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Abstract

We measured the just-noticeable difference (JND) in orientation variance between two textures

(Figure 1) as we varied the baseline (pedestal) variance present in both textures. JND’s first fell as

pedestal variance increased and then rose, producing a ‘dipper’ function similar to those

previously reported for contrast, blur, and orientation-contrast discriminations. A dipper function

(both facilitation and masking) is predicted on purely statistical grounds by a noisy variance-

discrimination mechanism. However, for two out of three observers, the dipper function was

significantly better fit when the mechanism was made incapable of discriminating between small

sample variances. We speculate that a threshold nonlinearity like this prevents the visual system

from including its intrinsic noise in texture representations and suggest that similar thresholds

prevent the visibility of other artifacts that sensory coding would otherwise introduce, such as

blur.
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Introduction

The nervous system is noisy and all sensory signals are subject to perturbation (Barlow,

1981). Studies of orientation classification (Dakin, 1999; Dakin & Watt, 1997; Morgan,

1990) suggest that the visual system perturbs the orientations of individual elements with a

variance of approximately 1 deg. There is a problem, then, in understanding why we do not

see orientation variance in a texture composed of parallel elements, like that on the left-hand

side of Figure 1. If the internally represented orientation of each element were independently

sampled from a Gaussian distribution, then all the elements should look different, even if
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they are physically parallel. In an array of 121 elements (Figure 1) it would not be at all

unlikely that a particular element would have an apparent orientation 2σ from its true value.

A possible resolution of this paradox is that when we see a texture as uniform, we are not

seeing the orientation of every element in the texture, but rather the output of a specialized

mechanism that computes orientation variance. If stimulation of this mechanism were

subject to a threshold nonlinearity, then the perceived uniformity of a uniform texture could

be explained.

A threshold would be useful for eliminating early noise from mid-level visual

representations. The idea that sensory systems discount their own imperfections is suggested

by the absence of sensory hallucinations in everyday life, and from the apparent sharpness of

the retinal image. In reality, the retinal image is considerably blurred by imperfections in the

optics, and by inescapable diffraction through a small pupil, but we become conscious of

this blur only when it exceeds normal levels, for example, when we need spectacles. The

idea that blur is detected only when it exceeds a threshold is supported by studies of blur

discrimination, both in stationary (Georgeson, 1994; Watt & Morgan, 1983) and in moving

images (Burr, 1980, 1981; Burr & Morgan, 1997; Morgan & Benton, 1989; Paakkonen &

Morgan, 1993). Blur discrimination thresholds between two patterns have a characteristic

‘dipper’ shape similar to that for contrast discrimination (Nachmias & Sansbury, 1974). As

small amounts of blur are added to both images, the just-noticeable difference (JND) in blur

first falls, and then rises again. The initial fall would be expected from a threshold, since a

small amount of blur would raise the response of the mechanism to just below the threshold,

making an additional increment easier to see. The rise in JND at even higher pedestal levels,

referred to as ‘masking’, is usually explained by a compressive nonlinearity (Foley, 1994;

Legge & Foley, 1980; Ross, Speed, & Morgan, 1993), or alternatively by multiplicative

sensory noise (Solomon, 2007).

In this investigation we sought evidence for a similar dipper in the case of orientation

variance discrimination. There were already indications of such an effect in the literature.

Motoyoshi and Nishida (2001) measured the JND’s between two different levels of

orientation contrast in bimodal orientation textures. Although they were mainly interested in

the masking region, where JND’s increased with the pedestal contrast, Motoyoshi and

Nishida also noted facilitation at small, nonzero pedestal contrasts. That is, they found that

JND’s formed a dipper function of pedestal contrast.

