivity was measured by computing the F-statistic at each time point for Whole

(black) and Partial (gray) objects. Arrows indicate the first time point when the F-statistic

was greater than the statistical threshold (black dashed line) for 25 consecutive milliseconds.

(E) Decoding performance (mean±SD) using a linear multi-class discriminant algorithm in

classifying trials into one of five categories. Arrows indicate the first time when decoding

performance reached the threshold for statistical significance (black dashed line). Chance is

20% (blue dashed line).

(F) Distribution of the visual response latency across trials for Whole (black) and Partial

(gray) objects, based on when the IFP in individual trials was significantly above baseline

activity. The distribution is based on kernel density estimate (bin size = 6 ms). The arrows

denote the distribution averages.
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Figure 3. Second example of physiological responses from Variant experiment
Example responses from an electrode in the left Inferior Temporal Gyrus. The format and

conventions are as in Figure 2, except that only three categories were tested, and the Partial

Fixed condition was added in part A and B (Experimental Procedures). Note that the

statistical thresholds for the F-statistic and decoding performance differ from those in Figure

2 because of the different number of categories. More examples are shown in Figures S2–

S3.

Tang et al. Page 22

Neuron. Author manuscript; available in PMC 2015 August 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. Neural responses remained visually selective despite partial information

(A) Average IFP amplitude  across trials (N)

in response to partial versus whole objects for electrodes that were visually selective in the

Whole condition (blue, n=61+22), and electrodes that were visually selective in both Whole

and Partial conditions (gray, n=22) (Main experiment). Most of the data clustered around the

diagonal (dashed line). Inset, distribution of suppression index: (Awhole − Apartial)/Awhole.

(B) Comparison between selectivity for Partial versus Whole objects measured by the F-

statistic. Most of the data were below the diagonal (dashed line). The arrow points to the

example from Figure 2. Here we only show data from the Main experiment (F values are

hard to compare across experiments because of the different number of categories; hence,

the example from Figure 3 is not in this plot).

(C) Comparison between selectivity for Partial versus Whole objects measured by the

single-trial decoding performance (Experimental Procedures). Most of the data are below

the diagonal (dashed line). Chance performance is 20%. Error bars are 99% confidence

intervals on the estimate of the mean.

(D) For all pairs of discriminable trials (n = 10,438 pairs from 22 selective electrodes), we

computed the distribution of the percent overlap in shared pixels. The percent overlap

between two pairs of trials (inset, red and blue bubbles) was defined as the number of shared

pixels (black) divided by the total object area (area inside gray outline).
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(E) Locations of electrodes that showed visual selectivity in both Whole and Partial

conditions. Electrodes were mapped to the same reference brain. Example electrodes from

Figure 2 and 3 are marked by arrows. Colors indicate different brain gyri.

(F) Percent of total electrodes in each region that were selective in either the Whole

condition (black) or in both conditions (gray). Color in the location name corresponds to the

brain map in part E. The number of selective electrodes is shown next to each bar. Only

regions with at least one electrode selective in both conditions are shown.
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Figure 5. Increased latency for object completion
We considered several definitions of latency (see text).

(A) Latency of selective responses, as measured through ANOVA (e.g. Figure 2D) for

electrodes selective in both Whole and Partial conditions from the Main (black, n=22) and

Variant (gray, n=8) experiments. The latency distributions were significantly different

(signed-rank test, main experiment: p < 10−5, variant experiment: p = 0.02).

(B) Latency as measured by the machine-learning decoding analysis (e.g. Figure 2E). These

latency distributions were significantly different (signed-rank test, main experiment: p <

10−5, variant experiment: p = 0.004).

(C) Distribution of visual response latencies in single trials for Whole (black) and Partial

(gray) objects (as illustrated in Figure 2F). These distributions were significantly different

(rank-sum test, p<10−15). The vertical dashed lines denote the means of each distribution.

(D) There was no significant correlation between selectivity latency (measured using

ANOVA) and IFP amplitude (defined in Figure 4A) (Whole: r = 0.13, p = 0.29; Partial: r =

0.15, p = 0.27).

(E) The correlation between selectivity latency and the selectivity as evaluated by the F-

statistic was significant in the Partial condition (r = −0.43, p = 0.03) but not in the Whole

condition (r = −0.36, p = 0.06). However, the latency difference between conditions was still

significant when accounting for changes in the strength of selectivity (ANCOVA, p < 10−8),

as can be observed by comparing latencies in subpopulations of matched selectivity.

(F) Latency of selective responses from electrodes using power in the 70–100 Hz (Gamma,

blue) frequency bands. Statistical significance measured with the signed-rank test (p < 10−5).
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Figure 6. Summary of Latency Measurements
(A) Brain map of electrodes selective in both conditions, colored by the difference in the

response latency (Partial – Whole; see color scale on the bottom).

(B) Comparison of response latency differences (Partial – Whole) between electrodes in

occipital lobe (early visual) and temporal lobe (late visual).

(C) Decoding performance from pseudopopulation of 60 electrodes for categorization (thick

lines) or exemplar identification (dotted lines) for Whole (black) or Partial (gray) conditions

(Experimental Procedures). Horizontal lines indicate chance for categorization (20%) and

identification (4%). Error bars represent standard deviation. The 60 electrodes used in this

analysis were selected using their rank-order based on their individual decoding

performance on training data.

(D) Summary of latency difference between Partial and Whole conditions for multiple

definitions of latency (parentheses mark the figure source). Positive values means increased

latency in the Partial condition. Box plots represent the median and quartile across the

selective electrodes. For the Variant experiment, individual electrodes are plotted since the

total number of electrodes n is small. For the Population decoding results, the n denotes the

number of repetitions using 60 electrodes.
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