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Abstract

Resting state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal

connectivity independent of specific functional tasks and to capture changes in the connectivity

due to neurological diseases. Most existing network detection methods rely on a fixed threshold to

identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the

threshold cannot adapt to variation of data characteristics across sessions and subjects, and

generates unreliable mapping results. In this study, a new method is presented for resting state

fMRI data analysis. Specifically, the resting state network mapping is formulated as an outlier

detection process that is implemented using one-class support vector machine (SVM). The results

are refined by using a spatial-feature domain prototype selection method and two-class SVM

reclassification. The final decision on each voxel is made by comparing its probabilities of

functionally connected and unconnected instead of a threshold. Multiple features for resting state

analysis were extracted and examined using a SVM-based feature selection method, and the most

representative features were identified. The proposed method was evaluated using synthetic and

experimental fMRI data. A comparison study was also performed with independent component

analysis (ICA) and correlation analysis. The experimental results show that the proposed method

can provide comparable or better network detection performance than ICA and correlation

analysis. The method is potentially applicable to various resting state quantitative fMRI studies.
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1. Introduction

The human brain is organized into multiple functional connectivity networks. With advances

of functional magnetic resonance imaging (fMRI) technology, it is feasible to characterize

brain functional network in vivo using resting state fMRI [1,2]. Recent studies have

demonstrated a great potential of resting state fMRI for various neuroscience and clinical

applications, such as characterization of Alzheimer’s disease, schizophrenia, attention-

deficit hyperactivity disorder, autism, and neurosurgical planning [2–8]. However, reliable

mapping of resting state functional networks remains a challenge because BOLD signals

usually have a low signal-to-noise ratio under resting state.

The most commonly used methods for detecting a resting state network are parametric

model-based hypothesis driven approaches where the network is detected by comparing the

temporal profile of each voxel with that of a seed via regression or correlation analyses. Test

statistics extracted using these methods are quantified by statistical parametric models. If a

voxel’s test statistic is above a predefined threshold with respect to a parametric model, then

the voxel is considered as functionally connected to the seed. The hypothesis driven

approaches are originated from task-related fMRI studies where the role of a seed is

replaced by a task stimulation paradigm. In task-related fMRI studies, the choices of model

and threshold usually depend on experiential knowledge, and no single modeling or

thresholding approach has been approved to be optimal [9]. In addition, the spatial extent of

activated brain regions identified using a statistical threshold depends on “the quality and

quantity of signal acquired” instead of the real boundaries of brain function [10,11]. These

statements can be extended to the resting state fMRI studies because the methodology of

using parametric model and threshold is the same for both types of studies.

Due to fMRI non-stationarity [12,13], fMRI signal and noise characteristics change across

sessions and subjects even under identical imaging conditions [14–17]. In order to obtain

correct inference, the underlining assumption of probability distribution and/or significance

threshold should be changed accordingly. This issue was discussed in task-related fMRI

studies [11,18]. A similar issue was also oticed in a graph-based test-retest evaluation of

resting state fMRI [19]. However, it is difficult to know how the model and threshold should

be adjusted. Consequently, ambiguities could be generated from the analysis results. For

example, in a single-subject multi-session experiment, an increase of functionally connected

brain area was observed compared to the previous sessions. It is not clear if this increase is

due to the change of brain function, or improper setting of the threshold. Therefore,

quantitative analysis methods that 1) can automatically adapt to signal and noise variation,

and 2) are not affected by arbitrarily or experientially chosen thresholds are desired for the

resting state fMRI research.

Nonparametric data driven methods, such as clustering [20–23], principal component

analysis (PCA) [24,25], and independent component analysis (ICA) [26–28], have been paid

increased attention in recent years for resting state fMRI. These methods do not superimpose

parametric models to test statistics, and may adapt to the variation of data characteristics.

However, specific issues have to be considered when these methods are used for resting

state fMRI. Clustering techniques, such as K-means [23,29,30], implicitly assume that
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clusters are hyper-spherical or hyper-ellipsoidal and separable in a feature space, which are

not always true. Any brain voxel, no matter being part of a network or not, will always be

assigned to a class by the clustering process. If a brain region is part of more than one

network, then the clustering could split the region into multiple sub-regions, each of which

is considered a network, leading to incorrect mapping results [22]. Additionally, the

determination of cluster number is an unsolved challenge although there are various

theoretical criteria. PCA only considers the second order statistics that are not sufficient to

characterize fMRI data structure [31]. Since resting state functional signal is at similar or

lower intensity levels than confounding noise and artifacts, noise patterns that are not

orthogonal to the signal could be characterized by principal components that also contain

signal information [32], leading to unreliable network detections. ICA considers high-order

dependencies among multiple voxels and performs better than PCA in several task-related

comparison studies [33,34]. ICA has also been shown an efficient tool for resting state fMRI

[8,35]. When ICA methods are used, it should be aware that the assumptions of linear

combinations of spatial (or temporal) independent sources, unknown number of signal and

noise sources, suboptimal initialization of un-mixing matrix, and suboptimal solution of ICA

could lead to improper decomposition of signal and noise [33,36]. Similar to clustering, ICA

results are usually not corresponding to a unique network because there exists multiple

networks and each slice may contain regions belong to different networks. Therefore, ICA

results need to be either visually inspected or compared to spatial templates to obtain

expected networks [1,27,37].