Facilitation at small, nonzero luminance contrasts is normally taken as evidence for a

threshold nonlinearity (e.g., Foley & Legge, 1981; Legge & Foley, 1980). However, in the

case of variance discrimination, facilitation is expected simply on the basis of intrinsic noise

(Laming, 1986; Paakkonen & Morgan, 1993).1 The full derivation is given in the Appendix

A, but the informal argument runs thus. Suppose, in a 2AFC experiment, the observer

compares two sample variances, each of which reflects the visual system’s internal noise as

well as the stimulus variance. The function mapping stimulus variance to sample variance

1Paakkonen and Morgan (1993) assumed that two blurred edges were discriminated as a function of the difference in their internally
represented blur, which combined extrinsic and intrinsic blur by convolution (Equation 6 of their paper). However, they assumed
Weber’s Law rather than deriving it from sampling as we do in this paper.
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will thus have two distinct parts; a flat part, in which the stimulus variance is negligible

compared to the internal noise, and a steadily increasing part, in which the internal noise is

negligible. Because of the flat part, any criterion increase in sample variance will require a

larger increase in stimulus variance when sample variance is low.

The Appendix A shows that dipper functions are predicted even for an ideal observer who

compares sample variances, whether or not there is an additional threshold nonlinearity. We

wished to determine whether the addition of a sensory threshold would significantly

improve the ideal observer’s fit to variance discriminations.

Methods

In addition to the extensive observations undertaken by three experienced observers, a

shorter series was completed by four psychophysically practiced observers who did not

know the purpose of the experiment. Apart from noting that all of these observers showed

facilitation (i.e. a ‘dip’), we do not report the latter group’s data further.

Stimuli were presented on the LCD screen of a Sony Vaio (PGC-TR5MP) laptop computer

using MATLAB and the PsychToolbox (Brainard, 1997) for Windows. Screen size was

1280 × 768 pixels (230 × 140 mm). Only the Green LCD’s were used, and the mean

luminance was 56 cd/m2. The viewing distance was approximately 57 cm so that the pixel

size was approximately 0.018 deg of visual angle. The texture elements were Gabor

wavelets of maximum contrast. Specifically, the Weber contrast g varied as a function of

position x, y with respect to the center of the wavelet as follows:

(1)

where λ (the wavelength of the windowed grating) is 0.1198 deg, σ (the space constant of

the window) is λ/2, and θ gives the angle normal to grating orientation; that is,

(2)

and

(3)

The elements were laid out in an 11 × 11 lattice with spacing 3λ, slightly perturbed by

displacing each elements randomly in x and y by an amount drawn from a uniform pdf with

width 1.5λ. Thus, the whole array subtended approximately 3.6 deg of visual angle. The

jitter was resampled between each of the two stimulus presentations on every trial.

On each trial two textures like those in Figure 1 were shown, each for 200 msec and with a

200-msec blank interval in between. Element orientations θ were drawn from Gaussian

probability density functions. For one of the two textures, the density had random mean and

“pedestal” variance . The density for the other texture had a different random mean and

greater variance (σp + Δσ)2. The mean orientation was randomized between presentations, to

Morgan et al. Page 3

J Vis. Author manuscript; available in PMC 2014 August 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



prevent the use of any one orientation-tuned channel by the observer, and spatial position of

the elements was jittered between presentations.

The QUEST procedure (Watson & Pelli, 1983) adaptively determined the JND Δσ at which

the observer was 82% correct. There was no feedback to indicate whether the response was

correct or not. The pedestal variance was randomly selected on each trial from a set of preset

values. A block of trials terminated when each of these preset values had been presented 50

times. Thus, when σp ∈ {0°, 1°, 2°, 4°, 8°, 16°}, as was the case for observers MM (6

blocks) and JAS (9 blocks) and IM (4 blocks), each block contained 300 trials. The four

naive observers experienced only one block, with interleaved pedestal levels {0°, 1°, 2°, 4°}

only.

Confidence limits (95%) for the JND were determined by exactly simulating the experiment

80 times with a bootstrapping procedure (Efron, 1982).

