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Summary

The development of high-throughput biomedical technologies has led to increased interest in the

analysis of high-dimensional data where the number of features is much larger than the sample

size. In this paper, we investigate principal component analysis under the ultra-high dimensional

regime, where both the number of features and the sample size increase as the ratio of the two

quantities also increases. We bridge the existing results from the finite and the high-dimension low

sample size regimes, embedding the two regimes in a more general framework. We also

numerically demonstrate the universal application of the results from the finite regime.
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1. Introduction

With the development of modern high-throughput technologies, it is common to encounter

data with many more features, p, than the number of samples, n. In modern genomics

applications, for instance, the number of features often ranges from tens of thousands to

millions, while the corresponding sample sizes typically range from hundreds to thousands.

For those high-dimensional data, principal component analysis is popular for data

exploration and dimension reduction. Since principal component analysis is based on the

eigenvalues and eigenvectors of the sample covariance matrix, its performance largely

depends on the behavior of the sample eigenvalues and eigenvectors.
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In their seminal paper on random matrices, Marčenko & Pastur (1967) derived the

asymptotic distribution of the sample eigenvalues under the finite γ regime, where p → ∞, n

→ ∞ and p/n → γ < ∞. Specifically, they showed that the sample eigenvalues follow the

Marčenko–Pastur law when all the population eigenvalues are identical. For data where the

true signal is embedded in a low dimensional space, Johnstone (2001) introduced the spiked

eigenvalue model, where a small number of population eigenvalues are substantially larger

than the rest. Under this model, asymptotic results on the sample eigenvalues and

eigenvectors have been derived (Baik & Silverstein, 2006; Paul, 2007; Nadler, 2008; Lee et

al., 2010) for the finite γ asymptotic regime.

These results are useful for evaluating the performances of principal component analysis

(Lee et al., 2010). However, one may be concerned about the applicability of the theoretical

results from the finite γ regime to ultra-high dimensional data, such as next generation

sequencing data, where millions of genetic variants are collected from tens or a few

hundreds of samples. Addressing this question is urgent, as the availability of such ultra-

high dimensional genomic datasets is expected to increase as the cost of high-throughput

technologies decreases. In this paper, we derive asymptotic results that provide theoretical

justification for applying the results from the finite γ regime to ultra-high dimensional data.

In addition, we compare our results to those from the high-dimension low sample size

regime (Hall et al., 2005; Ahn et al., 2007; Jung & Marron, 2009; Jung et al., 2012).

The finite γ and the high-dimension low sample size regimes are based on two seemingly

disparate assumptions. In the high-dimension low sample size regime, n is treated as fixed

and the population eigenvalues increase with rate pα. In the finite γ regime, the population

eigenvalues are assumed to be fixed but n grows with p at a constant rate. Our new results

on the ultra-high dimensional regime bridge the asymptotic results from the two extreme

regimes and improve our understanding of principal component analysis on high-

dimensional data.

2. Method

2.1. General Setting

Throughout this paper, we assume that n is a function of p, and denote it by np whenever

needed. We further define γp = p/np. Let  be a p × p nonnegative matrix with

an ordered eigenvalue matrix Λp = diag(λp1,…, λpp) and an orthogonal eigenvector matrix

Ep = (ep1,…, epp). Both eigenvalues and eigenvectors are fixed sequences which depend on

p. Define the p × n data matrix, , where Zp is a p × n random matrix whose

elements zij are independent and identically distributed with  and

. The sample covariance matrix Sp equals
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and the corresponding population covariance matrix of Xp is σ2Σp. The σ2λpvs are the

underlying population eigenvalues. The spectral decomposition of the sample covariance

matrix is , where Dp = diag(dp1, …, dpp) is the diagonal matrix of the ordered

sample eigenvalues, and Up = (up1, …, upp) is the corresponding p × p sample eigenvector

matrix. The vth sample principal component score vector, p̂v = (p̂v1, …,p̂vn)T, equals XTuv.

For a new sample with variable xnew, its vth predicted principal component score is

. Before introducing the main results, we define additional notation for the

remainder of the paper. Suppose ap and bp are two sequences. We write ap ≍ bp if ap =

O(bp) and bp = O(ap), and ap ≪ bp if ap/bp = o(1). For simplicity, we hence suppress the

subscript p unless we wish to emphasize a quantity's dependence on p, except for the

population eigenvector matrix, which is always denoted by Ep.

2.2. Main Results

In the sequel, we assume γp → ∞ and n → ∞ as p → ∞. We further assume the spiked

eigenvalue model (Johnstone, 2001) in which the first m population eigenvalues are

substantially larger than the remaining non-spiked eigenvalues. In the random matrix

context, it is typically assumed that all non-spiked population eigenvalues equal unity

(Johnstone, 2001; Baik & Silverstein, 2006). This strong condition is unlikely to be satisfied

in many situations. We define two weaker sphericity conditions. Let

 be the kth central moment of the non-spiked

population eigenvalues, where .