In this work, we study another data driven technique, support vector machine (SVM), for its

application in resting state fMRI study. SVM is a supervised classification tool that can

automatically learn a classification hyperplane in a feature space by optimizing margin-

based criteria [38]. Nonlinearity can be introduced into the SVM learning using the kernel

methods [39]. SVM has been used to classify brain cognitive states under task stimulation

[40–42]. More recently, it was applied to resting state fMRI for the classification of major

depressive disorder [43], schizophrenia [44], Asperger disorder [45], drug induction [46,47],

and adolescent brains from normal adult brains [48–50]. In these studies, SVM was used to

classify specific brain states in a supervised way. Due to inter- and intra-subject variability,

an SVM trained using a data set from a subject at certain time may not perform well across

sessions and subjects. Therefore, these methods are not suitable for the general detection of

resting state functional networks. In our previous work [51], a SVM-based method was

developed for the general brain activation detection under various task stimulus. It has been

successfully applied to a quantitative fMRI study where a comparison of brain activation

across multiple animal subjects over a learning process was required [52]. This method is

not directly applicable to resting state fMRI because it cannot distinguish functional signal

and noise under resting state. In this work we propose a SVM-based method to detect resting

state functional network. The method differs from existing approaches from two major

aspects: first, it can adapt to the inter-session and inter-subject variation in fMRI data, and

does not need a significance threshold for the final detection. Second, compared to existing

SVM-based methods, it is a network detection method, not a classification method.
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2. Material and Methods

2.1 Problem Formulation

A recent study on more than 8000 subjects shows that the functionally connected voxels in a

specific network constitute less than 50% of all brain voxels [53]. This forms the basic

assumption of the proposed method. With this assumption, the mapping of a functional

network can be considered as an outlier detection procedure. One-class SVM (OCSVM) is

an efficient tool for outlier detection, where the voxels within a network are treated as the

“outliers”, and the other voxels are considered as the “majority”. The OCSVM parameter v

determines an upper bound of number of voxels that are detected as “outliers”. This

parameter is network-specific and cannot be accurately set due to inter-session and inter-

subject variation. Consequently, OCSVM can only provide an initial mapping, and we need

to develop a method that is not affected by inaccurate setting of v.

2.2 Proposed Method

Figure 1 is the block diagram of the proposed method. The input fMRI data are first

preprocessed to remove subject movement artifacts, and filtered spatially and temporally.

Then a seed is selected from a brain region that is part of a specific functional network,

based upon which multiple features are extracted from each voxel. An offline feature

selection was performed to select most representative features to represent each voxel.

Based on the selected features, an OCSVM is used to provide an initial mapping of the

network. The prototype selection aims to identify voxels that are correctly classified as part

of the network by OCSVM. The identified voxels are used to train a two-class SVM

(TCSVM) to reclassify all voxels to obtain the final network mapping. The details of these

steps are described in the following subsections.

2.2.1 Preprocessing and Seeding—Small subject movement artifacts in fMRI data are

first attenuated using a 2D rigid body registration method [54], which is embedded in the

FSL package [55]. Then the data are spatially smoothed using a wavelet domain Bayesian

noise removal method [56], and low-pass filtered at a cut-off frequency of 0.1 Hz to extract

low frequency fluctuations of interest in resting state. All fMRI data were normalized to zero

mean and unit variance. A seed region that belongs to a network of interest is manually

identified from the preprocessed fMRI data.

2.2.2 Feature Extraction and Selection—The average time course (TC) of the selected

seed is first calculated. For each voxel, eleven candidate features are extracted to represent

this voxel [29,51]. These features can be categorized into temporal and spatiotemporal

features. Temporal features capture temporal characteristics of the voxel, including the

Pearson’s correlation coefficient (cc) between the seed and voxel, the maximum intensity of

the voxel’s TC, the signed extreme value of the cross correlation function (ccf) between the

seed and voxel, and p value of Student’s t test. The spatiotemporal features are computed

using the 3×3 neighborhood of the voxel, including the average, maximum and minimum cc

values between the seed and voxels within the neighborhood, the average signed extreme

value of the ccfs between the seed and voxels in the neighborhood, and the average,

maximum and minimum cc values between the voxel and other voxels within its
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neighborhood. All features are normalized between 0 and 1 as required by the SVM

learning. Other features that could facilitate the network detection can also be added to the

analysis.

Not all features can contribute to the SVM-based network detection. An offline feature

selection is necessary to identify most representative features. In this work, a SVM-based

feature selection method was used to quantify the contribution of each candidate feature to

the construction of SVM classification hyperplane [57]. Given the dth candidate feature, its

contribution Id is estimated by the integration of the first derivative of the SVM decision

function fc with respect to the feature  around the hyperplane, and is approximated by

[57]:

(1)

where NSV is the number of total support vectors, xi is the ith support vector, and  is the dth

feature of xi, yj ∈ {−1, 1} is the class label of xj, and αj is the Lagrange multiplier defined in

SVM formulation [38]. K(xj,x i) is a kernel defining a dot product between projections of xi

and xj in a feature space [39], and Kd(x j,xi) is the first derivative of the kernel regarding the

dth dimension evaluated at xi. An Id value from a stand-alone feature does not provide any

useful information. Only when comparing Id values from multiple features, a larger Id value

indicates a greater contribution to the SVM learning.

Since the p -value from Student’s t test follows a uniform distribution between 0 and 1, from

a pattern recognition aspect, it is the least discriminative feature compared to the others. If a

feature is more discriminative than the p-value, it should receive a greater Id value. All

candidate features were examined and the results are described in section 3.1. After the

feature selection, the top r features with the highest Id value are used to represent brain

voxels for the OCSVM and TCSVM learning.

2.2.3 Initial Detection Using OCSVM—OCSVM learns a linear classification

hyperplane in a feature space to separate a pre-specified fraction of data with the maximum

distance to the origin. The detailed technical review of OCSVM can be found in its original

article [58]. Kernel methods are often used to extend the linear OCSVM to a nonlinear one

[39]. A kernel function can project the original features into a higher dimensional feature

space where a linear classification hyperplane learned by OCSVM is equivalent to a

nonlinear classification in the input space. In this work, the radial basis function (RBF)

kernel was used to implement nonlinear OCSVM classification. The RBF kernel is widely

used in various complex pattern classification tasks. It is defined as: k(x,xi) = e−γ||x–x
i
||2,

where γ is the kernel width parameter. A large γ value corresponds to a small kernel width

that introduces more nonlinearity to the analysis than a large kernel width. The kernel width

may significantly affect the classification performance. In practice, γ is usually

experientially determined or estimated by cross validation.
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The OCSVM implements an unsupervised learning on the selected features to provide an

initial detection of a network of interest. As described in section 2.1, it is almost impossible

to accurately set the OCSVM parameter v that controls the number of voxels detected as part

of the network. The following strategy is used to set v [51]: (1) If v is entirely unknown, we

may set v to be relatively large but no greater than 0.5 to guarantee a sufficient detection

sensitivity. (2) If v is approximately known a priori from previous experiments, we may

define a range with possible v values, and any value within this range can be used for

OCSVM.

