
A Motion Correction Framework for Time Series Sequences in
Microscopy Images

Ankur N. Kumar1, Kurt W. Short2, and David W. Piston2,*

1Department of Electrical Engineering, 367 Jacobs Hall, Vanderbilt University, Nashville, TN
37212, USA

2Department of Molecular Physiology & Biophysics, 747 Light Hall, Vanderbilt University,
Nashville, TN 37232, USA

Abstract

With the advent of in vivo laser scanning fluorescence microscopy techniques, time-series and

three-dimensional volumes of living tissue and vessels at micron scales can be acquired to firmly

analyze vessel architecture and blood flow. Analysis of a large number of image stacks to extract

architecture and track blood flow manually is cumbersome and prone to observer bias. Thus, an

automated framework to accomplish these analytical tasks is imperative. The first initiative toward

such a framework is to compensate for motion artifacts manifest in these microscopy images.

Motion artifacts in in vivo microscopy images are caused by respiratory motion, heart beats, and

other motions from the specimen. Consequently, the amount of motion present in these images can

be large and hinders further analysis of these images. In this article, an algorithmic framework for

the correction of time-series images is presented. The automated algorithm is comprised of a rigid

and a nonrigid registration step based on shape contexts. The framework performs considerably

well on time-series image sequences of the islets of Langerhans and provides for the pivotal step

of motion correction in the further automatic analysis of microscopy images.
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Introduction

In vivo cellular level monitoring and probing of biological systems can be realized using

different microscopy techniques. For instance, using line-scanning confocal microscopy,

pancreatic islet blood flow in murine animals can be examined. Pancreatic islets or islets of

Langerhans are highly vascularized micro-organs in which the blood vessels have a distinct

and tortuous architecture (Miyake et al., 1992). In rodents, they are composed of a core of β
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cells, which produce insulin (Suckale & Solimena, 2008). The characteristics of the

vasculature present within these islets and the vasculature's corresponding blood flow can

signify the islet's response and sensing to blood glucose fluctuations with respect to

pharmacological changes, subsequently providing an insight to insulin production (Nyman

et al., 2010). Monitoring blood flow requires the acquisition of time-series image sequences,

t-stacks, in living tissue and understanding the blood flow dynamics requires analytical

methods. Manually labeling and tracking red blood cells (RBCs) in intricate vasculature of

the islets for several t-stacks is a taxing, cumbersome, and error prone process, and thus an

automatic framework to achieve this task is desirable.

Due to the in vivo nature of the acquired images, respiration and heart pulsations in the

mouse can cause severe motion artifacts and deter automatic analysis of blood flow

dynamics. The first and foremost task of pursuing an automatic framework for the analysis

of t-stack images for any biological system or living tissue is the removal of any movement

present in these images. The goal of this article is to establish a motion-correction

framework to address this task. The proposed method is applicable to any time-series

microscopy image sequence that exhibits biological structures with recognizable shapes and

boundaries such as vessels, dendrites, and axons. Previous work in correcting motion in

microscopy images has focused on intensity based methods (Yang et al., 2008; Greenberg &

Kerr, 2009; Lee et al., 2011; Lorenz et al., 2011). But, to our knowledge, a point-based

method for motion correction in microscopy images has not been proposed. Points on the

skeletons of the biological structures form the impetus for using a point-based registration

approach. The method presented in this article is not limited to the number of frames in the

t-stack. For the demonstration of this algorithmic framework, a t-stack of the vasculature in

the islets of Langerhans has been used as the primary dataset and input. The method is

comprised of the following parts: (1) deconvolution, (2) contrast enhancement, (3)

vesselness filter, (4) template selection, (5) skeletonization, (6) sampling and binning, (7)

shape contexts (SCs) and matching, (8) rigid registration, and (9) nonrigid registration using

thin plate splines (TPS). A flowchart illustrating the major blocks of the algorithmic

framework is shown in Figure 1.

Materials and Methods

Image Acquisition Procedures

Animals—Experiments involving mice were approved by and performed according to the

guidelines of the Vanderbilt University Institutional Animal Care and Use Committee. The

majority of the experimental procedures referred to in this article involving pancreas

exteriorization and in vivo fluorescence imaging has been previously discussed in Nyman et

al. (2010). Mouse insulin I promoter–green fluorescent protein (GFP) transgenic mice were

courtesy of Hara and Bell from the University of Chicago (Hara et al., 2003; Quoix et al.,

2007).

Pancreas Exteriorization—An intraperitoneal injection of xylazine-ketamine (20/80

mg/kg) was used to anesthetize the mice. By making an incision in the abdominal cavity, the

splenic end of the pancreas was revealed. Gauze bedding was placed gently on the
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abdominal cavity, and the pancreas-spleen connection was fixed over the bedding. The

mouse was secured prone on a heated stage, and the pancreas was in contact with the

imaging window. The exposed pancreas was kept moist during imaging by occasionally

adding 0.9% saline to the gauze bedding.

In Vivo Fluorescence Imaging—The LSM 5 LIVE (Carl Zeiss, Oberkochen, Germany.)

line-scanning confocal laser microscope with a ×20/0.8 NA planapochromat air objective

lens was used for the imaging. Considering the objective lens’ properties, this microscope

system is of the paraxial form. The slit aperture was 3.20 Airy units for the vasculature

channel and 2.78 Airy units for the RBC channel, for an approximately 6 μm imaging depth.

These values were adjusted for each channel for optimal signal-to-noise ratio (SNR) and

spatial resolution. The imaging window was 0.16–0.19 mm thick (Corning #2940-245).