Results

Results (Figure 2) showed clear evidence for a ‘dipper.’ JND’s were comparatively high

when one of the patterns had no variance (the leftmost point on the graphs) and fell as

variance was added. The curves in Figure 2 show the best fits to the data. (Note that these

are not fits to the data points in the graph but are rather maximum likelihood fits (found with

the FMINSEARCH function of MATLAB) of the model to data vectors consisting of the

pedestal level, added signal level, and observer’s response on every trial of the experiment.)

These best-fitting parameter values and their associated log likelihoods are shown in Table

1.

A likelihood ratio test was used to compare the fits of the two models, one with and one

without a threshold. Let LC and LU be the likelihoods of the best-fitting constrained and

unconstrained models. As is well-known (e.g., Hoel, Port, & Stone, 1971), under the null

hypothesis that the constrained model captures the true state of the world,

(4)

is asymptotically distributed as chi-square with 1 degree of freedom (for the single

additional free parameter in LU). The chi-square values were significant (p < .010) for

observers MM and IM, but not for observer JAS. To give a more intuitive impression of the

success of the two models, Figure 3 plots the relative likelihoods in comparison to two

extreme baselines. The ‘coin flipping’ model has the simulated observer choose between the

two intervals with equal probability, independently of the stimulus level or pedestal. This is

as poor as a fit could be. The ‘Weibull fits’ model shows the best fit of a set of 2-parameter

Weibull psychometric functions to the each of the pedestal conditions separately. This

model has 2n free parameters, where n is the number of pedestals, in comparison to the 2

and 3 parameters of the models described in Table 1, and it is as good as a fit could be given

the noise in the observer’s data. It is satisfying to see that the models are much closer to the

Weibull fits than to ‘coin flipping’. The two versions of the intrinsic noise model, with and

without an additional threshold, are seen to be very close.
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Finally, to see if the threshold nonlinearity giving rise to the dipper was modifiable by

experience, one observer (MM) undertook an extensive series of observations with a zero

pedestal to see if performance would improve. Results (shown in Figure 4) failed to find any

evidence for learning.

Discussion

We consider possible explanations for the dipper function found in our experiments.

Intrinsic noise

Intrinsic noise produces a dipper function for variance discrimination (see Appendix A).

Both the initial fall and subsequent increase in JND (Weber’s Law) arise because variance

discrimination is necessarily a second-order computation. In a first-order computations, such

as mean discriminations, intrinsic noise typically produces a flat region of the graph of JND

vs. noise (e.g., Mansouri, Allen, Hess, Dakin, & Ehrt, 2004). On the other, hand, we expect,

and find, a dipper function for contrast discrimination of orientation- and contrast-modulated

gratings (Kingdom, Prins, & Hayes, 2003) and of dynamic visual noise (Morgan, McEwan,

& Solomon, 2007). Blur discrimination is another clear case where there is a dipper (see

Introduction) and where a case can be argued for its being a special case of variance

discrimination in the luminance domain. The variance of point-luminance values across a

sharp edge is different from that across less sharp edge; and indeed, Watt and Morgan

(1983) produced their blurred edges by convolution of a step with a specified blurring

function, defined by its variance.

Internal noise with a sensory threshold

Our results show qualitative agreement with the intrinsic noise model, but for all three

observers the extent of facilitation is greater than predicted by the model. For two of the

observers, the data were better fit by a model in which there is both internal noise and a

threshold. The existence of a threshold could explain why we do not see the internal noise in

a completely regular texture like that on the left of Figure 1. There are good reasons why the

visual system should not represent its own noise when computing the variance of a pattern in

the outside world, and there is collateral evidence that such thresholding happens in the case

of blur, both of stationary and moving objects. The effect of the threshold will be to make

textures appear slightly more regular than is in fact the case and this bias could be

interpreted as a Bayesian prior in favor of seeing regularity in the world (Schwartz,

Sejnowski, & Dayan, 2006). We admit, however, that this interpretation is entirely

speculative, and that we do not have data that exclude other models.