2.2.4 Prototype Selection—A prototype consists of a feature vector representing a voxel

and its class label (functionally connected or unconnected). OCSVM results usually contain

a significant number of mis-detections due to improper setting of v. Prototype selection is

used to select prototypes that are correctly classified by OCSVM for the TCSVM training.

Since functionally connected voxels are spatially grouped together at multiple anatomic

sites, we may use graph-based spatial domain editing methods to remove spatially isolated

mis-detections [59,60]. However, if there are significant mis-detections that could also be

spatially grouped together, spatial domain operations are not sufficient to remove mis-

detections. In such cases, we need to further consider the feature space distribution of the

prototypes and use both spatial and feature space information to select training prototypes

for TCSVM. In this work, we proposed a combined spatial and feature domain prototype

selection method.

A voxel’s relationship to neighboring voxels can be described by Gabriel graph [59]. Given

n points Z = {z1,…,zn}in a q-dimensional feature space Rq, a Gabriel graph G(V,E) is a

proximity graph with a set of vertices V=Z and edges E, such that (zi ,zj) ∈ E if and only if

the following triangle inequality is satisfied:

(2)

where zk ∈ Z, and d is the Euclidean distance in Rq. When Z is the spatial coordinates of all

brain voxels, q=2. Given the 3×3 neighborhood of zi, if zi ‘s label is not dominant in the

neighborhood, zi will be removed from the training data based upon the Gabriel graph’s 1st-

order graph neighborhood editing technique with voting strategy [60].

After this operation, all voxels remaining in the training data are examined in the feature

space. If si represents the distance between the ith prototype xi and the OCSVM

classification hyperplane in the feature space, when si<0, xi is classified as “outlier”

(connected), and when si>0, it is identified as “majority” (unconnected). soutlier < 0 is the

maximal distance of the outlier to the hyperplane, and smajority > 0 is the maximal distance

of the majority to the hyperplane. Since both “outlier” and ‘majority” classes contain mis-

detections, the following feature space prototype selection procedure is proposed to identify

correctly classified prototypes. If xi is classified as “outlier” and

(3)

or xi is classified as “majority” and
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(4)

where η and λ are parameters controlling the fraction of prototypes that are close to the

hyperplane and should be removed, and v is the OCSVM parameter, then xi is considered as

correctly classified by OCSVM and selected for the TCSVM training. The values of η and λ

can be experimentally determined.

2.2.5 TCSVM Learning and Classification—The selected prototypes are used to train a

TCSVM and reclassify all voxels to obtain a refined network map. TCSVM is a supervised

learning and classification tool that aims to estimate a linear classification hyperplane in a

feature space so that two classes can be maximally separated [38]. In this work, the two

classes are “connected” and “unconnected”, corresponding to the “outlier” and “majority”

classes in the OCSVM learning. The TCSVM learning usually allows training errors where

a parameter C is used to control a tradeoff between the hyperplane complexity and the

training error. The RBF kernel is also used to implement nonlinear TCSVM.

It is possible that some functionally connected voxels cannot be detected by OCSVM (false

negative), or detected but removed by the prototype selection. It is also possible that a few

unconnected voxels are selected as the training prototypes for the connected voxels (false

positives). In order to re-detect false negatives and/or attenuate the effects from the

remaining false positives, the TCSVM training should have a sufficient generalization

performance so that the trained classifier is not sensitive to the minor false positives/

negatives in the training data. To favor a high generalization performance, the TCSVM

parameters are carefully set with large RBF kernel width and small C values. The outputs of

TCSVM are transferred into probability values using a method proposed by Wu et al. [61].

If  and  indicate the probability of xi to be “outlier (or connected)” and “majority (or

unconnected)”, then the final decision is a “soft” decision: If , xi is classified as

“connected”, and if , then xi is classified as “unconnected”.

The TCSVM training and reclassification can be repeated one or more times to further refine

the mapping results. If this is performed, we may start with a probability threshold higher

than 0.5 for  and  after the first round of TCSVM classification. For instance, if

, pth > 0.5 , then xi will be selected as a training prototype for the “outlier” (or

“majority”) class in the next round of TCSVM training. In the final round of TCSVM

classification, the decision is made by a direct comparison between  and  as described

in the previous paragraph. Due to the high generalization performance of TCSVM, the final

results are not sensitive to a moderate change of pth .

2.3 Evaluation Methods

The proposed method was evaluated using both synthetic and experimental fMRI data

acquired from human subjects as described in sections 2.4 and 2.5. The method was also

compared with the conventional correlation analysis and independent component analysis

(ICA) methods. OCSVM and TCSVM were implemented by using the LIBSVM tool [62].

Correlation analysis was performed with a false discovery rate (FDR) control [18]. ICA was
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conducted using the tool in FSL. For the synthetic data, the sensitivity of the proposed

method to the OCSVM parameter v was first examined. The proposed method was then

compared with the correlation analysis and ICA in terms of accuracy, precision, and recall

rates, which were calculated from the networks in the synthetic data detected by these

methods under a same level of false positive rate, and defined as follows:

(5)

Accuracy is the percentage of voxels that are correctly classified as “connected” and

“unconnected”. Precision indicates the percentage of detected voxels that are truly in the

network. Recall is the percentage of truly connected voxels that can be detected. For the

experimental fMRI data, the dependence of the proposed method on v was examined based

on part of the default mode network (DMN) and sensorimotor network (SMN) identified by

the proposed method. Since there is no ground truth available for the location of these

networks in the experimental data, the comparison study with the correlation analysis and

ICA was performed in terms of regional homogeneity under a comparable level of detection

sensitivity, which is determined with the following two steps: (a) An ROI is first defined

from a targeted brain region that is part of a network of interest. (b) The thresholds for ICA

and correlation methods are adjusted in a way to detect an equal number of contiguously

clustered voxels in the ROI to that identified by the proposed method. Under the same

detection sensitivity in the ROI, there may exist mis-detections in other brain regions that

are not part of the network and/or under-detections in the network. The mis-detections and

under-detections can be partially reflected via the regional homogeneity of the detected

networks. Kendall’s coefficient of concordance (KCC) was calculated among connected

voxels to measure the regional homogeneity of detected functional networks [63]. All

algorithms were implemented in Matlab on a Dell Precision T5500 workstation with two

Intel Xeon quad-core 2.13G Hz CPU and 6 GB Memory.

