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Abstract

The p.Argl16His mutation in the heat shock transcription factor-4 (HSF4) has been associated
with age-related cataracts, but it is also seen in 2% of the normal population indicating either
reduced penetrance or that the normal subjects were not old enough to express the phenotype.
Based on the proximity of p.Arg116His to two known mutations in the DNA binding domain of
HSF4, namely p.Leul14Pro and p.Arg119Cys, which segregate with childhood lamellar cataract,
we tested the possibility that this phenotype may have been missed by the ophthalmologist and/or
that it did not spread to the visual axis so as to affect vision significantly. Here we demonstrate via
BAC (bacterial artificial chromosome) transgenesis that p.Arg116His recreates the childhood
lamellar cataract in mice suggesting that incomplete penetrance associated with early cataracts
may not be an absence but a limitation of the detection of the phenotype.
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Up to half of all congenital cataracts are inherited and most of these are catalogued as
autosomal dominant [Francis and Moore 2004; Shiels and Hejtmancik 2013; Zetterstrom
and Kugelberg 2007]. Light deprivation of the developing eye due to the cataracts in the
ocular lens, during infancy, impedes the brain development of the child [Blakemore and
Cooper 1970; Kalia et al., 2014]. Based on screening of three Chinese and one Danish
kindred spanning nine generations, four mutations in the DNA binding domain of HSF4
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(MIM# 602438) were discovered [Bu et al., 2002] which segregated with early childhood
lamellar cataract [Marner et al., 1989], consistent with the predominantly post-natal
expression of this transcription factor [Somasundaram and Bhat 2004]. The postnatal
appearance of the disease phenotype also agrees with HSF4 null studies, which indicated
that the early embryonic development of the lens is normal but the secondary fiber cell
morphogenesis is impaired [Fujimoto et al., 2004; Min et al., 2004; Shi et al., 2009].

Interestingly a screening of age-related cataract patients has revealed additional mutations
[Shi et al., 2008] that purport a role for HSF4 function in age-related cataracts. Among these
mutations, the role of p.Argl16His in age-related cataract could not be established
decisively because this mutation was also found in 2 control/normal individuals, who were
only, “40 and 46 years old and are likely to suffer age-related cataracts in the future”[Shi et
al. 2008] suggesting that this mutation had not reached its age of pathological expression.

The presence of p.Arg116His in ‘normal’ population thus could be explained away by
variable expressivity. It could also be a case of what is commonly known as incomplete or
reduced penetrance [Soshay and Cutting 2014]. However, two known mutations in the DNA
binding domain of HSF4 namely, p.Leul14Pro and p.Arg119Cys, segregate with childhood
lamellar cataract [Bu et al. 2002]. Based on this knowledge, the proximity of p.Arg116His to
these mutations would suggests a similar phenotype, yet the observation [Shi et al. 2008]
that it is associated with age-related cataracts with incomplete penetrance raises the
possibility that the early childhood cataract phenotype may have been missed by the
ophthalmologist or that it did not spread to the visual axis so as to impede transmission of
light into the eye significantly and therefore did not affect the vision; the phenotype,
therefore, was clinically ‘normal’. Such individuals, upon genotypic characterization, would
contribute to the unexplained phenomenon of “incomplete penetrance”.

Incomplete penetrance or the presence of p.Arg116His may simply be an inability to assay
the phenotype either morphologically or at the molecular level. Alternatively, it is possible
that the individual with this mutation had never a need to go to an ophthalmologist because
she/he is ‘normal’. It is important to note that opacity in the ocular lens becomes
pathological only if and when it interferes with the visual axis; otherwise the effected
individual does not go to the ophthalmologist and will be considered ‘normal’. Because
cataract is a physical phenotype that can be observed with an ophthalmoscope as opacity in
the lens we decided to test the concept of penetrance by expression of the HSF4 gene
containing the p.Arg116His mutation in transgenic mice.

