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Analysis of rare variant population structure
in Europeans explains differential stratification
of gene-based tests

Matthew Zawistowski*,1,6, Mark Reppell1,6, Daniel Wegmann2, Pamela L St Jean3, Margaret G Ehm3,
Matthew R Nelson3, John Novembre4 and Sebastian Zöllner1,5

There is substantial interest in the role of rare genetic variants in the etiology of complex human diseases. Several gene-based

tests have been developed to simultaneously analyze multiple rare variants for association with phenotypic traits. The tests can

largely be partitioned into two classes – ‘burden’ tests and ‘joint’ tests – based on how they accumulate evidence of association

across sites. We used the empirical joint site frequency spectra of rare, nonsynonymous variation from a large multi-population

sequencing study to explore the effect of realistic rare variant population structure on gene-based tests. We observed an

important difference between the two test classes: their susceptibility to population stratification. Focusing on European

samples, we found that joint tests, which allow variants to have opposite directions of effect, consistently showed higher levels

of P-value inflation than burden tests. We determined that the differential stratification was caused by two specific patterns in

the interpopulation distribution of rare variants, each correlating with inflation in one of the test classes. The pattern that

inflates joint tests is more prevalent in real data, explaining the higher levels of inflation in these tests. Furthermore, we show

that the different sources of inflation between tests lead to heterogeneous responses to genomic control correction and the

number of variants analyzed. Our results indicate that care must be taken when interpreting joint and burden analyses of the

same set of rare variants, in particular, to avoid mistaking inflated P-values in joint tests for stronger signals of true associations.
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INTRODUCTION

Recent large-scale sequencing studies have identified an abundance
of rare variation in the human genome, likely resulting from recent
population expansion and purifying selection against deleterious
variants.1,2 Coding regions of the genome are enriched for
rare, putatively functional variants,3,4 attractive candidates for
explaining missing heritability in complex diseases.5–7 A variety
of gene-based tests that simultaneously analyze multiple rare
variants have been proposed; the majority can be partitioned
into two categories based on the assumptions of their genotype–
phenotype model.8 The first category, based on the concept of rare
variant ‘burden’, tests for a significant correlation between a disease
phenotype and an aggregate rare variant summary statistic
computed for each individual in a data set. For example, burden
test summary statistics include an indicator for presence of at least
one rare allele,9 the total count of rare alleles,10,11 and a weighted
count of rare alleles.12 In contrast, ‘joint’ or ‘dispersion’ tests model
the marginal effects of individual rare alleles and combine this
information across multiple sites to test for association, specifically
modeling variants with opposite directions of risk effect. Two popular
examples of joint tests include the Sequence Kernel Association Test13

(SKAT) and C-Alpha.14

Comparative analyses have shown that performance varies among
rare variant tests, particularly with respect to the underlying
phenotype model and the inclusion of noncausal variants.8,15 For
example, joint tests have more power to identify regions containing a
mix of risk and protective rare variants, whereas burden tests can have
more power when all rare variants either increase or decrease risk. A
common strategy for increasing power to detect associations is
analyzing the same set of rare variants with multiple tests.
Understanding the behaviors of each test is critical for correctly
interpreting results. Here, we report that the two classes of gene-based
tests respond differently to forms of rare variant population structure,
leading to unique patterns of population stratification.

Population stratification arises when cases and controls are sampled
at differential rates from genetically divergent populations.16,17

Frequencies of individual rare alleles differ between populations due
to geographic localization and limited sharing of rare variation.3,18

Also, populations can differ in the total quantity of rare alleles they
harbor due to differences in effective population sizes, demographic
events, bottlenecks, or selective pressures.3,18,19 For example, African
populations contain a larger number of rare variant sites than
European populations, and within Europe, there is an increasing
gradient of cumulative rare variation moving from north to south.3,19
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Stratification in single marker tests depends only on differences in
population allele frequencies at individual sites.17,20 In contrast, gene-
based tests, which aggregate information across multiple sites, must
contend with population differences in both individual allele
frequencies and the total quantities of rare variants.