2.4 Resting State fMRI Experiments

Three resting state fMRI experiments were performed using a 3 Tesla GE system with an 8-

channel coil. In the first experiment, four sets of fMRI data were acquired from a healthy

adult volunteers on a same day using T2*-weighted parallel echo planar imaging (EPI) with

an acceleration factor of 2, while the subject was instructed to look at a crosshair. The scan

time for each run was 4 minutes. EPI parameters included a repetition time (TR) of 2 sec, an

echo time (TE) of 30 msec, and a flip angle of 90°. 30 axial-slices were collected for each

volume with 4 mm slice thickness and 1 mm gap, FOV was 24 cm × 24 cm, and image

matrix size was 120 × 120 after the sensitivity encoding reconstruction, corresponding to an

in-plane resolution of 2 × 2 mm2. Inversion-recovery (IR) prepared spin-echo EPI was also

acquired to provide an anatomic reference with identical voxel geometry and geometric

distortions as in fMRI. IR-EPI scan parameters included TR = 5 sec, TE = 24 msec, IR time

= 1 sec, flip angle = 90°, slice thickness = 4 mm (with 1 mm gap), FOV = 24 cm × 24 cm,

in-plane matrix size = 120 × 120 (with 2 segments), and 30 axial slices. In the second

experiment, two data sets were collected from two subjects using a T2*-weighted EPI
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sequence (TR=2 sec, TE= 25 msec) with SENSE acceleration factor of 2 while the subjects

were instructed to look at a crosshair. The scan time for each run was 5 min. 35 axial-slices

were collected in each volume with 3 mm slice thickness. FOV was 24 cm × 24 cm, and the

image matrix size was 64 × 64. In the third experiment, six sets of fMRI data were collected

from six healthy adults on different days. During each scan, the subject was instructed to

look at a crosshair. The imaging parameters were TR = 4 sec, TE = 35 msec. flip angle =90°,

FOV = 24 cm × 24 cm, and the image matrix size was 140 × 140. 56 axial slices were

acquired in each volume with a 3 mm slice thickness, and 74 volumes were collected in each

data set.

2.5 Synthetic Resting State fMRI Data

A synthetic single-slice resting state fMRI time series of 100 images was generated from a

single-slice EPI image with artificially added functional connections in four regions as

shown in Figure 2. Region 1 represents 1.54% of the brain area. A sinusoid wave was added

to this region at a frequency of 0.08 Hz and the amplitude is 1.07 times of the baseline

average. Region 2 represents 1.69% of the brain area. The amplitude of sinusoid signal

added to this region is 1.02 times of the baseline average, and the frequency is 0.03 Hz.

Region 3 represents 2.15% of the brain region. The amplitude of sinusoid wave in this

region is 1.03 times of the baseline average, and the frequency is the same as that of Region

2 with a phase shift of 0.78 radians. Region 4 represents 1.1% of the brain area. The sinusoid

signal added to this region has an amplitude of 1.04 times of the baseline average, and the

frequency is the same as that of Region 1 with a phase shift of −0.52 radians. Since the

sinusoid signals in Regions 1 and 4 have the same frequency, the two regions are

functionally connected, and the corresponding network is called network A in the following

sections. Similarly, Regions 2 and 3 are connected and the corresponding network is called

network B. The non-additive Rician noise was added to the synthetic data using the method

proposed by Wink and Roerdink [64]. After subtracting the image sequence from its mean,

the SNR is −23.76dB.

3 Results

3.1 Feature Selection

The experimental fMRI data were used to extract candidate features based on a 2 voxels × 2

voxels seed in DMN manually identified in the medial prefrontal cortex (mPFC) region.

Table 1 lists the average Id values of the eleven candidate features normalized against the

largest one, and the rank of them. Although the features’ contributions to the SVM learning

may be slightly different when different fMRI data were tested, it was found that three

features always ranked in the top in all tests: the maximum and average cc values between a

voxel’s 3×3 neighborhood and a seed, and the cc value between a voxel and a seed. Their

average Id values confirmed this finding. In addition, the average signed extreme value of

the ccfs between a seed and a voxel’s 3×3 neighborhood also shows a significant

contribution. Except for the cc value between the seed and a voxel, the other three features

contain both spatial and temporal information. It was also found that the p -value of

Student’s t test has the least Id values, and other candidate features have greater Id values

than the p -value, which are consistent to our expectation. Some features’ Id values are
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slightly higher than that of the p -value, such as the maximum intensity of a voxel, implying

no significant contribution to the SVM learning, and were excluded from the feature

representation of each voxel. In this work, the four features with the highest average Id

values were chosen to represent voxels for SVM learning.

3.2 Synthetic Data

The synthetic data was first used to evaluate the proposed method. For OCSVM, the RBF

kernel parameter γ was set to be the reciprocal of feature dimension, which is the default

setting of LIBSVM. For TCSVM, γ is 0.25 times of that of OCSVM, resulting in an

increased kernel width, and the C value is 10. This setting favors a high generalization

performance in TCSVM reclassification, reducing possible effects from OCSVM mis-

classifications that cannot be removed by the prototype selection. For prototype selection,

different combination of η and λ were tested, and η=5.0, λ=1.0 leads to the highest detection

accuracy. It was also found that a moderate variation of η and λ will not significantly affect

the detection performance. Two rounds of TCSVM training and reclassification were

performed. Different pth values between 0.55 and 0.75 were examined after the first round of

TCSVM reclassification, and no apparent changes were observed in final mapping results

after the second round of TCSVM reclassification. pth =0.6 was finally used in the

experiment. Two one-voxel seeds were selected in Regions 1 and 2. Figure 3 (a)-(c) show

the maps of network A detected by the proposed method with the seed in Region 1. Three

different v values, v=0.25, 0.29, and 0.33, were used to initialize OCSVM. Little difference

is observed from these results. Figure 3 (d)-(f) are the maps of network B detected by the

proposed method with the seed in Region 2. The same three v values in (a)-(c) were used for

OCSVM.