Using epifluorescence, islets in the exposed pancreas were identified by the GFP labeled β-

cells. GFP was excited with a 488 nm diode laser, and islets were identified by emission

through a 540–625 nm band-pass filter. Islets closer to the surface provided the best

resolution. Tetramethylrhodamine dextran tracer [2 × 106 MW, Molecular Probes (Eugene,

OR, USA), dissolved to 10 mg/mL in 0.9% saline] was used to label the vasculature. On the

day of imaging, RBCs from a donor mouse were labeled by osmotic shock loading with

Alexa Fluor 647 hydrazide tris (triethylammonium) salt (Molecular Probes). Briefly, 200 μL

of washed RBCs in 0.9% saline was added to a mixture of 35 μL Alexa Fluor 647 (2 mg/mL

in distilled deionized water) and 200 μL of distilled deionized water, in a 0.5 mL Eppendorf

tube. It was gently mixed by suction using a 200 μL Eppendorf pipet and allowed to

incubate at room temperature for 20 min. After incubation, 31.9 μL of 10× phosphate

buffered saline (Gibco, Grand Island, NY, USA) was added to the mixture, the tube gently

vortexed, and the contents spun-down for 4 min at 2,000 rpm (400 g) in an Eppendorf

microfuge. A portion of the supernatant was drawn off, and the labeled RBCs subsequently

washed five times with 0.9% saline, each time spinning-down for 3 min at 2,000 rpm (400

g). The resulting uniformly labeled RBC solution was adjusted to 200 μL with 0.9% saline

and stored at 4°C. Before the imaging experiment both the vasculature label and the labeled

RBCs were equilibrated to room temperature. During the imaging experiment a one-to-one

mixture of vasculature label and labeled RBCs (~50 μL each) was injected into the mouse

through a carotid artery catheter.

The RBCs and vasculature labels were excited using 532 and 635 nm diode lasers,

respectively, and the emission collected using 540–625 nm band-pass filters and 650 nm

long-pass filters, respectively. The emissions were collected simultaneously through two

detection channels leading to two-channel time-series images. All time-series scans, for

analysis here, were collected at 100 frames per second (fps) for 30 s to 2 min. The frame

size was 512 × 256 pixels. For each pancreatic islet, time-series scans were collected at

multiple depths below the surface of the tissue, denoted by z = z0. Each single-plane image

series forms the much referred to time-series or t-stack, I(x, y, z = z0, t) also denoted as I(x,

y, t), in this article. This t-stack captures blood flow dynamics in the midst of respiratory and

heart induced movements. The t-stack channel that captures the labeled vasculature is used

in this motion correction framework, and the channel that captures the labeled RBCs is not

used in this framework.
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Image Algorithm

This section is the core of this article and seeks to elaborate on the major blocks of the

algorithm shown in Figure 1. The preprocessing block, detailed in the Preprocessing section,

contains the deconvolution and contrast enhancement stages. Deconvolution is used to

remove artifacts caused by the optical characteristics of the microscopy system. The

resulting deconvolved t-stack has much of the present noise in I(x, y, t) filtered. However, as

a side effect, a slight haze contaminates the salient features, and this is addressed by

enhancing the contrast.

The feature extraction and matching block is comprised of various stages—vesselness filter

stage for estimating the presence of vessels, skeletonization of the vessels, template

selection for performing registration, sampling and binning points along the skeletonized

vessels based on the orientation of vessels, SCs for capturing this distribution of points per

orientation, and perform matching of several SCs between the template and the current

image frame in the t-stack based on a cost function. This matching results in homologous

points or correspondences that are subsequently used in the registration block. This section

is detailed in the Feature Extraction and Matching section.

The motion artifacts present in the t-stack do have a rigid and a nonrigid component; hence,

the registration block is composed of these two stages. The correspondences resulting from

the Feature Extraction and Matching section are used in the registration block, as described

in the Registration section.

Preprocessing

Deconvolution: This first step of the preprocessing block, as shown in Figure 1, is used to

restore the t-stack image, I(x, y, t), acquired by the LSM 5 LIVE system using

deconvolution. The LSM 5 LIVE microscope's point spread function (PSF) contributes to

the formation of I(x, y, t) (McNally et al., 1999). Deconvolution techniques can adequately

remove the manifest artifacts resulting from the optics of the microscope on the t-stack

(McNally et al., 1999; Verveer et al., 1999; Cannell et al., 2006; Biggs, 2010). The

theoretical PSF model for this microscope has been derived for the paraxial case (Sandison

& Webb, 1994; Wolleschensky et al., 2006) and for the nonparaxial case (Dusch et al.,

2007). To generate the paraxial LSM 5 LIVE's PSF for RBCs and vasculature, the excitation

and detection wavelengths used for highlighting RBCs and vasculature from the Image

Acquisition Procedures section were appropriately substituted (Wolleschensky et al., 2006).

Considering the intensity values captured in the LSM 5 LIVE, images are signal-dependent

and directly proportional to photon count causing the manifest noise in these images to

adhere to a Poisson distribution, and therefore the Richardson-Lucy with total-variation

regularization (RLTV) algorithm (Richardson, 1972; Lucy, 1974; McNally et al., 1999;

Verveer et al., 1999; Dey et al., 2006) is appropriately selected. The RLTV algorithm has

desirable properties, including stable convergence, ability to reduce ringing artifacts

occurring at feature edges, and robustness to noise using regularization. Using the

DeconvolutionLab software package available from Vonesch and Unser (2008), the RLTV

algorithm with regularization parameter λRLTV and nRLTV iterations was used for
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deconvolving I(x, y, t). The parameters, λRLTV and nRLTV, used for this deconvolution step

are specified in Table 1. Figure 2 shows the image restoration by deconvolution using the

RLTV algorithm.