Several recent papers address stratification in gene-based tests.
Mathieson and McVean21 and Kiezun et al22 initially demonstrated
that burden-style tests are prone to inflation due to underlying
population structure, and that the degree of inflation can differ from
single-marker tests. Liu et al23 reported differential levels of
stratification between C-Alpha and a collapsing test in data
simulated using a specific coalescent model. In Addition, burden
tests had lower levels of inflation relative to C-Alpha in a recent
analysis of rare variation in autism spectrum disorders.24 In this
paper, we investigated the specific patterns of rare variant
population structure that affect the type I error of gene-based
tests. In particular, we find that frequency differences of individual
rare variants have a much stronger effect on joint tests than
burden tests. In contrast, population differences in overall
abundance of rare alleles inflate only burden tests. This
difference leads to differential inflation between gene-based rare
variant tests. We quantified the rare variant patterns in European
populations and conclude that the pattern responsible for inflating
joint tests is likely more prevalent in real data.

We designed an analysis around the joint site frequency spectra
(JSFS) of rare, nonsynonymous variants identified as part of a
previously published sequencing study initially designed to identify
and characterize variation in 202 drug-target genes in 14 002 world-
wide individuals.3 The JSFS is a common tool in population genetics
to summarize the configuration of observed allele counts between two
groups of samples, typically from different populations.18 Here, we
used the JSFS as probabilistic models from which we generated
examples of case-control data sets containing realistic patterns of
population structure, but without any true genotype–phenotype
association. We focused on the JSFS from four geographically-defined
European populations: Central, Western, Northwestern, and Northern
Europeans (see map in Figure 1). The genetic diversity in our JSFS
reflects population structure that could reasonably be present in an
association study of European samples, and provides an ideal method
to study realistic gene-based test inflation.

Our JSFS-based simulation strategy was motivated by the fact that
although the Nelson et al data set contains sequence data from many
populations, the number of samples within individual populations
does not allow for standard ‘resampling’ techniques. The joint
distribution of rare alleles between pairs of populations, summarized
in the JSFS, provided a means for unlimited sampling of population
allele counts from their empirical distributions. As gene-based tests
operate directly on the JSFS of cases and controls, our approach
retained the critical population-level information that confounds
gene-based tests without requiring individual-level sequence data.

MATERIALS AND METHODS

Joint site frequency spectra (JSFS)
Consider a sample containing sequence data for N haplotypes from population

1 and N haplotypes from population 2. For a given polymorphic site in the

data set, let f(i, j) denote the probability that i copies of the non-reference

allele are observed among the N population 1 haplotypes and j copies are

observed among the N population 2 haplotypes. Then, we define F¼ {f(i, j)7i,jA
(0, N)} to be the JSFS of populations 1 and 2.

The empirical JSFS for multiple worldwide populations were previously

computed and reported as part of Nelson et al.3 Briefly, 202 drug-target genes

were deep sequenced in a total of 14 002 samples, including European

(N¼ 12 514), African-American (N¼ 594) and Southern Asian (N¼ 566,

mostly from India) individuals. The sequenced samples were derived from

several case-control data sets. Within each disease study, individuals with

pairwise relatedness of p̂40:0625 were removed to eliminate closely related

individuals. Previous rare variant analyses of these disease studies

discovered no significant associations.3 We focused our analysis on four

European subpopulations that were geographically classified according to

the UN geoscheme for Europe: Northwestern European (Great Britain

and Ireland), Northern Europeans (excluding Finnish), Western European

(Belgium, France, Luxembourg, and The Netherlands) and Central Europe

(Austria, Germany, and Switzerland). To account for differences in

population sample sizes, the JSFS were computed by averaging over

downsampled realizations of 474 individuals per population. We focused

on rare, putatively functional variants likely to be included in gene-based

tests by restricting attention to the JSFS of nonsynonymous variants with

sample minor allele frequency o1%.

JSFS summary statistics
We quantified rare variant population structure within a JSFS using three

summary statistics. To focus on rare variants, we computed each summary

statistic over allele counts i, j for which the pooled sample allele frequency

ðiþ jÞ=2N � 0:01. We calculated an overall measure of genetic diversity using

a variation on the standard FST statistic:

FST ¼ 1�
P
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Allele sharing18 is the probability that two individuals carrying an allele of

count n in the sample come from different populations, normalized by the

expected probability in a panmictic population:
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where nrare¼ 2N� 0.01 denotes alleles below 1% frequency in the sample.