The sensitivity of the proposed method to v was further examined over a wide range of v

values from 0.1 to 0.4 (step size 0.01). Figure 4 (a) and (b) show the ratios of functionally

connected voxels in (a) network A and (b) network B to all brain voxels as a function of v

for the synthetic data using OCSVM (dot blue lines), and the proposed method (solid red

lines). The latter are much closer to the true ratio of 2.64% in network A (a) and 3.84% in

network B (b) (dash dark lines) with negligible dependence on v over this range, as

compared to OCSVM. For network A, the proposed method is 23.1 times less dependent on

v (measured by the slope) than OCSVM. For network B, the proposed method is 26.1 times

less dependent on v than OCSVM.

When v is from 0.25 to 0.33, the false positive rate obtained from the proposed method is

almost a constant around 0.2% for networks A and B. It was found that ICA and the

correlation analysis can achieve the same false positive rate by changing their thresholds.

Table 2 shows a comparison of the numerical performance between the proposed method,

ICA, and correlation analysis with the FDR control, at the false positive rate of 0.2%. Three

numerical criteria were used, including accuracy, precision, and recall. It can be seen from

Table 2 that the proposed method can provide the highest accuracy and precision rates for

network A, and the highest accuracy, precision and recall rates for network B at the false

positive rate of 0.2%.
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3.3 Experimental Resting State fMRI Data

Two resting state functional networks, the default mode network (DMN) and the sensori-

motor network (SMN), were examined in this study. When implementing the proposed

method, the RBF kernel parameter for OCSVM and TCSVM, C parameter for TCSVM, and

pth after the first round of TCSVM reclassification are the same as those used for the

synthetic data. For prototype selection, detection accuracy cannot be computed to identify

appropriate η and λ values because there is no ground truth of voxels’ class labels in the

experimental data. Different η and λ values were experimentally evaluated and those lead to

a high detection sensitivity in regions of interest in DMN and minimum mis-detections in

other regions were selected. η=0.5 and λ=2.0 were finally chosen and fixed for the detection

of DMN and SMN in experimental data from the multiple subjects. A 2×2 voxels seed was

manually identified in the mPFC region for the detection of DMN, and a 2×2 voxels seed

was selected in the primary motor cortex (MI) region for the identification of SMN.

Figure 5 (a)-(c) show part of DMN in an individual slice detected by the proposed method

using three different v values: v=0.31, 0.37, and 0.41. There are 3558 voxels involved to the

processing, and the increase of v from 0.31 to 0.41 implies approximately 356 (10%) more

voxels would be identified as part of DMN if OCSVM was used. As shown in Figure 5 (c),

however, only 31 (1.2%) more voxels were identified as the part of DMN, 8.3 times less

sensitive to v compared to the OCSVM results. Figure 5 (d)-(f) are the SMN in another slice

detected by the proposed method with three v values: v=0.25, 0.31, and 0.35. There are

totally 2148 voxels in the brain area of this slice, and the increase of v from 0.25 to 0.35

indicates about 215 (10%) more voxels will be detected as part of SMN by OCSVM. As

shown in Figure 5 (f), however, only 28 (1.3%) more voxels were detected as part of SMN

in this slice, 7.7 times less sensitive to v than OCSVM.

Figure 6 shows a comparison of the detected DMN and SMN in two individual slices using

the proposed method, correlation analysis, and ICA. The relative performance of these

methods was evaluated under a comparable level of detection sensitivity. For the

comparison, the thresholds for correlation analysis and ICA were set to detect an equal

number of contiguously clustered voxels in a preselected region within DMN or SMN to

those identified by the proposed method. Figure 6 (a) shows part of the DMN in the

individual slice detected using the proposed method with v =0.39. The encircled rectangular

region in this slice indicates a 6 voxels × 6 voxels area in the posterior cingulate cortex

(PCC) region, and was selected for the comparison study. Figure 6 (b) is the network

detected by the correlation analysis using the FDR control with a q value of 1× 10−4. Figure

6 (c) is the ICA result. Sixteen independent components (IC) were used in the analysis.

Since ICA split the connected brain regions in DMN into several components, we visually

examined the obtained ICs and identified four DMN-related ICs that were combined to form

the network map in Figure 6 (c). Figure 6 (d) is part of SMN detected using the proposed

method with v =0.35, and the encircled 3 voxels × 4 voxels rectangular region in MI was

selected for the comparison study. Figure 6 (e) and (f) are the network maps identified by

the correlation analysis and ICA. In the correlation analysis, a q value of 4×10−4 was used to

detect all connected voxels in the encircled region in MI. In the ICA analysis, fourteen

components were used and one SMN-related IC was identified. It was observed from Figure
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6 (c) that the regions around mPFC and ventral anterior cingulate cortex (VACC) are

significantly under-detected after thresholding the ICs of this data set. KCC values were

calculated to evaluate the regional homogeneity of identified network regions and are listed

in Table 3.

Figure 7 shows the results from another set of fMRI data acquired from the second resting

state experiment. It is from a different subject with different spatial resolution and scan

duration. Figure 7 (a)-(d) are the identified DMN maps overlaid on an individual slice using

the proposed method with v =0.31, 0.37, 0.39, and 0.41, respectively. 2031 voxels were used

in the processing, and only 10 more voxels (0.49%) are identified as part of DMN when v

increases from 0.31 to 0.41, indicating approximately 20 times less dependence on the

change of v than OCSVM. The encircled rectangular region in (c) indicates a 10 voxels × 6

voxels area in VACC. For comparison, the thresholds of correlation analysis and ICA

methods were adjusted to detect the same number of voxels in this region. and Figure 7 (e)

and (f) are part of DMN identified by using the correlation analysis and ICA. For correlation

analysis, a q value of 1×10−4 was used. In ICA analysis, 21 ICs were obtained and three ICs

was visually identified as DMN-related and combined to form the network map.