The lamellar cataract phenotype (associated with most mutations in the DBD of the HSF4)
appears within a morphologically confined space (the lens nucleus, involving only a few
fiber cells or lamellae) and it appears in a developmentally dictated fashion. It is therefore
important that the expression of the mutation is temporally and spatially akin to the in vivo
condition. Because BACs contain large stretches of native sequences, the expression of the
transgene is usually similar to the expression of the endogenous gene [Heintz 2001]. The
p.Argl116His mutation was introduced into the Hsf4 gene exon3 g.115G>A (NC_000074.6)
within a BAC (Fig. 1A). The BAC clone, RP023-203H14, was purchased from Children’s
Hospital Oakland Research Institute. The rpsL-neo template and plasmid pRed E/T were
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purchased from Gene Bridges GmbH (Heidelberg, Germany). The mutated BAC was used
to generate transgenic mice [Gangalum et al., 2011] (Fig. 1 A-C). For details of
experimental procedures please see online Supp. Methods (Supp. Fig. S1).

Fig. 1D shows the ophthalmoscope images of the lamellar cataract phenotype in the
transgenic mouse lens. The pathology is bilateral as is known for the human population
[Zetterstrom and Kugelberg 2007]. It is typically punctate and appears as dots or specks,
very much confined to the nucleus just like the known early childhood lamellar cataract
[Francis et al., 2000; Marner et al. 1989]. Although somewhat enhanced, these cataracts
remain restricted to the lens nucleus in older F2 mice (5 month). These morphological
phenotypes are corroborated by histological and molecular analyses of the post-natal day 02
lenses (Fig. 2). There is disturbance in the secondary fiber cell differentiation, abnormal
location of the fiber cell nuclei in the posterior of the lens (Fig. 2A, B) and e a general
decrease in total crystallin expression attended by their abnormal distribution (aggregation)
(Fig 2C and Supp. Fig. S2). We also find that there is appreciable absence of the vimentin
and Fgf7 gene products (Fig. 2C and Supp. Fig. S3). This is in contrast to the Hsf4 knockout
(KO) where an increase in Fgf7 transcripts was reported in six week old lenses; it was
unclear if the protein levels were increased [Fujimoto et al. 2004]. It is difficult to compare
our data (the restricted lamellar cataract phenotype recreated here by a point mutation
p.Arg116His) with the KOs, where the reported phenotype of a severe total cataract,
suggests involvement of multiple phenotypes.

It is important to consider that a lot of the changes that we see (e.g. aggregation of proteins
and loss of vimentin and Fgf7) may be secondary and causatively not related to the lamellar
cataract, which is morphologically restricted to a few fiber cells. Importantly, this data
points to the heterogeneity of genetic expression controlled by Hsf4 in different fiber cells of
the developing lens. It is this heterogeneity, from fiber to fiber that we believe generates the
lamellar cataract phenotype.

Abnormal location of the fiber cell nuclei in the posterior of the lens (Fig. 2B and Supp. Fig.
S4) suggests a block in the secondary fiber cell differentiation, which entails degradation of
the cellular organelles including the nuclei in the wild type normal lens as part of the
terminal differentiation program that minimizes scatter and presents a clear path for the
transmission of focused light onto the retina, making vision possible. Some of these
phenotypes have been reported to be associated with Hsf4 knockout mice [Fujimoto et al.
2004; Min et al. 2004; Shi et al. 2009]. DNase 2 (DLAD) is known to be involved in lens
nuclear degradation [Nishimoto et al., 2003], recently this gene has been suggested to be
down stream of Hsf4 [Cui et al., 2013]. Importantly, we do not see any drastic changes in
the size of the transgenic eye (Supp. Fig. S5), again confirming what is reported in the
humans [Zetterstrom and Kugelberg 2007].