Weighted symmetry (WS) measures how evenly rare alleles are distributed

between the two populations,
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A graphical interpretation of the allele sharing and weighted symmetry

statistics is provided in Supplementary Figure 2.

JSFS transformations
To isolate the effects of allele sharing and weighted symmetry on test statistic

inflation, we designed two transformations that redistribute probability within

a JSFS. For each transformation we began with a panmictic JSFS18 with

weighted symmetry WS¼ 1 and allele sharing AS¼ 1.

The first transformation created a sequence of JSFS with fixed weighted

symmetry and decreasing allele sharing by iteratively applying the following

function:

fði;jÞðkþ 1Þ ¼ 1� afði;jÞ
� �

�fði;jÞðkÞ þ afði� 1;jþ 1Þ�Iði� 1Þ�ðjþ 1Þ�fði� 1; jþ 1ÞðkÞ
þ afði;jÞ�Ij¼0�fði;jÞðkÞ

for i4j and

fði;jÞðkþ 1Þ ¼ 1� afði;jÞ
� �

�fði;jÞðkÞ þ afðiþ 1;j� 1Þ�Iðiþ 1Þ�ðj� 1Þ�fðiþ 1; j� 1ÞðkÞ
þ afði;jÞ�Ii¼0�fði;jÞðkÞ

for ioj, where f(i, j)(k) is the (i, j)th element of the kth iteration in

the sequence of JSFS and af(i, j) is a weight, which decreases as the

transformation moves away from the y¼ x line. This transformation

moves probability away from the x¼ y line, increasing the probability
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of observing larger differences between population allele counts

i and j.

Second, we created a sequence of JSFS with a fixed value of allele sharing

and decreasing weighted symmetry by iteratively moving probability across the

x¼ y line from one half of the spectrum to the other using the following

transformation:

fði;jÞðkþ 1Þ ¼ fði;jÞðkÞ þ a�fðj;iÞðkÞ

fðj;iÞðkþ 1Þ ¼ fðj;iÞðkÞ � a�fðj;iÞðkÞ
Where, f(i, j)(k) is (i, j)th element of the kth iteration in the sequence of

JSFS. As in the previous transformation, the probability of observing a variant

with n total minor alleles in the 2N haplotypes does not change. The

probability of observing i4j where i and j are the number of minor alleles

observed in populations 1 and 2, respectively, increases.

Simulation of data sets
For each of the six Nelson et al inter-European comparisons, we treated

the respective JSFS as a joint probability distribution from which we

simulated sequence data. As the JSFS depends on sample size and

our empirical JSFS were computed using 474 individuals from each

population, we simulated genotypes within a single gene for 948 total

individuals, 474 individuals (N¼ 948 haplotypes) from each of the two

populations. For each genic realization, we sampled pairs of allele counts

Figure 1 Rare variant diversity statistics and P-value distributions for gene-based tests in structured European populations. We focused on the empirical

JSFS of rare, nonsynonymous variants in 202 drug target genes identified by sequencing of Northern, Northwestern, Western, and Central European

population samples (labeled N, NW, W, and C, respectively, in map insert). Heatmaps of the JSFS, pictured for (c) Central and Northern European and

(d) Central and Western European population comparisons, provide a graphical representation of the distribution of rare alleles between populations. We
quantified aspects of between-population rare variant structure using: (e) the FST statistic of overall rare variant population divergence, (f) the allele sharing

statistic to measure variation in population-specific frequencies of individual rare alleles, and (g) the weighted symmetry statistic to measure the evenness

of cumulative rare variant load between the populations. To study the effect of these population structures on inflation in gene-based tests, we analyzed

data sets simulated from each JSFS that contained population structure but no genotype-phenotype association. QQ plots provide the distribution of P-

values for several gene-based rare variant tests in data sets containing a mix of (a) Central and Northern Europeans and (b) Central and Western Europeans.

Genomic control values (l50) quantify the inflation of the P-value distributions relative to a uniform null distribution. For illustrative purposes, we display

the QQ plots for an extreme sampling scenario in which all cases are sampled from one population and all controls are sampled from the other population.

Results for less extreme scenarios are shown in Figure 2. We find that data sets from more divergent populations (Central and Northern European) produce

higher levels of P-value inflation for each gene-based test than data sets from more closely related populations (Central and Western Europeans).