Figure 8 shows part of SMN detected from the same data set in a different slice as that

shown in Figure 7. Figure 8 (a)-(d) are the network maps identified by the proposed method

using v =0.25, 0.29, 0.31, and 0.35, respectively. There are 1356 voxels in this slice involved

to the analysis. Only 12 more voxels (0.88%) were detected as part of SMN when v

increases from 0.25 to 0.35 (10%), indicating about 11.36 times less dependence on the

change of v than OCSVM. The encircled rectangular region in (c) indicates a 4 voxels × 4

voxels area in MI. The thresholds of correlation analysis and ICA methods were changed to

identify the same number of voxels in this region. Figure 8 (e) and (f) are the SMN maps

detected using the correlation analysis and ICA. In the correlation analysis, a q value of 3×

10−5 was used to identify the same number of connected voxels in the encircled region in MI

as detected by the proposed method. For ICA, 19 ICs were computed and one of them was

identified to be SMN-related. KCC values of the identified DMN and SMN maps in Figures

7 and 8 are listed in Table 4.

Figure 9 shows part of DMN overlaid on an individual slice detected from a data set

acquired in the third experiment using the proposed method, correlation analysis, and ICA.

Figure 9 (a) and (b) were obtained using the proposed method with v =0.31 and 0.41,

respectively. There are 6915 voxels in this slice involved to the analysis, and only 86 more

voxels (1.2%) were detected as part of DMN when v increases from 0.31 to 0.41, showing

8.33 times less dependence on the change of v than OCSVM. The encircled region in Figure

9 (a) is a 10 voxels × 10 voxels area in PCC. For comparison, the thresholds of correlation

analysis and ICA methods were adjusted to identify the same number of voxels in this area.

Figure 9 (c) is part of DMN identify by the correlation analysis using the FDR control with a

q value of 4×103. In ICA analysis, six ICs were estimated and one DMN-related IC was

identified and thresholded, as shown in Figure 9 (d).

Figure 10 illustrates part of SMN identified from a slice of the same data set used to detect

DMN shown in Figure 9. Figure 10 (a) and (b) were obtained using the proposed method
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with v =0.25 and 0.35, respectively. 3116 voxels from this slice were used in the analysis,

and 46 more voxels (1.4%) were detected as part of SMN when v varies from 0.25 to 0.35,

indicating 7.14 times less dependence on the change of v than OCSVM. The encircled

region in Figure 10 (a) is a 4 voxels × 4 voxels area in MI., and again the thresholds of

correlation analysis and ICA were modified to identify the same number of connected

voxels in this area. A q value of 2.3×10−2 was used in the correlation analysis with the FDR

control, and the detected network is shown in Figure 10 (c). Eleven ICs were generated by

ICA and one SMN-related IC was visually identified and thresholded as shown in Figure 10

(d). KCC values of the detected DMN and SMN regions in Figure 9 and 10 are listed in

Table 5.

4. Discussion

Although the proposed method and correlation analysis use seed and cc value to identify

functional networks, they are fundamentally different approaches. Correlation analysis is a

univariate approach where each voxel is analyzed against the seed separately from other

voxels, and a significance threshold is used to make a final decision. In addition, only

temporal information of the voxel is involved to the analysis. The proposed method is a

multivariate approach where both spatial and temporal information from a voxel are used for

the network detection. It essentially explores a true boundary between functionally

connected and unconnected voxels in a feature space, and the final decision is made by

comparing each voxel’s probabilities of “connected” and “unconnected”. Statistically this is

more reliable than using a threshold that might not fit the true boundary between connected

and unconnected voxels in the feature space.

There are two interesting findings from the feature selection results. First, the most

representative features identified by the SVM-based feature selection method are all related

to a seed. This is reasonable because the seed provides prior information based upon which a

network of interest can be identified. Second, most of the selected features contain both

spatial and temporal information. Functionally connected voxels not only show temporal

correlation with each other, but also spatially cluster together in specific brain regions.

Considering both spatial and temporal information will facilitate the network detection.

There are also other findings that are consistent with our experience. For example, the signal

intensity does not contribute too much to the resting state network detection. If there exists a

co-variation between different groups of voxels in a network with small time delays, the

peak delay of ccf could be another useful feature only if the temporal sampling rate is

sufficiently high. This is not the case in most multislice fMRI experiments, including those

in this study, and consequently not considered in this work.

In the prototype selection, the feature space operation is more conservative than the spatial

domain operation. The two parameters η and λ in formulas (3) and (4) control the portion of

removed training prototypes that are close to the OCSVM classification hyperplane. It was

found that a moderate adjustment of η and λ does not significantly change the final detection

results. This is reasonable because the TCSVM reclassification with a high generalization

performance can minimize the effects from possible remaining mis-detections or the

removal of correctly classified prototypes around the hyperplane.
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SVM learning assumes that training data are independently drawn from an unknown

probability distribution. However, fMRI data show strong local spatial correlations and

ignoring such correlation may affect the detection performance. In general, there are four

possible ways to apply spatial constraint to the analysis. The first is to use spatial smoothing

in the preprocessing. The second is to use features containing information of fMRI spatial

correlation [29,51]. The third is to use spatial constraint based prototype selection [51], and

the forth is to integrate spatial constraints into classifier learning [65,66]. The first, second

and third approaches are considered in this study.

The results of the synthetic data shown in Figure 3 indicate that the proposed method can

provide a consistent detection of functional networks. The dependence of the proposed

method on v was evaluated for both networks shown in Figure 2 with a large range of v

values from 0.1 to 0.4, which are greater than the true ratios of functionally connected

voxels. The mapping results show little dependence on v values. The outlier ratios obtained

from the OCSVM results are represented by the dot blue lines in Figure 4, and are almost

consistent to the original v values because v is an upper bound of the outlier ratio when only

OCSVM is used for the detection. The solid red lines in Figure 4 (a) and (b), which

represent the ratios of connected voxels detected by the proposed method as a function of v,

are quite close to the true ratios represented by the dash dark lines.