Enhance Contrast: The second step of the preprocessing block deals with the slight haze

resulting from the deconvolution step. Figure 2c shows the result from the deconvolution of

I(x, y, t) and the presence of the slight haze. This presence of a slight haze corrupts the

saliency of features in the output image, O(x, y, z = z0), and this can be accounted for by

enhancing the contrast. Contrast-limited adaptive histogram equalization (CLAHE) is able to

maintain the high spatial frequency content of the image and reduce edge shadowing effects

produced by the standard adaptive histogram equalization technique (Zuiderveld, 1994;

Pisano et al., 1998). In CLAHE, a user-specified maximum, called the clip-level cHE, is

imposed on the height of the local histogram and on the maximum contrast enhancement

factor. Figure 2d depicts the result of CLAHE on the deconvolved image. Figure 2d is the

input for the feature extraction and matching block of this motion correction methodology as

illustrated in the middle section of Figure 1.

Feature Extraction and Matching

Vesselness Filter: Tubular structures, namely, vessels, can be detected, highlighted, and

characterized by a “vesselness” measure using a multiscale vessel filter as described in

Frangi et al. (1998). Vesselness is evaluated on each frame of the t-stack, denoted by I(x, y),

where I(x, y) is the preprocessed image, i.e., it has been deconvolved and contrast enhanced

as per the Preprocessing section. Eigenvalue analysis of the Hessian matrix of the image can

locally extract principal directions of curvature. To compute vesselness, the image, I(x, y), is

convolved with second derivatives of Gaussians at multiple scale sizes, w, to construct the

Hessian matrix, Hw, defined in equation (1). In equation (1), Ixx, Ixy, Iyx, and Iyy represent the

partial second derivatives of I(x, y). Multiple scales w aid in the detection of small to large

vessels in I(x, y).

(1)

The eigenvectors, û1,w and û2,w, of Hw correspond to intensity variations along the principal

directions of the two-dimensional (2D) tubular structure or vessel. The eigenvector û1,w,

corresponding to the eigenvalue λ1,w, indicates the direction of the body of the vessel as it is

also the direction of the minimum intensity variation. Figure 3 illustrates the extracted

principal directions, û1,w and û2,w, of an ideal 2D tubular structure at a scale w.

From Frangi et al. (1998), the vesselness measure or response at scale size w, Vw(x, y), can

be defined as shown in equation (2). Furthermore, maximal vesselness response, V(x, y),

occurs when the size of the vessel to detect approximately matches the scale size w and is

shown in equation (3). The values of β, c, and the range of scale sizes for w are mentioned in

Table 1. Figure 4b illustrates the result from equation (3) and is the final output of the

vesselness filter. This output will be the subsequent input into the later steps of the

algorithm.
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(2)

where

(3)

Template Selection: To perform any registration step, a “source” and a “target” image need

to be designated. Although there is no limit in the number of frames that can be analyzed

with the presented method, the t-stacks used consist of approximately 3,000–12,000 frames

acquired at 100 fps. Each frame's movement can be deemed independent of each other and

thus form the “target” images. For the presented algorithmic framework, the manually

selected template frame of the vessel-enhanced t-stack is picked as the “source” image or

“template,” V0(x, y), and the i'th frame of the vessel-enhanced t-stack, Vi(x, y), is registered

to this template. The frame of the t-stack that displays the least amount of movement is

selected as the template frame. Figure 5 reflects the selected template superimposed with a

target frame.

Skeletonization: For the registration of Vi(x, y) to V0(x, y), a neighborhood of vessel

structures in Vi(x, y) should approximately match the neighborhood of vessel structures in

V0(x, y). Intuitively, the skeletonization of a vessel provides its topological description.

Hence, skeletonization of all vessels present in I(x, y) will provide for a topological context,

which will be utilized in the SC block of this algorithm. Given vesselness values at each

pixel in I(x, y) and its corresponding eigenvector, û2,w, the skeleton describing the topology

of vessel structures can be found using non-maxima suppression (NMS) (Forsyth & Ponce,

2002). In this article, NMS aims to find local maxima in V(x, y). The vesselness response is

maximal at any pixel by comparing all vesselness values along the normal directions,

indicated by û2,w and –û2,w, around a radius rnms. Once the local vesselness maximum in

rnms has been determined and stored, the rest of the vesselness response values in rnms is

suppressed. Typically, it is expected that the local vesselness maxima of the vessel structure

will lie around the centerline of the vessel. NMS does not consider the magnitude of the

determined local maxima, and this can lead to unwanted branches on the extracted skeletons

of the vessels. To counter this, a hysteresis thresholding step (Forsyth & Ponce, 2002) is

used to find the most significant connected vessel skeletons by starting a vessel skeleton

when it satisfies a Hysthigh vesselness threshold and continuing this skeleton when it

satisfies a Hystlow vesselness threshold in an eight-connected neighborhood, where Hysthigh

>> Hystlow. The values describing rnms, Hysthigh, and Hystlow are given in Table 1, and the

skeletonization of vessels is shown in Figure 6a.

Sampling: Skeletons binned into orientations can increase robustness and reduce clutter

when computing correspondences between V0(x, y) and Vi(x, y). The skeletons of vessel

structures have an associated vesselness value, V(x, y), and associated eigenvectors, û1 and
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û2. The angle between these eigenvectors can yield the local orientation of the vessel's

skeleton, and this can be appropriately binned into a number of orientations, denoted by

norientations. A user-defined angle, θorientations, is divided into τ to compute norientations, with

each orientation delineated by θj. Once the extracted vessel skeletons have been assigned to

an orientation, sampling can occur. Figure 6b exhibits the sampling process with ns sample

points in four orientation bins on the vessels’ skeleton. Table 1 describes the values of ns

and θorientations used in this framework, and the effects of these parameters is discussed in

the Results section.

Shape Contexts: To perform registration, homologous points need to be determined, and

one method to achieve this is to construct feature descriptors. Several of these feature

descriptors can be constructed for both the template, V0(x, y) in θj, and the target frame, Vi(x,

y) in θj, and a matching scheme based on a cost function can be used to obtain

correspondence pairs, which will be used in the subsequent registration steps. Let V0 be the

samples obtained on the template, V0(x, y), and Vi be the samples obtained on the target

frame, Vi(x, y). To build the feature descriptor, SC descriptor, proposed by Belongie et al.

