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Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly un-
derstood. Here, we use a combination of experimental and computational approaches to unravel the complex transcriptional
network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor � coactivator 1� (PGC-1�), a regu-
latory nexus in endurance training adaptation. By integrating data on genome-wide binding of PGC-1� and gene expression
upon PGC-1� overexpression with comprehensive computational prediction of transcription factor binding sites (TFBSs), we
uncover a hitherto-underestimated number of transcription factor partners involved in mediating PGC-1� action. In particular,
principal component analysis of TFBSs at PGC-1� binding regions predicts that, besides the well-known role of the estrogen-
related receptor � (ERR�), the activator protein 1 complex (AP-1) plays a major role in regulating the PGC-1�-controlled gene
program of the hypoxia response. Our findings thus reveal the complex transcriptional network of muscle cell plasticity con-
trolled by PGC-1�.

Asedentary lifestyle can lead to an imbalance between energy
intake and expenditure and favors the development of a num-

ber of chronic diseases like obesity and type 2 diabetes. Regular
exercise, on the other hand, is an effective way to reduce the risk
for these lifestyle-related pathologies (1). The health benefits of
exercise are at least in part induced by changes in skeletal muscle
tissue. Muscle cells exhibit a high plasticity and thus a remarkably
complex adaptation to increased contractile activity. For example,
endurance training induces mitochondrial biogenesis, increases
capillary density, and improves insulin sensitivity (1, 2). To
achieve such a complex plastic response, a number of different
signaling pathways are activated in an exercising muscle, for ex-
ample, p38 mitogen-activated protein kinase (MAPK)-mediated
protein phosphorylation events, increased intracellular calcium
levels, or the activation of the metabolic sensors AMP-dependent
protein kinase (AMPK) and sirtuin-1 (SIRT1) (3). While the tem-
poral coordination of the numerous inputs is not clear, all of the
major signaling pathways converge on the peroxisome prolifera-
tor-activated receptor (PPAR) � coactivator 1� (PGC-1�) to ei-
ther induce Ppargc1a gene expression, promote posttranslational
modifications of the PGC-1� protein, or do both (4, 5). Upon
activation, PGC-1� mediates the muscular adaptations to endur-
ance exercise by coactivating various transcription factors (TFs)
involved in the regulation of diverse biological programs such as
mitochondrial biogenesis, angiogenesis, reactive oxygen species
(ROS) detoxification, or glucose uptake (3). Accordingly, trans-
genic (TG) expression of PGC-1� in mouse skeletal muscle at
physiological levels not only induces mitochondrial biogenesis
but also drives a fiber-type conversion toward a more oxidative,
slow-twitch phenotype (6), while muscle-specific Ppargc1a-
knockout animals exhibit several symptoms of pathological inac-
tivity (7, 8).

Coregulators are part of multicomponent regulatory protein
complexes that are well suited to translate external stimuli into
changes in promoter and enhancer activities by combining vari-
ous enzymatic activities to modulate histones and chromatin
structure and recruit other TFs (9). Thus, dynamic assembly of

distinct coregulator complexes enables the integration of many
different signaling pathways, leading to a coordinated and specific
regulation of entire biological programs by multiple TFs (10, 11).
For example, PGC-1� not only recruits histone acetylases (12), the
TRAP/DRIP/Mediator (13), and the SWI/SNF protein complexes
(14) but also binds to and coactivates a myriad of different tran-
scription factors, even though a systematic inventory of TF bind-
ing partners has not been compiled yet (15). Thus, the specific
control exerted by the PGC-1�-dependent transcriptional net-
work might provide an explanation for the dynamic and coordi-
nated muscle adaptation to exercise. Since PGC-1� in skeletal
muscle not only confers a trained phenotype but also ameliorates
several different muscle diseases (16), the unraveling of the PGC-
1�-controlled transcriptional network in skeletal muscle would be
of great interest to identify putative therapeutic targets within this
pathway.