When the proposed method, ICA, and correlation analysis were compared at the same false

positive rate of 0.2%, as shown in Table 2, the proposed method can achieve the highest

accuracy and precision rates than the other two methods for network A, while the correlation

analysis can provide the highest recall rate for this network. When the methods were used to

detect network B at the same false positive rate, the proposed method outperforms the others

with the highest accuracy, precision, and recall rates. The recall rate calculated from the

correlation analysis results is lower than 50%. This is expected because the phase shift

between the sinusoid signals in regions 2 and 3 leads to a significant decrease of correlation

between the regions. The proposed method is a multivariate approach that incorporates both

spatial and temporal information into the analysis and the final results are not affected by the

phase shift.

If the accuracy is a constant, any classification system that performs better than a random

decision exhibits a tradeoff between precision and recall [67]. This indicates that if the

accuracy cannot be further increased, we may only improve precision by sacrificing recall,

and vice versa. A simultaneous increase of precision and recall cannot be achieved unless

accuracy can be increased. Increasing accuracy is usually difficult and costly, and typically a

consistent tradeoff between precision and recall is expected when the possible highest

accuracy level is reached. The precision and recall rates would change significantly when

different thresholds are used for ICA and correlation analysis, while the proposed method

can provide a consistent tradeoff between precision and recall.

The dependence of the proposed method on v was further examined using the experimental

fMRI data as shown in Figure 5. All three v values used to detect DMN in this individual

slice are greater than the true ratio of voxels in the network because the smallest v is 0.31,

almost 1/3 of the brain area. Functionally connected voxels were identified in the mPFC,
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inferior parietal cortex (IPC), and PCC regions, as shown in Figure 5 (a)-(c). The results

using the three v values are similar and are consistent with the anatomically defined cortical

representation of DMN. When the proposed method was used to detect SMN, the smallest v

is also greater than the true ratio of SMN in this individual slice. Similarly, consistent

detections were obtained although v values increase 10% from 0.25 to 0.35.

The comparison of the three methods using the experimental data was based on a same

detection sensitivity in a pre-specified brain region that is part of a network of interest. From

Figure 6 (a)-(c), it was observed that the maps of DMN detected by the proposed method

and correlation analysis are similar to each other, while the map from ICA shows a under-

detection in mPFC and VACC. This under-detection is not due to the missing of DMN-

related ICs, but is because of the thresholding of ICs that led to the same detection

sensitivity in PCC among the three methods. The KCC values of the detected regions are

listed in the second column of Table 3, which indicates that the network regions detected by

the proposed method and correlation analysis have a higher regional homogeneity than those

identified by ICA. In addition, the correlation analysis method provides a slightly higher

regional homogeneity than the proposed method. The third column of Table 3 lists the KCC

values computed from part of SMN identified by these methods using the same data but

from a different slice. The corresponding network maps are shown in Figure 6 (d)-(f). The

network detected by the proposed method has a higher regional homogeneity than those

detected by ICA and correlation analysis. The network detected by the correlation analysis

exhibits the lowest regional homogeneity. This is because of a significant number of mis-

detections around the right side of middle frontal gyrus (MFG). The seed used in the

proposed method is the same one used by the correlation analysis, and the cc value with the

seed is one of features used by the proposed approach. Due to the contribution from the

other features, the mis-detections in MFG generated by the proposed method is not so

significant compared to those detected by the correlation analysis. The image slices shown

in Figures 7, 8, 9, and 10 are from another data sets acquired from different subjects in the

second and third resting state experiments. The data sets have different spatial resolutions

and temporal durations to the data shown in Figures 5 and 6. Figure 7 (a)-(d), Figure 8 (a)-

(d), Figure 9 (a), (b), and Figure 10 (a), (b) verify that the method can provide a consistent

mapping of DMN and SMN although v values vary significantly. The KCC values in Tables

4 and 5 indicate that the regional homogeneities of networks detected by the proposed

approach are close to those identified by the ICA and correlation analysis methods. It is

worth of mentioning that KCC is used to provide accessory evaluation of the detected

networks. KCC alone cannot provide a complete evaluation. For example, in the second

column of Table 4, the KCC value calculated from the correlation analysis is slightly higher

than that from the proposed method. It was observed in Figure 7 (e) that less voxels in the

right IPC region were identified as part of DMN by the correlation analysis than the

proposed method, leading to a higher KCC value. Therefore, a high KCC could be

associated with a low detection sensitivity, and an inspection of the corresponding network

map is necessary. The comparison studies using the synthetic and experimental data show

that the proposed method can provide a similar or better mapping performance of resting

state networks to the widely used ICA and correlation analysis methods. Since the proposed

method does not require a threshold to make the final decision and can provide a consistent

Song and Chen Page 15

Magn Reson Imaging. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



mapping of different resting state networks, it would be an efficient tool for resting state

quantitative fMRI study.

Conclusion

We proposed a SVM-based method for resting state quantitative fMRI data analysis and

compared it with the commonly used ICA and correlation analysis methods using both

synthetic and experimental data. The innovation of the method is to formulate the mapping

of a resting state network as an outlier detection process that can be performed by OCSVM.

In the proposed method, OCSVM is used to generate an initial detection, and the OCSVM

results are analyzed by a spatial and feature domain prototype selection method to identify

reliable training samples for a TCSVM-based reclassification. The proposed method has

several advantages. First, it is data-driven requiring no threshold to make the final decision.

Second, it performs well for a range of v, and the final results are not sensitive to v. Third, it

is computationally efficient. The experiment results data show that the proposed method can

provide comparable or better results than the correlation analysis and ICA methods. It

allows for accurate measurements of functionally connected brain area from fMRI data. This

capability is important for quantitative fMRI studies where a change in size of functionally

connected regions may be linked to variation of activated neurons during a aging, learning,

memorizing, or medical treatment process.
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Figure 1.
The block diagram of the proposed method. The OCSVM learning provides an initial

mapping of a functional network based on a seed. Training prototypes are selected via the

prototype selection, and the selected prototypes are used to train a TCSVM to re-classify the

original fMRI data to obtain a refined network map.
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Figure 2.
One slice of the synthetic resting state fMRI data with two artificially generated functional

networks. Region 1 represents 1.54% of the brain area. A sinusoid wave was added to this

region at a frequency of 0.08 Hz with the amplitude 1.07 times of the baseline average.