(2002), is suitable as it encodes a vessel's representative sample points in a neighborhood.

The SC descriptor bins spatial relationships between points in a neighborhood as a log-polar

histogram with a total of K bins. This gives each sample point, seen in Figure 7b, a

description based on its neighboring sample points, which forms the context of the sample

point. The SC descriptor is compact, intrinsically translational and scale invariant, highly

discriminative, robust to the presence of outliers, and robust to deformations. An example of

the SC descriptor is illustrated in green and black in Figure 7b. The log-polar histogram

centered at a point, p, a sample point on the skeleton of a vessel, maps the population of

points contained in the several bins of the log-polar histogram into a feature vector as shown

in Figures 7c–7e. In essence, the SC descriptor is a feature vector in the form of a coarse

histogram describing the relative coordinates of the set of points in the neighborhood of p.

The various parameters used to construct SCs are also described in Table 1.

From Figures 7c–7e, it is apparent that Figure 7e is dissimilar to Figures 7c and 7d, and to

quantify this dissimilarity, a representative cost function needs to be developed. Since SCs

are histograms, a χ2 statistic can be used as a cost function, Csc (Belongie et al., 2002).

Consider a point, pV0 on V0, and a point pVi on Vi, and their associated K-bin normalized

SCs, h(pV0; k) and h(pVi; k), then Csc(pV0, pVi) can be defined as indicated in equation (4),

and this measures the similarity between the feature vectors of pV0 and pVi.

(4)

For the purposes of motion correction, Csc is not sufficient to characterize the dissimilarity

of SCs under severe clutter, and hence an additive cost function term is needed. A continuity

cost term, Ccont, ensures that two adjacent points, pV0 and qV0, on the template, V0, are also

adjacent points on the target frame, Vi (Thayananthan et al., 2003). This notion is explained

in Figure 8 and is specified in equation (5). In equation (5), neighboring template points pV0
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and qV0 should map to pVi = φ(pV0) and qVi = φ(qV0) on the target frame, respectively, where

pVi and qVi are neighbors as well on the target frame. The function φ maps points in the

template, V0, to the target frame, Vi, and the computation of φ is explained in the matching

stage of the algorithm. The total cost, Ctotal, to minimize per orientation bin, θj, during the

matching operation of this algorithm is given in equation (6), where μ is a weighing

parameter.

(5)

(6)

Matching: Minimizing the total cost in equation (6) per orientation bin, θj, can be assessed

as solving a weighted bipartite matching problem (Belongie et al., 2002), wherein each

point, pV0, on the template, V0, gets solely matched to one point, pVi, on the target frame, Vi.

This assignment problem for generating correspondence pairs, (pV0, pVi), can be solved

using the well-established Hungarian method (Kuhn, 1955; Papadimitriou & Steiglitz,

1998), also known as Kuhn-Munkres assignment algorithm. This method produces φ, the

previously discussed mapping function. One drawback of the Hungarian method is that it

performs a one-to-one assignment for all sample points, inclusive of outliers, from the target

Vi to the sample points in V0. Henceforth, to dispose of anomalous correspondence pairs,

(pV0, pVi), the Euclidean distance between pV0 and pVi, denoted as d(pV0, pVi), is computed,

and the pair is rejected if d(pV0, pVi) > ε. The value of ε is user-defined, and two kinds of ε

are used in this algorithmic framework, εr for rigid registration and εnr for nonrigid

registration. Finally, the set of matched correspondence pairs for each θj are sent to the

registration block of this algorithmic framework.

Registration

Rigid Registration: From the Feature Extraction and Matching section, the sets of matched

correspondence pairs for all orientations θj are accumulated into one pool of correspondence

pairs, and this pool is the input into the rigid registration step. Rigid registration transforms

the matched points from the target to the template using the least-squares method

(Fitzpatrick et al., 2000). This transformation explains the global movements in the frames

of t-stack; however, to account for local movements, a nonrigid registration refinement step

is used.

Nonrigid Registration: The pool of transformed correspondences from the rigid

registration step is the input into the nonrigid registration stage, as described in the bottom

section of Figure 1. The nonrigid registration refinement used is based on TPS (Bookstein,

1989). The smoothness of the resulting deformation field is controlled by a regularization

parameter, λ (Rohr et al., 2001), which is annealed over nnr iterations using γ annealing

parameter, described in Table 1. From Figure 1, the input pool is split up into its respective

orientations, θj; SCs are recomputed for each θj; matching with εnr criterion is executed for

each θj; and matched correspondence pairs for all orientations are accumulated to compose

an updated pool of correspondences. TPS with an annealed regularization parameter is
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carried out on the updated pool to result in a new pool of transformed correspondence pairs,

the new input. This refinement procedure is repeated for nnr iterations. Regularized TPS on

the final pool of transformed correspondence pairs, Vf, yields a final deformation field that is

utilized in correcting the local motion present in t-stacks.

Results

It is evident that the ground truth for the manifest in vivo motion of the biological specimen

in these t-stacks is unknown. Thus, to quantify the motion correction performed with this

framework, the stability of the t-stack based on normalized cross-correlation (NCC) is used.

Often, NCC is used in template matching, and the peak of the NCC plot displays where the

template matches a test image. The location of this peak is an offset or distance of how much

the test image needs to be moved to fully match the template; this is denoted by dNCC. Once

the test image has been moved by the offset, the resulting dNCC will be 0, and this can be

understood as the test image being stable against the template. In the presented use of this

framework, with the template and each frame of the t-stack of the same dimensions, a

motion corrected t-stack's stability can be measured by the total dNCC. Since the raw t-stacks

are noisy, the vessel-enhanced t-stacks are used for computing NCC and dNCC. In addition

to quantifying the stability of the motion correction, a qualitative analysis based on

maximum intensity projection (MIP) of the outcomes from the proposed registration

framework is detailed in this section to show the effectiveness of the framework. Both

quantitative and qualitative results need to be examined to assess the performance of the

motion correction performed on a dataset.