Consistent with our current finding is previous work demonstrating an inability to extract

local estimates of orientation from briefly glimpsed ‘crowded’ arrays when the regional

orientation variance is small (Parkes, Lund, Angelluci, Solomon, & Morgan, 2001).

Solomon, Felisberti, and Morgan (2004) noted this latter result implied that individual

elements should appear more aligned than they really were and formulated a model wherein

this ‘smallangle assimilation’ was the result of lateral amplification between neurons with

the same orientation preference. (That model also contained a stronger, more broadly tuned,
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lateral inhibition, which produced repulsion when orientation variance was larger.) Lateral

amplification may underlie the sensory threshold manifest in our present results, but once

again this is pure speculation. To make a stronger connection between small angle

assimilation and the dipper function would require measurement of the dipper function in

crowded displays.

Channel uncertainty

A different interpretation of the ‘dipper’ for contrast discrimination is that it reflects intrinsic

uncertainty, which the observer has about the best channel to use when making the

discrimination (Pelli, 1985). When the pedestal is zero, there are many channels the observer

could monitor, each with a level of intrinsic noise. It is therefore likely that noise in one of

the channels will masquerade as a signal. With a nonzero pedestal, however, the response in

the channel most responsive to the signal will be elevated to a point where noise in other

channels will be unlikely to exceed it. This model accounts well for many facts about

contrast discrimination, but we find it difficult to see how it applies in the case of orientation

variance discrimination. As far as orientation-tuned channels are concerned, the essence of

our procedure was to ensure that the observer could not do the task by monitoring selected

channels. Recall that the mean orientation of the stimuli was randomized both over trials and

between the two stimuli in the 2AFC task. Thus, there was no information about variance to

be derived from a single channel. The only way we can see to make an uncertainty model

work is if there are different channels corresponding to different levels of variance. This is

the possibility we consider next.

Multiple channel models of variance discrimination

Wavelength discrimination shows notches in certain regions of the spectrum, where there is

a local minimum in the JND. The explanation is thought to be, in part, that these are regions

where the difference in quantum catch of the L, M, and S cones is greatest as wavelength

changes (Wyszecki & Stiles, 1967). It would be possible to envisage a similar model for

variance discrimination, with one mechanism selectively but widely tuned to low variance,

and another to a higher variance (Thompson, 1984). If there are such channels they should

be revealed by selective adaptation.

Conclusion

The most parsimonious explanation of the dipper function for orientation variance is that it

is produced by intrinsic noise in a specialized mechanism for variance computation. Our

findings argue caution before automatically ascribing dippers, such as those for blur

discrimination, to a threshold nonlinearity. However, we cannot rule out the possibility that

there is an additional threshold, at least in two of our observers. Further investigations of the

population are required to see whether there are genuine individual differences in this

respect.
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Appendix A

Signal-detection theory for variance discrimination

Consider any 2AFC trial, in which the first alternative can be described as having the

variance (σp + Δσ)2 and the second alternative can be described as having the smaller

variance . The model observer collects a sample of size n + 1 from the first interval, a

sample of the same size from the second interval, and responds correctly when the variance

of the former sample exceeds that of the latter. These two sample variances can be denoted

by the independent random variables S and N, respectively. The expected response accuracy

is given by the formula

(A1)

where FN(x) is the cumulative distribution function (CDF) of N, and fS(x) is the probability

density function (PDF) of S. The lower limit of integration is zero because neither S nor N

can ever be negative.

Allowing internal noise

Consider what happens when each element of each sample is perturbed by internal Gaussian

noise with zero mean and variance . In that case, S will be 

times a chi-square random variable (call it U), having n degrees of freedom; and N will be

(  times an independent chi-square random variable (call it V), also having

n degrees of freedom; and probability correct is given by the formula

(A2)

where F is the F-distribution, with degrees of freedom n and n.