Region 2 represents 1.69% of the brain area. The amplitude of sinusoid signal added to this

region is 1.02 times of the baseline average, and the frequency is 0.03Hz. Region 3

represents 2.15% of the brain. The amplitude of sinusoid wave in this region is 1.03 times of

the baseline average. The frequency is the same as that of region 2 with a phase shift of 0.78
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radians. Region 4 represents 1.1% of the brain area, and a sinusoid signal was added with

the amplitude 1.04 times of the baseline average. The frequency of the signal is the same as

that of region 1 with a phase shift of −0.52 radians. Regions 1 and 4 are connected and the

network is called network A. Regions 2 and 3 are connected and the network is called

network B.
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Figure 3.
The networks in the synthetic fMRI data detected using the proposed method, (a)-(c)

Network A obtained by using v=0.25, 0.29. and 0.33, respectively, (d)-(f) Network B

detected using the same set of v values as in (a)-(c). Little change can be observed when

different v values were used to initialize the proposed method.
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Figure 4.
The ratio of detected voxels to all brain voxels shown as a function of v for the synthetic

data using OCSVM (dot blue line), and the proposed method (solid red line). The latter is

much closer to the true ratio (dash dark line) with negligible dependence on v over this

range, as compared to OCSVM. (a) Network A with a true ratio of 2.64%; (b) Network B

with a true ratio of 3.84%.
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Figure 5.
Network maps detected by the proposed method using the fMRI data from the first

experiment, (a)-(c) Part of DMN detected with (a) v=0.31 (b) v=0.37, and (c) v=0.41. (d)-(f)

Part of SMN detected with (d) v=0.25. (e) v=0.31. and (f) v=0.35. These results indicate that

the proposed method can provide a consistent detection of the functional networks over a

range of v values.
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Figure 6.
Comparison between the proposed method, correlation analysis, and ICA under a

comparable level of detection sensitivity in specified regions, (a)-(c) Part of DMN generated

by (a) the proposed method with v=0.39. (b) correlation analysis with the FDR control, and

(c) ICA. (d)-(f) Part of SMN identified by (d) the proposed method with v=0.35, (e)

correlation analysis with the FDR control, and (f) ICA. The encircled rectangular region in

(a) indicates a 6 voxels × 6 voxels area in PCC, and the encircled region in (d) indicates a 3

voxels × 4 voxels region in MI. The thresholds of correlation analysis and ICA methods

were adjusted to detect all voxels in these two regions for the comparison purpose.
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Figure 7.
Part of DMN detected from a subject in the second experiment by using the proposed

method with v = (a) 0.31, (b) v =0.37, (c) v =0.39, (d) v =0.41, and by using (e) the

correlation analysis with the FDR control and (f) ICA. The encircled rectangular region in

(c) indicates a 10 voxels × 6 voxels area in VACC. The thresholds of correlation analysis

and ICA methods were adjusted to detect all voxels in this region.
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Figure 8.
Part of SMN detected from the same subject as in Figure 7 by using the proposed method

with (a) v = 0.25, (b) v =0.29, (c) v =0.31, (d) v =0.35, and by using (e) the correlation

analysis with the FDR control and (f) ICA. The encircled rectangular region in (c) indicates

a 4 voxels × 4 voxels region in MI. The thresholds of correlation analysis and ICA methods

were adjusted to detect all voxels in this region.
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Figure 9.
Part of DMN detected from a subject in the third experiment by using the proposed method

with (a) v = 0.31, (b) v =0.41, and by using (c) the correlation analysis with the FDR control

and (d) ICA. The encircled region in (a) indicates a 10 voxels × 10 voxels region in PCC.

The thresholds of correlation analysis and ICA methods were adjusted to detect all voxels in

this region.
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Figure 10.
Part of SMN detected from the same subject as in Figure 9 by using the proposed method

with (a) v = 0.25, (b) v =0.35, and using (c) the correlation analysis with the FDR control

and (d) ICA. The encircled rectangular region in (a) indicates a 4 voxels × 4 voxels area in

MI. The thresholds of correlation analysis and ICA methods were adjusted to detect all

voxels in this region.
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Table 1

Feature selection results

Candidate feature Id value Rank

Corr_ seed 0.74 3

Max_ cross_ seed 0.23 8

T_ test_p 0.15 11

Avg_corr_seed 0.93 2

Avg_ corr_ neighbor 0.43 6

Max_ corr_ seed 1.00 1

Min_ corr_ seed 0.47 5

Max_ corr_ neighbor 0.22 9

Min_ corr_ neighbor 0.42 7

Avg_ xcorr_ seed 0.58 4

Max_ tc 0.17 10

All Id values were normalized against the largest one. (Corr_seed: correlation between a voxel and a seed; T_test_p: p value of t test; Avg/Max/
Min_corr_seed: average, maximum, minimum correlation between neighboring voxels of a voxel and a seed; Avg/Max/Min_corr_neighbor:
average, maximum, and minimum correlation between a voxel and its neighboring voxels; Max_xcross_seed: the signed extreme value of the
cross correlation function between a voxel and a seed;. Avg_xcorr_seed: the average signed extreme value of the cross correlation functions
between neighboring voxels of a voxel and a seed; Max_tc: maximum intensity of a voxel’s time course.)
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Table 3

A comparison of the KCC values calculated from part of DMN and SMN detected by the proposed method,

ICA, and the correlation analysis with the FDR control, as shown in Figure 6.

DMN SMN

Proposed Method 0.18 0.26

ICA 0.14 0.25

Correlation 0.20 0.23
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Table 4

A comparison of the KCC values calculated from part of DMN and SMN detected by the proposed method,

ICA, and the correlation analysis with the FDR control, as shown in Figures 7 and 8.

DMN SMN

Proposed Method 0.13 0.11

ICA 0.11 0.11

Correlation 0.14 0.13
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Table 5

A comparison of the KCC values calculated from part of DMN and SMN detected by the proposed method,

ICA, and the correlation analysis with the FDR control, as shown in Figures 9 and 10.

DMN SMN

Proposed Method 0.65 0.23

ICA 0.59 0.19

Correlation 0.64 0.23
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