The parameter values in Table 1 were picked empirically and were held constant for all

datasets. The pillars of this motion correction framework are the sample points on the vessel

structures, SC descriptors constructed on these sample points, correspondence matching, and

registration. The sampling of points on the vessel structures depends on acceptable

hysteresis results. Good hysteresis results lead to adequate samples for constructing

meaningful SC descriptors, which is used in the matching and registration steps. In effect,

the parameters in Table 1 were picked to produce acceptable hysteresis results. Figure 9

displays the effect of using two different hysthigh values. For the t-stacks, the hysteresis

thresholds were selected such that majority of the vessels were skeletonized, over all

datasets. The effect of lack of skeletonization of the vessels leads to less smooth deformation

fields and poor motion correction. The number of orientations, norientations, used in binning

the samples in the sampling stage was picked as 4 to represent 45° intervals. SC descriptors

are built per θj and matched accordingly. In our datasets, selecting more than four

orientations, θj, for binning of samples leads to suboptimal construction of SCs. This is

attributed to the lack of a distribution of sample points, in a θj, to capture in the SC

descriptor. Suboptimal SCs are less unique and meaningful in the matching stage and thus

will yield poor registration results. The parameters for SCs help capture the distribution of

the sample points in a log-polar plot. Increasing the angular bins (Kθ) from 12 and radial

bins (Krad) from 11 had no effect on the motion correction. However, less than 12 angular

bins affected the granularity of the log-polar histogram leading to poor matching of

correspondences, which lead to suboptimal motion correction. For the nonrigid registration

step, regularization parameter (λ) and annealing parameter (λ) were changed until the
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resulting deformation field was sufficiently smooth and regularized, and MIP was sharp for

all datasets. Lower λ and λ values resulted in overfitting of the deformation fields to the

correspondences and yielded poor motion correction results.

The number of samples, ns, per orientation bin, θj, can significantly affect the performance

of the presented algorithm. The value of ns directly corresponds to the construction of

meaningful SC descriptors. Once hysteresis produces acceptable results, samples need to be

generated in the sampling stage and ns determines the number of SC descriptors used to

perform correspondence matching and, subsequently, registration. Lower values of ns will

yield nonunique SCs and will compromise the matching stage. The number of samples, ns,

was fixed as 200 per θj for all datasets used in this algorithmic framework. This value was

determined by running 75 frames of all t-stack datasets, sweeping ns from 50 to 300 in

increments of 25. The metric, dNCC, was computed for each dataset and ns combination and

is shown as a graph in Figure 10. When the total dNCC is minimized, motion correction has

been successful and overall, from Figure 10, a value of ns equal to 200 is sufficient to

perform motion correction for all datasets presented.

Table 2 shows the values for two parameters, εr and εnr, categorized for “less,” “moderate,”

and “most” movement present in t-stacks. The user selects the category of the movement for

the entire t-stack image dataset, and the appropriate εr and εnr are picked for the motion

correction.

In the presented framework, motion correction can be regarded as being based on a template

matching scheme. Since NCC is an intensity-based method used for template matching, it

also forms a baseline for comparing the presented point-based motion correction using SC

descriptors (Lee et al., 2011). Since the raw t-stack exhibits noise, the vessel-enhanced t-

stack is used as the input into the baseline. Table 3 quantifies the stability of the motion

correction based on the mean dNCC of the vessel-enhanced t-stacks and ns = 200. From

Table 3, we note that the stability of the time-series sequences greatly improves, and the in

vivo motion has been corrected with the use of the presented algorithm based on SCs. The

intensity-based NCC correction, the baseline, corrects the in vivo motion as well, but it is

limited to rigid-motion and fails to correct for nonrigid in vivo motion in the t-stack. This

can be seen in the qualitative results for Datasets 2, 3, and 8. The baseline is not able to

correct most of Dataset 1 because there is too much clutter in the vessel-enhanced image.

The presented framework corrects the motion in Dataset 1, and a comparison is shown in

Figures 11e–f. Since Dataset 6 primarily exhibits rigid motion, both the baseline and the

presented algorithm perform equally well and is illustrated in Figures 16e and 16f. The

comparison between the baseline and the algorithm is shown qualitatively for all datasets in

Figures 11e, 11f–20e, 20f.

The qualitative evaluation of motion correction is based on MIPs. The MIP of the frames of

the t-stack's uncorrected motion against its template will be more smeared, less sharp, and

have less overlap with the template. On the other hand, when the motion is corrected, the

MIP of the frames of the t-stack against its template will be sharp and overlap almost

completely with the template. The qualitative results show MIPs of uncorrected motion,

NCC-based correction, and the presented algorithmic framework. These qualitative results
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are shown in Figures 11–20 and are best viewed in color. Figures 11d–20d display the

hysteresis results between the template and an image frame of the respective t-stack on

which the sampling process will occur. These samples are used in constructing SCs on both

the template and the image frame to perform registration. Videos 1–2 show the motion

correction for “most” movement in Datasets 2–7. Video 3 shows the motion correction for

“moderate” movement in Dataset 8.

To measure the robustness of this motion correction framework to transient illumination

such as in the case of Ca2+ imaging, we manipulated the brightness of a fraction of the

imaged blood vessels in a subset of the raw data. Parts of the vessels in the raw Dataset 2

were manually selected, and the brightness was multiplied by 1.5 to simulate transient

signals and is referred to as Dataset 10t in Table 3. The framework is robust to transient

signals, and this can be seen in the motion correction presented in Figure 20 and Video 4 for

Dataset 10t.

Though the qualitative and quantitative results from the motion correction framework are

encouraging, there are certain cases where the motion correction results are suboptimal.