Therefore, we aimed at obtaining a global picture of the co-
regulatory activity of PGC-1� in skeletal muscle cells. More pre-
cisely, by combining data on the genome-wide binding locations
of PGC-1� and the gene expression profiles in response to
PGC-1� overexpression with comprehensive computational pre-
diction of transcription factor binding site (TFBS) occurrence, we
sought to unveil the biological processes that are regulated by
PGC-1�, to identify the transcription factors that partner with
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PGC-1�, and to determine the mechanistic details of PGC-1�-
regulated transcription. We not only mapped the locations on the
DNA where PGC-1� was bound but also delineated the target
genes whose expression is either directly or indirectly affected by
PGC-1� and identified novel putative transcription factor part-
ners that mediated PGC-1�’s action. In particular, our results
strongly suggest that the activator protein 1 (AP-1) complex is a
major regulatory partner of PGC-1�, with AP-1 and PGC-1� to-
gether regulating the hypoxic response gene program in muscle
cells in vitro and in vivo.

MATERIALS AND METHODS
Cell culture and small interfering RNA (siRNA) transfection. C2C12
cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) sup-
plemented with 10% fetal bovine serum (FBS), 100 units/ml penicillin,
and 100 �g/ml streptomycin. To obtain myotubes, the C2C12 myoblasts
were allowed to reach 90% confluence and the medium was changed to
DMEM supplemented with 2% horse serum (differentiation medium)
for 72 h.

The siRNAs for the knockdown of NFE2L2, FOS, JUN, ATF3, NFYC,
ZFP143, GTF2I, the nontargeting siRNA pool, and the DharmaFECT1
transfection reagent were purchased from Dharmacon (Fisher Scientific),
and the siRNA transfection was performed according to the Thermo Sci-
entific DharmaFECT transfection reagent siRNA transfection protocol.
Briefly, after 3 days of differentiation, the respective siRNAs (50 nM final
concentration) were added to the medium. Twenty-four hours after
siRNA transfection, the cells were infected with adenovirus (AV) express-
ing either PGC-1� (AV-PGC-1�) or the green fluorescent protein (AV-
GFP). Then, 48 h after adenoviral infection, the cells were harvested.

Differentiated C2C12 cells were infected with AV expressing short
hairpin RNA (shRNA) for estrogen-related receptor � (AV-shERR�)
(kindly provided by Anastasia Kralli, Scripps Research Institute, La Jolla,
CA) to knock down and inactivate ERR� or shGFP as a control. The
infected cells were kept in culture for 4 days. Afterwards, cells were in-
fected with the AV-Flag-PGC-1� or AV-GFP and kept in culture for two
additional days. As a supplement to the previously infected AV shERR�
cells, 2 �M ERR� inverse agonist XCT-790 was added. To the remaining
cells, 0.02% dimethyl sulfoxide (DMSO) as a vehicle was added to the
differentiated medium. All the experiments have been performed in bio-
logical triplicates. For RNA isolation, TRIzol was used according to the
TRIzol reagent RNA isolation protocol (Invitrogen). Three conditions
were used for further analysis: AV-shGFP plus AV-GFP plus vehicle, AV-
shGFP plus AV-Flag-PGC-1� plus vehicle, and AV-shERR� plus AV-
Flag-PGC-1� plus 2 �M XCT-790.

ChIP and ChIP sequencing (ChIP-Seq). Chromatin immunoprecipi-
tation (ChIP) was performed according to the Agilent Mammalian ChIP-
on-chip protocol, version 10.0. For each immunoprecipitation, approxi-
mately 1 � 108 C2C12 cells were differentiated into myotubes and
infected with AV-Flag-PGC-1�. For cross-linking protein complexes to
DNA-binding elements, the cells were incubated in a 1% formaldehyde
solution for 10 min, followed by the addition of glycine to a final concen-
tration of 125 mM to quench the effect of the formaldehyde. The cells were
rinsed in 1� phosphate-buffered saline (PBS), harvested in ice-cold 1�
PBS using a silicone scraper, and pelleted by centrifugation. The pelleted
cells were either used immediately or flash frozen and stored for later. The
cells were then lysed at 4°C using two lysis buffers containing 0.5% NP-
40 – 0.25% Triton X-100 and 0.1% sodium deoxycholate– 0.5% N-lau-
roylsarcosine, respectively. The chromatin was then sheared by sonication
to obtain DNA fragments of about 100 to 600 bp in length. Fifty microli-
ters of the sonicated lysate was saved as input DNA. The immunoprecipi-
tation was performed overnight at 4°C using magnetic beads (protein G
Dynabeads; Invitrogen), which were previously coated with monoclonal
antibodies like the monoclonal anti-Flag M2 antibody (Sigma) for the
ChIP of PGC-1� or with the monoclonal anti-c-Fos (9F6) rabbit antibody
(catalog no. 2250; Cell Signaling) for the ChIP of FOS. The beads carrying