Childhood cataracts are associated with a large number of syndromes including mental
retardation, microencephaly and cerebero-oculo-facial-skeletal syndrome. It remains to be
established if the onset and/or the severity of the phenotype in the ocular lens (for example a
total cataract versus a restricted opacity in a few fiber cells) is indicative of the severity of
the associated systemic abnormalities [Chograni et al., 2011].
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The data presented above suggests that the presence of p.Arg116His in normal individuals
may be due to a lack of the recognition of the incipient opacity in the infant lens by the
ophthalmologist or a case of missed ophthalmic exam in early childhood. In either case it
was a blessing in disguise for the “patient’. If the phenotype had been recognized, the
ophthalmologist would have surgically removed the lens in order to make sure that the
infant eye received light which is important for the development of the normal brain [Kalia
et al. 2014]. Unfortunately surgical management of the cataracts in infants entails a lifelong
follow up and impaired vision [Chen et al., 2006; Haargaard et al., 2008; Zetterstrom and
Kugelberg 2007]. In many instances the surgery may not be warranted because the cataract
does not cloud the visual axis [Amaya et al., 2003] as seems to be the case with this
mutation (p.Arg116His). Currently, there is no established catalogue of mutations that cloud
the visual axis and those that don’t. This knowledge, if catalogued could prove extremely
useful to the decision-making process for the ophthalmologist whether the lens should be
removed from an infant eye. If it was established that p.Arg116His and other similar genetic
mutations that produce a cataract but do not impair vision, a large number of infant eye
surgeries could be avoided.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Recapitulation of the human lamellar cataract phenotype in transgenic mice. A: Four

recombineering steps are indicated that change the nucleotide G to A in the Hsf4-gene (blue)
within the BAC that results in p.Arg116His mutation in the Hsf4 gene product
(AF160966.1:¢c.347G>A) The recombination functions were derived from pRedET plasmid
(yellow circled). LHA and RHA (green) are left and right homologous arms surrounding the
mutation in exon 3 of the Hsf4 gene. The rpsL-Neo cassette (1.3 kb long) was generated
with these homologous arms and introduced into the 220 Kb long BAC containing the Hsf4
gene. Next the LHA and RHA (fragment, 101 bp long, containing the mutation A indicated
by red asterisks) was introduced using the Counter-Selection BAC modification Kit (Gen
Bridges, Gmbh, Germany) (See Methods and Supp. Fig. S1). B: Genotyping was done with
stringent PCR. C: The PCR products were sequenced to confirm (downward arrows) the
change (G>A). D: The lamellar cataract phenotypes in the transgenic mouse eyes (arrows)
indicate the opacities represented as specks that may represent a cataractous fiber or a group
of fiber cells (lamellage) in the transgenic lens. M= marker, Fou = Founders (5 month old),
F2 - F2 generation (21 day old), WT = wild type, Blk = reaction blank.
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Figure 2.
Histological and biochemical characterization of the Postnatal day 02 p.Arg116His (R116H)

transgenic lens. A: Bow or the differentiating region (indicated by dotted line DR) and the
posterior regions are shown. There are disturbances in the differentiating region such as the
shape of the fiber cell nuclei, which seem to be circular in R116H transgenic mice in
comparison to the WT. Importantly, we see abnormal location of the fiber cell nuclei in the
posterior region in R116H mutant lens (black arrowheads), not seen in the WT. This is seen
even more clearly in the DAPI stained sections of this region shown in B. B: The nuclei in
the bow region are indicated by asterisks, while the nuclei in the posterior region are
indicated by white arrowheads. This data is further augmented by the data shown in Supp.
Fig. S4. C: 2D gel analysis and immunoblotting for various crystallins, vimetin and Fgf7.
The top panel shows dey(Flamingo) —stained fluorescent gels. Markers are on the left. Note
loss of the higher molecular weight proteins (dotted square) in the R116H transgenic lens.
Proteins from only one lens were analyzed (40 pg/gel). Two such gels were made, one was
used for staining with Flamingo (shown in the top panel) and the other was immunoblotted
and probed with one antibody at a time and stripped (Stripping buffer, Thermo Scientific)
and re-probed with the next antibody in the following order (aB, vS, oA, vimentin and Fgf7,
reactions circled). While there are discernable changes in expression, we see changes in the
distribution aA, aB and S crystallin (see Supp. Fig. S2). Drastic changes can be seen in
vimentin and Fgf7. D: Assessment of transcript levels (RT-qPCR) for gene products
analyzed in C. Appreciable decreases are seen in all of the transcripts employing the 2-AACt
analyses.
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