Furthermore, the joint tests SKAT and C-Alpha (blue dots in QQ plots) consistently show much higher inflation than the burden tests Collapsing, GRANVIL,

CMAT, and WSS tests (red dots in QQ plots) across all population comparisons.
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(is, js71rsrS) for S different rare variant sites, each with probability

according to the JSFS. At the sth site, we randomly distributed the is copies

of the minor allele among N¼ 948 population 1 haplotypes and js copies

among N¼ 948 population 2 haplotypes. Allele counts for the S different

sites were independently drawn from the JSFS, implicitly assuming a lack

of correlation between rare variants in a gene. Although this may not

reflect the true relationship between all rare variants, it does not affect

test performance as each test is designed to account for correlation

between sites.

To induce varying degrees of population structure, we first created

diploid samples by randomly pairing together haplotypes within each

population group. We then assigned a phenotype status to each diploid

sample based solely on population affiliation. Treating r as a mixing

parameter (0.5rrr1.0), we randomly selected r�N/2 samples from the

first population to be cases and the remaining (1�r)�N/2 to be controls.

We then assigned (1�r)�N/2 and r�N/2 haplotypes from the second

population to be cases and controls, respectively. Data sets constructed

with r¼ 0.5 contained equal numbers of cases and controls from each

population. Alternatively, r¼ 1.0 indicated an extreme sampling scenario

where all cases were from one population and all controls were from the

other population.

Measures of test statistic inflation
We analyzed each data set with four burden tests: Collapsing,9 CMAT,10

GRANVIL,25 Weighted Sum Statistic (WSS)12, and two joint tests: SKAT13

and C-Alpha.14 We quantified inflation in the distribution of P-values of each

test relative to the expected uniform null distribution using a variation on the

genomic control statistic of Devlin and Roeder.17 For p(50) and p(90), the

median and 90th percentile values for a test statistic’s observed P-value

distribution, we define

l50 ¼
f � 1
w2 pð50Þ
� �

0:456
and l90 ¼

f � 1
w2 pð90Þ
� �

2:705

as the median and 90th percentile genomic control values, where f � 1
w2 (p(q))

is the quantile function for a 1-degree of freedom w2 random variable. The

denominators for l50 and l90 are the median and 90th percentile values for a

1-degree of freedom w2 random variable, respectively.

RESULTS

We simulated data sets containing various degrees of rare variant
population differentiation using the empirical JSFS of rare, non-
synonymous variation in four geographically-defined European
populations: Central, Western, Northwestern and Northern
Europeans.3 Pairwise rare variant Fst computed on the JSFS ranged
from 6.26� 10�4 to 8.66� 10�4 (Figure 1e), indicating low overall
genetic divergence.

We analyzed the data sets with four burden tests: Collapsing,9

CMAT,10 GRANVIL,25 Weighted Sum Statistic12, and two joint tests:
SKAT13 and C-Alpha.14 For each test, we reported the P-value
distribution for 1000 genes (averaged across 10 replicate runs) over
a range of mixing parameters r, assuming a fixed sample size of 474
cases and 474 controls, and a fixed number of variants (S¼ 30). In
Figure 2, we summarized P-value inflation of each test as genomic
control values.17 The standard genomic control value (l50) quantifies
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Figure 2 Genomic control (GC) values for gene-based rare variant tests in structured European data sets. Median GC values (l50, solid lines) and 90th

percentile GC values (l90, dashed lines) are shown at a range of mixing parameters (r) for each inter-European population comparison. For scenarios
containing population structure (r40.5), the joint tests (blue lines) consistently have higher l50 values than the burden tests (red lines) in all population

scenarios. In addition, l90ool50 in many scenarios for the joint tests, indicating that inflation in the joint tests is not consistent across the P-value

distribution.
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inflation at the median of the P-value distribution. As we observed
different levels of inflation in the tails of the P-value distributions, we
also report l90, the genomic control value computed for the 90th
percentile of the P-value distributions.