Condition 1. The non-spiked population eigenvalues satisfy ϕ(2) = o(n−2p).

Condition 2. The non-spiked population eigenvalues satisfy ϕ(2) = o(n−3/2p), ϕ(4) = O(1),

and ϕ(4) = o(n−4p3).

Condition 1 is closely related to the sphericity measure in John (1971, 1972) and the (∊m

condition of Jung & Marron (2009). Detailed explanations of both conditions can be found

in the Supplementary Material. The following theorem summarizes the convergence results

of the sample eigenvalues and eigenvectors.

Theorem 1—Let cv = λv/γp (v ≤ m). Suppose that cm < ⋯ < c1, and cm ≍ ⋯ ≍ c1. Let the

remaining population eigenvalues satisfy Condition 1 or Condition 2.

i. When cv is bounded away from zero, for v ≤ m,  in

probability, and |〈ev, uv〉| − {cv(cv + 1)−1}1/2 → 0 in probability, where 〈.〉 is the

inner product between two vectors. For  in probability.

ii. ii) When cv = o(1), for all v,  in probability, and |〈ev, uv〉| → 0 in

probability.

The proof can be found in the Supplementary Material. Theorem 1 includes convergence

results for both the spiked and non-spiked sample eigenvalues. These results clearly indicate

that the asymptotic behavior of sample eigenvalues and eigenvectors depends on cv, which
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can be viewed as a signal to noise ratio, where λv represents the signal strength and γp serves

as a surrogate of the noise level.

When λv grows at the same rate as, or at a higher rate than, γp, the spiked eigenvalues are

separable from the bulk. When λv grows at a slower rate than γp, i.e., cv = o(1), the spiked

eigenvalues cannot be separated from the non-spiked eigenvalues. Theorem 1 also shows

that dv is inconsistent. The sample eigenvectors show a similar pattern. Examples on the

asymptotic behavior of the sample eigenvalues and eigenvectors under several conditions

are described in the Supplementary Material. To mimic the high-dimension low sample size

regime, let λv be a function of  such that a limit of  exists and is finite. Now we have

the following corollary.

Corollary 1—Let , and the remaining population

eigenvalues satisfy Condition 1 or Condition 2. Then, for v ≤ m, dv/max(γp, ) converges in

probability to σ2c̃v, σ2c̃v + σ2, and σ2 when α > 1, α = 1, and α < 1, respectively. With the

same assumption, |〈ev, uv〉| converges in probability to unity, {cṽ(c̃v + 1)−1}1/2, and zero

when α > 1, α = 1, and α < 1, respectively.

The proof can be found in the Supplementary Material. The corollary allows us to compare

our results to those from the high-dimension low sample size regime. See Section 2.3 for

details. After principal component analysis, the sample principal component scores are often

used to summarize data. Predicted principal component scores may also be calculated on

new samples for a variety of reasons (Jolliffe, 2002). The next theorem presents the

asymptotic results on the principal component scores under the ultra-high dimensional

regime.

Theorem 2—Suppose the assumptions in Theorem 1 hold, and cv (v ≤ m) is bounded away

from zero. Let pv = XTev be the vth population principal component score derived from the

corresponding vth population eigenvector, and corr(·, ·) be the correlation function. Then,

for v ≤ m, corr(pv, p̂v) → 1 in probability, and 

inprobability, for all j = 1, …, n.

The proof is given in the Supplementary Material. One striking feature in Theorem 2 is that

the correlation between pv and p̂v can converge to unity even when the corresponding

sample eigenvector is not consistent. Combining Theorems 1 and 2, we conclude that pv̂ can

accurately estimate pv whenever its corresponding sample eigenvalue is separable from the

bulk. This interesting result may partially explain the success of principal component

analysis for high dimensional datasets, such as genome-wide association data (Price et al.,

2006; Patterson et al., 2006). This theorem also illustrates the shrinkage phenomena of the

predicted principal component scores, previously reported by Lee et al. (2010). To apply the

asymptotic results in Theorem 1 and 2 to data, we need to estimate σ2. Lee et al. (2010)

proposed an algorithm to rescale the data to ensure σ2 of the rescaled data equal to unity.