Also allowing a sensory threshold

This simple formula (Equation A2) cannot be used when we allow a sensory threshold, but

note that if fX(x;n) and FX(x;n) are the PDF and CDF for a chi-square random variable X,

with n degrees of freedom; then fX(x/a;n)/a and FX(x/a;n) will be the PDF and CDF for aX,

as long as a > 0. Therefore, the CDF for N can be written as
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(A3)

and the PDF and CDF for S are

(A4)

and

(A5)

Now consider what happens when there is a sensory threshold c, below which all sample

variances are indistinguishable from zero. Either the sample variance from the first interval

(the one with the larger variance) could be bigger than that from the second interval, or

neither sample variance could exceed the threshold and the observer makes a lucky guess.

Therefore, the expected response accuracy for 2AFC would be

(A6)

Weber’s Law

In this final section, we argue that 2AFC responses based on sample variance automatically

produce Weber’s Law, a consequence first noted by Green and Swets (1966). The only

constraint is that the stimuli only vary in variance. That is, if the CDF of stimulus values

FX(x), is such that

(A7)

then it can be shown that

(A8)

where  is the CDF of , the sample variance of X, and FS2 (x) is the CDF of S2, a

same-sized sample of .

To obtain the expected response accuracy, we can set y = x/var S, and substitute into

Equation A1:

(A9)
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Let us assume that the pedestal is sufficiently large so that we can forget about the internal

noise and any sensory threshold (i.e. ). In that case,

(A10)

That is, the expected response accuracy is purely a function of Δσ/σp. This is Weber’s Law.
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Figure 1.
Example of stimuli used in the variance discrimination experiment. The observer’s task was

to report which of the two images, which were presented successively, had the higher

variability in orientation. In this case, there is zero variability in the image on the left; the

image on the right was created using a Gaussian pdf with σ = 8 deg.
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Figure 2.
The panels on the left hand side of the figure show just-noticeable differences in orientation

variability between two patterns (vertical axis) for 3 observers (MM top panel; IM Middle

panel; JAS bottom panel) as a function of the variability of the less-variable pattern

(Pedestal, x axis). The data points (circles) show 82% correct values from best-fit Weibull

functions, with 95% confidence limits (vertical bars). The red curves show the best fit to all

the data of the ideal observer model described in the Appendix A; the green show the same

model supplemented with a threshold (see also the Appendix A). The blue diagonal line has

a unit slope for reference. The panels on the right hand side of the figure show the slopes of

the best-fitting Weibull functions to the human (circles) and model (smooth curves)

performances. The leftmost point in each graph refers to the Pedestal = 0 condition, moved

to a small positive value to accommodate it on the logarithmic scale.
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Figure 3.
The bars in the figure show relative likelihoods (different absolute scales of log likelihood

for each observer) for the signal-detection model of variance discrimination (pink bars) and

for the same model supplemented by a threshold (blue bars). The labeled horizontal lines

show the likelihoods of a coin-flipping model and of separate Weibull fits to the data at each

pedestal value. For further explanation, see the text.
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Figure 4.
Results of an experiment with a single observer (MM) to see whether extensive experience

with variance detection could improve performance. The first six points show performance

in the six blocks when the pedestals were interleaved (Figure 2). The last seven points show

blocks when the zero pedestal condition was presented in isolation. There was no evidence

for learning.
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Table 1

Best fitting values for intrinsic noise σint, number samples n + 1, sensory thresholds c, and log-likelihoods (ln

L) for three observers (MM, IM, and JAS). The models are described in the Appendix A. The asterisks show

when the threshold model is a significantly better fit (p < .01) than the nonthreshold model.

σ int n + 1 c ln L

MM no thresh 2.87 9 – −647.10

MM + thresh 2.23 8 3.16 −642.11**

IM no thresh 2.49 5 – −504.83

IM + thresh 0.98 4 2.86 −495.91**

JAS no thresh 4.80 10 – −1010.6

JAS + thresh 4.82 9 1.04 −1010.6 (NS)
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