Data sets simulated with balanced population sampling (r¼ 0.5)
yielded median genomic control values of l50E1.00 for all tests in
each population comparison, indicating no inflation. Joint tests were
deflated in their tails (l90o1), consistent with the conservative nature
of these tests for smaller samples sizes and at stringent alpha levels.13

Genomic control values increased for each test and population
comparison as the mixing ratio increased from r¼ 0.5 to r¼ 1.0,
indicating P-value inflation due to population structure. More
divergent populations, as quantified by Fst, showed higher levels of
inflation for each test. For example, at mixing ratio r¼ 0.8, the
genomic control of the Collapsing test was l50¼ 1.05 in the Central
European and Western European comparison (Fst¼ 6.29� 10�4) but
l50¼ 1.23 in the more divergent Central European and Northwestern
European comparison (Fst¼ 7.07� 10�4). In many cases, inflation in
the medians of the P-value distributions was larger than in the tails
(ie l504l90) as evidenced by the difference between dashed (l90) and
solid lines (l50) in each panel of Figure 2. The inconsistent inflation
was more pronounced in joint tests, and increased in magnitude with
both increasing r and increasing population diversity. As a result,
standard genomic control severely overcorrected inflated P-values
more often for joint tests than for burden tests (Supplementary
Figure 1).

Comparing inflation statistics between tests, we observed two
consistent patterns across all scenarios. First, the level of P-value
inflation for the different tests clustered into two distinct groups, one
consisting of the joint tests: SKAT and C-Alpha, and the other
containing the burden tests: CMAT, Collapsing, WSS, and GRANVIL.
Within each group, the level of inflation was similar between tests. For
example, in data sets of Central and Western Europeans with r¼ 0.7,
each burden test had l50E1.04, whereas SKAT and C-Alpha had l50

values near 1.15. The distinct patterns of inflation for the two classes
of tests can be seen in Figures 1a and b where burden tests (red dots)
clustered together tightly, and are clearly separated from joint tests
(blue dots). The second consistent pattern in the analysis was higher
inflation for joint test statistics relative to burden test statistics; the
difference increasing with both the divergence of the underlying
populations and the mixing parameter r. For example, the difference
in inflation between CMAT and SKAT rose from l50¼ 1.04 and 1.13,
respectively, in Central and Western data sets to l50¼ 1.15 and 1.56
for the JSFS of the more divergent Northern and Western Europeans
at r¼ 0.7.

We hypothesized that the observed patterns of P-value inflation for
burden and joint tests could be explained by underlying rare variant
population structures. To test this, we quantified specific patterns of
population structure within the JSFS using two statistics: allele sharing
and weighted symmetry (see Materials and Methods, Supplementary
Figure 2). The allele sharing (AS) statistic18 quantifies interpopulation
differences in individual allele frequencies for a JSFS. AS¼ 1 indicates
allele frequency differences consistent with panmictic population
sampling and the statistic decreases towards zero as differences in
population allele frequencies increase. We developed the weighted
symmetry (WS) statistic to summarize the difference in overall rare
allele abundance between populations. Weighted symmetry of WS¼ 1
indicates an equal quantity of rare alleles in each population and
decreases towards zero with increasing inequality in rare allele
abundance.

We isolated the effects of weighted symmetry and allele sharing
on test statistic inflation by analyzing data sets simulated from
JSFS where one statistic was fixed and the other decreased in
value (see Materials and Methods). We first analyzed JSFS with
weighted symmetry fixed at WS¼ 1 (Figure 3a). When allele
sharing AS also equaled one, the JSFS is equivalent to panmictic
sampling and there is no inflation for any test. As allele sharing
decreased, genomic control values quickly increased for the joint
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Figure 3 The isolated effects of weighted symmetry and allele sharing on P-value inflation in gene-based rare variant tests. (a) For data set simulated with

weighted symmetry fixed at WS¼1 and decreasing allele sharing, inflation grows much larger for the joint tests than for the burden tests. (b) In contrast,

for data sets simulated with allele sharing fixed at AS¼1 and decreasing values of weighted symmetry, inflation in each burden test increases, whereas the

joint tests remain well-controlled. Thus, the two classes of gene-based tests have differing responses to these patterns of rare variant population structure.