These cases, specifically Dataset 4, shown in Figure 14, often occur when the t-stack's

depth, signified by z0, is too large or deep, and this can lead to low signal-to-background

ratio (SBR) and SNR in the acquired t-stack images. Another case that yields suboptimal

results is Data-set 5, shown in Figure 15, in which most of the vesselness response is

contained in a small portion of the image frame. These cases can cause issues in the

vesselness response resulting in lack of skeletonizations of vessels in certain areas of the

image frame, which affects the sampling process detrimentally. Subsequently, the sampling

process on these skeletonizations produces sample points in certain areas of the image frame

and a lack of sample points in other areas.This lack of sample points in other areas of the

image frame will affect the computed deformation field during the registration stage. In a

sense, the computed deformation field is predominantly guided by a set of correspondence

pairs representing a small portion of the image frame, and this yields some abnormal

movements in the empty areas of the image as correspondence pairs in those areas are

lacking. The resulting deformation field is over-fitted, less smooth, and less regularized.

Datasets 4 and 5 display this notion qualitatively. The quantitative metric, dNCC, considers

the peak offset distance between the NCC of the template and the image frame, and is not

able to capture the nonsmooth deformations in areas where the vesselness response is poor.

This deficiency is apparent when comparing quantitative and qualitative results for Datasets

4 and 5, Figures 14 and 15, respectively. Hence, the evaluation of the presented motion

correction framework needs to be judged qualitatively and quantitatively.

The presented motion correction framework is programmed in MATLAB 7.10.0

(MathWorks Inc., Framingham, MA, USA, R2010a), executed on eight-core AMD Opteron

machines with 10GB RAM, and on average takes 7 h to correct 3,000 frames. The code is

available upon request.
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Discussion

The presented motion correction framework is the first step of a suite of algorithms aimed to

compute local and global changes in velocities of RBCs in the islets of Langerhans, with

changes in glucose and other pharmacological treatments, to gain an insight into blood flow

dynamics and restriction points. The motion correction framework is able to correct the

motion in the t-stacks regardless of the number of frames because each frame is registered to

a template independently. This allows for future parallelization of the framework as each

frame can be sent to a core processor for motion correction. The framework is mainly

limited by the acquisition depth, z0, of the t-stack because of low SBR and low SNR, and

this makes biological structures less visible. Currently, ns is fixed for all orientations, θj, and

the user needs to select the overall category of the motion in the time-series sequence as

“most,” “moderate,” and “less.” This reduces the burden of parameter searching for the user.

Once the motion is corrected in the t-stacks, labeled RBCs can be tracked through the

vessels merely based on their location, and their velocity can be computed by analyzing the

RBC movement through vessel architecture. From the framework, vesselness response is

known in the t-stack and a 2D connectivity algorithm executed on this vesselness response

can generate a vessel architecture map. For the three-dimensional (3D) image stack acquired

from the Zeiss LSM 5 LIVE, a similar motion correction framework can be executed, and a

3D connectivity scheme on the vessels can extract vessel architecture of the islet. Though

this framework was exclusively tested on these Zeiss LSM 5 LIVE time series images, it can

be used for images captured from intravital microscopy and other forms of microscopy

images that exhibit in vivo motion of the biological specimen. The vesselness filter response

was used in the feature extraction block of the presented algorithm, but an edge map of the

image content can also be used. In essence, registration or motion correction in microscopy

images, where the image content exemplifying any shape or structure that can be

skeletonized, can be performed using the presented framework based on SCs.

SUMMARY

Shape contexts are employed in shape recognition by building feature descriptors and

comparing them to a database of known shapes such as alphabets (Belongie et al., 2002;

Mori et al., 2005). Shape contexts also aid in the formulation of an automatic feature vector

of a point and its neighboring points. This notion is accompanied by the vesselness filter to

create robust descriptors employed in finding matching correspondence pairs between a

template and a target image, and the performed registration step on the correspondence pairs

corrects the motion. The practical point-based technique discussed in this article is novel to

the microscopy field and can be applied to several types of microscopy images content of

which exhibits shapes and structures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Flowchart showing the major blocks of the algorithmic framework. The primary input into

this framework is the t-stack or time-series image stack acquired from a Zeiss LSM 5 LIVE

microscope. The top section of the block diagram describes the involved preprocessing steps

for the t-stack before the feature extraction and registration steps can occur. The middle

section of the block diagram details the elements of developing a robust feature descriptor

before matching correspondence pairs can be formed. These matching correspondence pairs

are used in a rigid registration step to yield a transformed set of correspondence pairs, which

account for large movements in t-stacks. The bottom section of the block diagram specifies

the connections and the iterative flow between the nonrigid registration segment and SC

matching step. The final output is the motion corrected t-stack.
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Figure 2.
Preprocessing results are shown: (a) original image showing vessels, (b) CLAHE on the

original image without the deconvolution operation increases noise, (c) deconvolution, as

outlined by the Preprocessing section, on the original image, and (d) CLAHE on the

deconvolved image increases the appearance of salient features. Note the haze in panel c and

its disappearance in panel d.
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Figure 3.
A 2D tubular structure or vessel has an elongated ellipse shape. The eigenvectors, depicted

as black arrows, of Hw, reveal the principal directions of the vessel at scale size w. The

length of these black arrows represents the absolute value of the corresponding eigenvalues.