The same approach can be applied to ultra-high dimensional data.
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2.3. Comparisons to existing asymptotic results

In the finite γ framework, it is typically assumed that the spiked population eigenvalues are

finite. Under the spiked population model, the following results have been established (Baik

& Silverstein, 2006; Paul, 2007; Lee et al., 2010). For sample eigenvalues,

(1)

and for predicted principal component scores,

(2)

Equation (1) shows that if λv > 1 + γ1/2, its corresponding sample eigenvalue is separable

from the bulk. Interestingly, the result in (1) for λv > 1 + γ1/2 is equivalent to the asymptotic

result in Theorem 1 when λv is relatively large. To see this, note that by replacing λv in (1)

with cvγ, we obtain

which accords with Theorem 1. For the predicted principal component scores, the same

holds true. By (2),

which is consistent with Theorem 2. Similar conclusions can be drawn for the sample

eigenvectors and principal component scores and are omitted here. In summary, for ultra-

high dimensional data, both the finite γ and ultra-high dimensional asymptotic results can be

used to investigate the behavior of sample eigenvalues, eigenvectors and principal

component scores, and both produce similar conclusions.

Under the high-dimension low sample size regime, the spiked population eigenvalues are

assumed to grow at rate pα (α > 0). Jung et al. (2012) proved the following results with an

additional Gaussian assumption on X. For the first sample eigenvalue,

(3)

in distribution, where ĉ1 = limp→∞ λ1/pα, and  denotes the chi-square distribution with n

degrees of freedom. For the first sample eigenvector,
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(4)

in distribution. Results with more relaxed assumptions can be found in Jung et al. (2012). In

the high-dimension low sample size regime, the asymptotic behavior of sample eigenvalues

and eigenvectors depends on the relative growth rate of λv over p. In Corollary 1, λv is

expressed as a function of γp, instead of p directly. However, it should be noted that  is

equivalent to pα in the high-dimension low sample size regime where n is treated as fixed.

Equation (3) shows that when α > 1, the distribution of the scaled sample eigenvalue

converges in distribution to the random variable  as p → ∞. Combining this with

the fact that  in probability as n → ∞, we end up with the same conclusion in

Corollary 1. When α = 1, d1 − σ2λ1 ≍ σ2p/n, and thus the sample eigenvalue is biased with a

bias σ2p/n. Equation (4) indicates that the first sample eigenvector is consistent when α > 1

and is asymptotically perpendicular to the first population eigenvector when α < 1. When α

= 1, the sample eigenvector is neither consistent nor asymptotically perpendicular to the first

population eigenvector. In conclusion, our asymptotic results clearly parallel the asymptotic

results for the high-dimension low sample size regime, and embed them within a larger

framework.

3. Numerical Study

We conducted simulations to illustrate our theoretical results. A p × n data matrix X was

generated from N(0, Λ) with Λ = diag(λ1, …, λp). We set λ1 = c1γp, λ2 = c2γp and λ3 = … =

λp = 1. The first and second population eigenvectors were e1 = (1, 0, …, 0) and e2 = (0, 1, 0,

…, 0), respectively. Four different sets of cvs were selected to represent different scenarios:

no spiked eigenvalues, ; very small spiked eigenvalues, ;

moderate spiked eigenvalues, c1 = 1, c2 = 0.7; and very large spiked eigenvalues,

. The first two scenarios correspond to the case that cv = o(1), and the

last two to the case that cv is bounded away from zero. Two different γp values, 500 and

2000, were considered, and the sample size was fixed at 100. For each of the simulation

setups, we generated 500 datasets and computed the sample eigenvalues and the inner

products between the sample and population eigenvectors.

Table 1 reports the medians and inter-quartile ranges of the estimates. The theoretical

asymptotic values of the sample eigenvalues and the inner products from the finite γ and the

ultra-high dimensional regimes are also presented. The sample eigenvalues were rescaled by

γp. For data with no spiked or with very small spiked eigenvalues, the first and second

sample eigenvalues are slightly upward-biased from unity. However, they match well with

the theoretical ones from the finite γ regime. For data with moderate or large spiked

eigenvalues, the theoretical estimates from the finite γ regime and the ultra-high dimensional

regime are identical, and are well matched with the sample eigenvalues. For the inner

products of the sample eigenvectors, the empirical estimates match well with the ones from
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the finite γ and ultra-high dimensional regimes, and the two sets of the theoretical results are

identical.

Table 2 summarizes the results for the sample and predicted principal component scores. For

the sample principal component scores, the median and inter-quartile ranges of their Pearson

correlations with the population principal component scores were calculated. The theoretical

results from both the finite γ and ultra-high dimensional regimes are identical and both

match well with the empirical estimates. For the predicted principal component scores, we

followed exactly the same simulation procedure as described above to generate a new

dataset for each of the simulated dataset. We computed the predicted principal component

scores on each new dataset. The empirical shrinkage factor was calculated as the ratio of the

means of the squared predicted and sample principal component scores. Again, similar

conclusions hold. The theoretical results from both the finite γ and ultra-high dimensional

regimes are effectively identical. The empirical estimates approximate the theoretical results

very well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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