The purple arrows in each plot indicate the minimum and maximum values of that statistic observed in the European JSFS. The range of empirical values

explains why we observed higher levels of inflation in the joint tests.
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tests, indicating P-value inflation. In comparison, there was only a
slight increase in inflation for the burden tests. Next, we
considered JSFS with allele sharing fixed at AS¼ 1 and allowed
weighted symmetry to decrease. P-value inflation for every burden
test increased with decreasing WS, but both SKAT and C-Alpha
were unaffected (Figure 3b). Taken together, these results imply
that the two classes of tests have opposite responses to decreasing
weighted symmetry and decreasing allele sharing. Inflation in
burden tests is primarily due to unequal contributions of rare
alleles between the two populations, whereas joint test inflation is
driven solely by differences in population-specific frequencies of
individual rare alleles.

Having established that burden test inflation correlates strongly
with weighted symmetry and joint test inflation with allele sharing,
we computed these quantities for our European JSFS (Figures 1f and g).
Allele sharing ranged between 0.86 and 0.62, with the lowest values
observed for JSFS containing the Northern Europeans. We observed
weighted symmetry values as high as 0.99 for the JSFS of Central and
Northwestern populations and as low as 0.94 for Northern and
Western Europeans. The lower weighted symmetry values for JSFS
containing Northern Europeans are indicative of fewer rare alleles in
that population, consistent with the hypothesis that a historical
bottleneck event decreased the population’s effective size. Our
simulations with fixed weighted symmetry and allele sharing provide
context for the differential inflation observed in the inter-European
data sets. Allele sharing between European populations was
sufficiently low to produce large inflation in the joint tests (purple
arrows in Figure 3a). Alternatively, weighted symmetry between

European populations did not decrease to levels that produced
substantial inflation in burden tests (Figure 3b).

For comparison, we also computed allele sharing and weighted
symmetry for the JSFS between our European samples and both
African-American and South Asian samples from the same Nelson
et al data set.3 As expected we saw smaller values of both statistics for
these intercontinental population comparisons (Figures 1f and g).
Allele sharing between Europeans and African-Americans ranged
from 0.22 to 0.28, and from 0.27 to 0.37 between Europeans and
the South Asians. Weighted symmetry between the European
populations and South Asian took values of B0.90, slightly less than
the inter-European comparisons. Weighted symmetry between the
African-Americans and Europeans however was much lower, between
0.62 and 0.66, highlighting the larger difference in the total number of
rare alleles between these populations. Extrapolating on the theore-
tical results in Figure 3, the values of weighted symmetry between
Europeans and African-Americans or Europeans and South Asians are
capable of significantly inflating burden tests. However, for these
comparisons, allele sharing is even lower and inflation would still be
larger for the joint tests.

Till now, we have assumed a fixed number of rare variants within
each gene (S¼ 30). In reality, the number of rare variants combined
into a gene-based test varies depending on several factors, including
gene length, sample size, population genetic diversity, annotation, and
frequency thresholds. To understand the impact that the number of
variants per gene has on stratification we repeated our simulations
over a range of values for the number of pooled variants S (Figure 4).
The two classes of tests responded quite differently to a varying
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Figure 4 The effect of number of rare variant sites (S) pooled together in a gene-based tests on P-value inflation (shown for mixing parameter r¼1.0).

There is a clear increase in inflation for the joint tests (blue lines) as the number of rare variant sites pooled into a gene-based test increases. Inflation in

the burden tests (red lines) remains relatively consistent as the number of sites increases.
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number of pooled sites: joint tests showed a clear increase in inflation
as S increased, whereas inflation in burden tests remained effectively
constant. The differential sources of stratification explain this result.
In these closely related European populations, the cumulative
quantity of rare alleles is quite similar (WSE1) but most individual
allele frequencies vary slightly between populations. Additional
variants do not alter the cumulative allele balance tested for by
burden statistics. However, each additional variant provides further
evidence of differing allele frequencies between cases and controls,
leading to the increasing inflation for joint tests. We expect that in a
scenario of populations with smaller WS, inflation in burden tests
would also increase with the number of variants.

DISCUSSION

We used the JSFS as a model to study the structure of rare variants
within European populations and its effect on gene-based tests. By
quantifying specific patterns in the JSFS, we established that different
aspects of population differentiation are responsible for inflating the
type I error rates in the two classes of gene-based tests. Our results
build on those of previous studies examining rare variant population
stratification. We independently demonstrated different levels of
inflation in C-Alpha and burden tests previously reported in both
coalescent simulations23 and real sequencing data.24 We found
that the pattern of differential inflation held more broadly for
burden and joint tests over a range of population sampling
scenarios. Modeling our data sets using the empirical JSFS from
several European populations illustrated the magnitude of
stratification in realistic samples. Moreover, we identified the
precise underlying characteristics of rare variant population
structure responsible for the differential stratification, namely,
imbalance in rare allele load and overdispersion of individual rare
allele frequencies. By looking at the empirical weighted symmetry
and allele sharing values observed between multiple European
populations we explained the patterns of population stratification
observed in gene-based rare variant tests.