Note the smaller length of the eigenvector, û1,w, reflecting the direction of minimum

intensity variation, in light green, or the body of the vessel.
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Figure 4.
(a) A frame from the t-stack, the original preprocessed image, I(x, y), and (b) maximal

vesselness filter response, V(x, y). Note that all vessels in panel a are captured in panel b.
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Figure 5.
(a) Template frame, V0(x, y), (b) target frame, Vi(x, y) to be registered, and (c) template, in

red, superimposed with the target frame, in green. Note the large movement between the

template and target frames.
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Figure 6.
(a) The extracted skeletons of vessels for a frame of the t-stack is displaced. (b) The

sampling on the vessel skeletons in four different orientations is shown, seen in different

colors.
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Figure 7.
(a) Sample points for one orientation, θj, for the template (in red) and a target frame from t-

stack (in blue) and three log-polar histograms centered is shown, (b) zoomed in view of the

log-polar histograms, black log-polar histogram belongs to the template, while the green and

red log-polar histograms belong to the target frame, (c) the SC (dark = large value) for the

black log-polar histogram, (d) the SC for the green log-polar histogram, and (e) the SC for

the red log-polar histogram. The axes of the SCs are log(radius) versus θ. Note the similarity

of the histograms of images c and d.
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Figure 8.
This diagram shows the intuition behind Ccont. The distances between adjacent pV0 and qV0

points should be similar to the distances of the neighboring pVi and qVi points.
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Figure 9.
(a) A vessel-enhanced image frame of Dataset 6, (b) skeletonizations of vessels with hysthigh

= 0.1, and (c) skeletonizations of vessels with hysthigh = 0.05 compares the effect of the

upper hysteresis threshold, hysthigh, on skeletonizations of vessels. Samples are generated

directly on these skeletonizations and used in building SC descriptors. (c) Sampling on

skeletonizations of vessels in a majority of the image frame area will lead to the construction

of meaningful SCs and smoother deformation fields. A lack of sampling on absent

skeletonizations in most of the image frame in b will lead to abnormal deformation fields.

See the discussion in the Results section.
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Figure 10.
This graph shows the number of samples, ns, being swept from 50 to 300 in increments of

25, versus dNCC values for each dataset. The specific value of ns that minimizes dNCC leads

to successful motion correction, and this value of ns is the minimum number of samples per

θj required to achieve the motion correction. From the graph, a value of ns = 200 is sufficient

to perform motion correction on all the datasets presented.
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Figure 11.
Dataset 1, 375 frames, “most” movement at depth z0 = 11.625 μm. (a) A frame of the

original t-stack. (b) The template used for performing motion correction. (c) The template

(red channel) superimposed on the MIP (green channel) of the uncorrected t-stack. (d)

Hysteresis results of the template superimposed with a frame of the uncorrected t-stack. (e)

The template (red channel) superimposed on the MIP of the motion corrected t-stack (green

channel) using the baseline algorithm. (f) The template (red channel) superimposed on the

MIP of the motion corrected t-stack (green channel) using the presented algorithm; notice

the near perfect overlap in yellow and the sharpness of all the vessels. The baseline is not

able to correct the motion because of increased clutter of vasculature in panel e.
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Figure 12.
Dataset 2, 600 frames,“most” movement at depth z0 = 30.925 μm. (a) A frame of the

original t-stack. (b) The template used for performing motion correction. (c) The template

(red channel) superimposed on the MIP (green channel) of the uncorrected t-stack. (d)

Hysteresis results of the template superimposed with a frame of the uncorrected t-stack. (e)

The template (red channel) superimposed on the MIP of the motion corrected t-stack (green

channel) using the baseline algorithm. (f) The template (red channel) superimposed on the

MIP of the motion corrected t-stack (green channel) using the presented algorithm; notice

the near perfect overlap in yellow and the sharpness of all the vessels. Video 1 illustrates the

motion correction for this dataset.
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Figure 13.
Dataset 3, 400 frames,“most” movement at depth z0 = 30.425 μm. (a) A frame of the

original t-stack. (b) The template used for performing motion correction. (c) The template

(red channel) superimposed on the MIP (green channel) of the uncorrected t-stack. (d)

Hysteresis results of the template superimposed with a frame of the uncorrected t-stack. (e)

The template (red channel) superimposed on the MIP of the motion corrected t-stack (green

channel) using the baseline algorithm. (f) The template (red channel) superimposed on the

MIP of the motion corrected t-stack (green channel) using the presented algorithm; notice

the near perfect overlap in yellow and the sharpness of all the vessels. Video 2 illustrates the

motion correction for this dataset.
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Figure 14.
Suboptimal case. Dataset 4, 450 frames, “most” movement at depth z0 = 40.400 μm. (a) A

frame of the original t-stack. (b) The template used for performing motion correction. (c)

The template (red channel) superimposed on the MIP (green channel) of the uncorrected t-

stack. (d) Hysteresis results of the template superimposed with a frame of the uncorrected t-

stack. (e) The template (red channel) superimposed on the MIP of the motion corrected t-

stack (green channel) using the baseline algorithm. (f) The template (red channel)

superimposed on the MIP of the motion corrected t-stack (green channel) using the

presented algorithm. From panel d, the sampling process is compromised by the poor

hysteresis response leading to a not so sharp overlap of the MIPs of template and the motion

corrected t-stack.
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Figure 15.
Suboptimal case. Dataset 5, 450 frames, “moderate” movement at depth z0 = 20.450 μm. (a)

A frame of the original t-stack. (b) The template used for performing motion correction. (c)

The template (red channel) superimposed on the MIP (green channel) of the uncorrected t-

stack. (d) Hysteresis results of the template superimposed with a frame of the uncorrected t-

stack. (e) The template (red channel) superimposed on the MIP of the motion corrected t-

stack (green channel) using the baseline algorithm. (f) The template (red channel)

superimposed on the MIP of the motion corrected t-stack (green channel) using the

presented algorithm. The lack of density of points in various parts of the image leads to a

lack of samples in those areas, a lack of SCs to use for correspondences and registration,

finally leading to a less smooth deformation field. This causes the MIP to be less sharp,

yielding suboptimal results.
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Figure 16.
Dataset 6, 600 frames,“most” movement at depth z0 = 25.000 μm. (a) A frame of the

original t-stack. (b) The template used for performing motion correction. (c) The template

(red channel) superimposed on the MIP (green channel) of the uncorrected t-stack. (d)

Hysteresis results of the template superimposed with a frame of the uncorrected t-stack. (e)