The primary advantage of joint tests over burden tests is greater
power to detect association in genes containing rare variants with
opposite directions of effect. Interestingly, it is precisely this ability to
accommodate a mix of risk and protective variants that makes joint
tests more vulnerable to stratification in real population scenarios.
Joint tests view the population-specific differences in allele frequency
at each variant site, regardless of direction, as signal for association.
Alternatively, burden tests require the population-specific differences
to be predominantly in the same direction, a more stringent criterion.
Intuitively, differences in allele frequency (low allele sharing) are more
pronounced between populations than differences in the number of
rare variants (low weighted symmetry) because all forms of popula-
tion differentiation resulting in genetic drift lead to allele frequency
differences. Creating a significant imbalance in the total quantity of
rare variants requires more specific models, for example, a recent
bottleneck, unequal migration or differential growth rates. Thus, the
forms of population structure that produce inflation in joint tests are
more prevalent in real data and we predict that, although joint tests
provide more power to detect many true rare variant associations,
they also require more caution to avoid spurious results.

We anticipate that differential inflation will be particularly proble-
matic for interpreting burden and joint test results of sequencing
studies that target only a handful of candidate genes. It is straightfor-
ward to determine if differential inflation exists when many genes are
sequenced (ie exome sequencing) by comparing the distributions of
P-values for the joint and burden tests. This may not be possible in a

targeted sequencing data set, and if population structure exists,
smaller P-values in joint tests could easily be interpreted as stronger
signals of true associations rather than increased susceptibility to
inflation.

The effect of the number of variants per gene on joint statistic
inflation provides a practical approach for recognizing stratification.
Typically, only rare variants predicted to be deleterious (eg non-
synonymous) are included in a gene-level analysis. The remaining
‘excluded’ rare variants, which likely outnumber the predicted
deleterious variants, are presumably null with respect to phenotype
status, yet still contain signal for population structure (Supplementary
Table 1). Thus, a joint test analysis of the excluded variants is more
powerful for detecting population stratification than the analysis of
the fewer predicted deleterious variants. We therefore recommend
performing the same joint test analysis planned for the predicted
deleterious variants on the excluded variants as a method to test
for population stratification. This method could be particularly
helpful for interpreting joint test P-values in targeted sequencing
studies.

Previous studies have emphasized the challenge of correcting
for rare variant population structure in multi-marker gene-based
tests. Kiezun et al22 corrected the stratification using a modified
permutation algorithm requiring that population labels be both
discrete and either known or accurately estimated, neither of which
may be satisfied in real data sets. Mathieson and McVean21 and Liu
et al23 each showed the standard application of principle components
could not correct for all scenarios in either single marker or gene-
based analyses of rare variants. In light of our finding that inflation
differs according to the type of gene-based test, the appropriate
correction strategy may be context specific depending on the test and
populations. We illustrated this point using genomic control. Even in
a set of homogenous genes with a uniform number of variants and
identical underlying JSFS, we often observed that the median of the P-
value distribution was more highly inflated than the tail of the
distribution (l504l90). Under these conditions applying a standard
genomic control correction based on l50 overcorrects the most
significant genes in the analysis (Supplementary Figure 1), which
reduces power for real associations. The overcorrection was more
severe for joint tests, implying that genomic control may be more
appropriate for burden tests.

Presently, attempts to identify rare risk variants using the pooling
approach of gene-based tests have had limited success. Despite the
potential for stratification seen here, real data sets have often identified
no statistically significant genes rather than too many. This lack of
significant findings, even false positives, is likely the result of current
studies being underpowered due to insufficient sample sizes. Larger
sample sizes in future sequencing studies will increase power to find
true signals, but will also increase the likelihood of subtle population
structure and the number of variants pooled within genes, both of
which increase the potential for rare variant population stratification.
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