The template (red channel) superimposed on the MIP of the motion corrected t-stack (green

channel) using the baseline algorithm. (f) The template (red channel) superimposed on the

MIP of the motion corrected t-stack (green channel) using the presented algorithm; notice

the near perfect overlap in yellow and the sharpness of all the vessels. Dataset 6 primarily

exhibits rigid motion and both the baseline and the presented algorithm perform well as seen

in images e and f.
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Figure 17.
Dataset 7, 600 frames,“most” movement at depth z0 = 35.050 μm. (a) A frame of the

original t-stack. (b) The template used for performing motion correction. (c) The template

(red channel) superimposed on the MIP (green channel) of the uncorrected t-stack. (d)

Hysteresis results of the template superimposed with a frame of the uncorrected t-stack. (e)

The template (red channel) superimposed on the MIP of the motion corrected t-stack (green

channel) using the baseline algorithm. (f) The template (red channel) superimposed on the

MIP of the motion corrected t-stack (green channel) using the presented algorithm; notice

the near perfect overlap in yellow and the sharpness of all the vessels.
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Figure 18.
Dataset 8, 450 frames,“most” movement at depth z0 = 29.300 μm. (a) A frame of the

original t-stack. (b) The template used for performing motion correction. (c) The template

(red channel) superimposed on the MIP (green channel) of the uncorrected t-stack. (d)

Hysteresis results of the template superimposed with a frame of the uncorrected t-stack. (e)

The template (red channel) superimposed on the MIP of the motion corrected t-stack (green

channel) using the baseline algorithm. (f) The template (red channel) superimposed on the

MIP of the motion corrected t-stack (green channel) using the presented algorithm; notice

the near perfect overlap in yellow and the sharpness of all the vessels. Video 3 illustrates the

motion correction for this dataset.
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Figure 19.
Dataset 9, 225 frames, “less” movement at depth z0 = 11.625 μm. (a) A frame of the original

t-stack. (b) The template used for performing motion correction. (c) The template (red

channel) superimposed on the MIP (green channel) of the uncorrected t-stack. (d) Hysteresis

results of the template superimposed with a frame of the uncorrected t-stack. (e) The

template (red channel) superimposed on the MIP of the motion corrected t-stack (green

channel) using the baseline algorithm. (f) The template (red channel) superimposed on the

MIP of the motion corrected t-stack (green channel) using the presented algorithm; notice

the near perfect overlap in yellow and the sharpness of all the vessels.
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Figure 20.
Dataset 10t, 75 frames, “most” movement at depth z0 = 30.925 μm. These 75 frames are a

part of Dataset 2. (a) A frame of the original t-stack. The manually manipulated brightness

of a vessel to simulate Ca2+ imaging is indicated by the arrow. (b) The template used for

performing motion correction. (c) The template (red channel) superimposed on the MIP

(green channel) of the uncorrected t-stack. (d) Hysteresis results of the template

superimposed with a frame of the uncorrected t-stack. (e) The template (red channel)

superimposed on the MIP of the motion corrected t-stack (green channel) using the baseline

algorithm. (f) The template (red channel) superimposed on the MIP of the motion corrected

t-stack (green channel) using the presented algorithm; notice the near perfect overlap in

yellow and the sharpness of all the vessels. Video 4 displays the motion correction and the

robustness of the algorithm to brightness changes.
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Table 1

Fixed Values for Parameters Used in Various Stages of the Framework.

Algorithm Variable Description Value/Formula

Preprocessing

Richardson-Lucy with RLTV λ RLTV Regularization parameter for RLTV 0.002

n RLTV Number of iterations for RLTV 10

Enhance contrast cHE Clip level for CLAHE 3

Feature Extraction and Matching

Vesselness filter w Scales (standard deviation) for Gaussians 1, 2, 3, 4, 5,6

gb Block-size for second-order Gaussian derivatives 15 × 15

β Control sensitivity of line filter 0.5

c Control sensitivity of line filter 0.5*max(Λ)

Nonmaxima suppression rnms Radius to consider for NMS 1.5

Hysteresis Hysthigh Threshold for starting a skeleton 0.05

Hystlow Threshold for continuing a skeleton 0.005

Sampling θ orientations Angle subdivision for orientation binning τ/4

norientations Number of orientation bins τ/θorientations

ns Number of samples per orientation 200

Shape context Kθ Angular bins for log-polar histogram 12 or τ/6

Krad Radial bins for log-polar histogram 11

K Total number of bins for log-polar histogram 132

rinner Inner-radius for log-polar histogram 1/8

router Outer-radius for log-polar histogram 4

μ Weighing parameter for cost functions 0.1

Registration

Nonrigid registration λ Regularization parameter for TPS 106

γ Annealing parameter 0.93

nnr Number of iterations for TPS 5
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Kumar et al. Page 36

Table 2

Values of Parameters Based on User-Selected Category Describing the Motion.

Less Movement Moderate Movement Most Movement

ε r 15 25 45

ε nr 4 4 8

Microsc Microanal. Author manuscript; available in PMC 2014 August 18.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kumar et al. Page 37

Table 3

Comparison of Mean NCC Peak Offset Distance, dNCC (μm), for Motion Correction.

Dataset Number of Frames Pixel Size (μm) Category Uncorrected NCC Corrected Present Method (This work)

1 375 0.89 Most 19.809 15.237 0.00522

2 600 0.78 Most 4.7422 2.3131 0.10943

3 450 1.24 Most 6.6937 2.9485 0.01210

4 450 1.24 Most 6.3661 0.23448 0.01849

5 375 0.78 Moderate 1.9053 1.4000 0

6 600 1.04 Most 11.492 0 0.00734

7 600 1.04 Most 12.114 0.03467 0

8 450 0.89 Moderate 4.5431 1.3916 0.05631

9 225 0.89 Less 2.9519 2.7812 0

10t 75 0.78 Most 4.9196 2.4232 0
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