the precipitate were washed five times for the c-Fos antibody and six times
for the Flag antibody with radioimmunoprecipitation assay (RIPA) buffer
and once with Tris-EDTA (TE) that contained 50 mM NaCl to eliminate
unspecific binding of DNA to the beads. For elution, the beads were re-
suspended in elution buffer containing 1% SDS, placed in a 65°C water
bath for 15 min, and vortexed every 2 min. To reverse the cross-links, the
samples were incubated at 65°C overnight. The following day, the RNA
and the cellular proteins were digested using RNase A and proteinase K.
The DNA was precipitated, and the success of the chromatin immuno-
precipitation was validated by semiquantitative real-time PCR. The ChIP
experiments were performed in triplicates. The ChIP of PGC-1� was fur-
ther used for sequencing. The ChIP-Seq experiment on overexpressed
PGC-1� in C2C12 cells was performed in biological duplicates. At the
joint Quantitative Genomics core facility of the University of Basel and the
Department of Biosystems Science and Engineering (D-BSSE) of the ETH
Zurich in Basel, Switzerland, DNA libraries were prepared using the stan-
dard Illumina ChIP-Seq protocol, as described by the manufacturer, and
the immunoprecipitated samples were sequenced on the Genome Ana-
lyzer II. In order to keep only high-quality data, the sequenced reads were
filtered based on the quality score of each read and its alignments. Reads
were retained when the Phred score was �20, the read length was �25 bp,
and the number of wrongly called nucleotides (Ns) was �2. Those reads
that passed the filter (6,711,717 for the first immunoprecipitated sample
[IP], 36,580,431 for the second IP, 17,899,074 for the first whole-cell ex-
tract [WCE], and 35,525,221 for the second WCE) were aligned with the
mouse genome (UCSC mm9 assembly), using Bowtie version 0.12.7 (17)
with parameters – best –strata -a –m 100. The number of aligned reads
equaled 5,699,648 for the first IP sample, 16,053,370 for the first WCE,
21,448,059 for the second IP, and 32,244,584 for the second WCE.

Identification of bound regions. To identify regions that were signif-
icantly enriched in the ChIP, we passed a 200-bp-long sliding window
along the genome, sliding by 25 bp between consecutive windows, and
estimated the fraction of all ChIP reads (fIP) that fall within the window, as
well as the fraction fWCE of reads from the whole-cell extract that fall in the
same window (which we estimate from a 2,000-bp-long window centered
on the same genomic location). A Z score quantifying the enrichment in
the ChIP of each window was computed as

Z �
fIP � fWCE

��2
IP � �2

WCE

where �2
IP and �2

WCE are the variances of the IP and WCE read frequen-
cies, respectively, which are given by

�2
IP �

fIP � �1 � fIP�
NIP

and �2
WCE �

fWCE � �1 � fWCE�
NWCE

respectively.
The enrichments were reproducible across biological replicates. Using

only the first sequencing data set, we called peaks at a Z cutoff of 4.5; we
then compared these with the Z scores from the corresponding regions of
the second data set, and the Pearson correlation coefficient was found to
be 0.778. Similarly, we called peaks at a Z cutoff of 4.5 using only the
second sequencing data set; when we compared these peaks with the Z
scores of the corresponding regions from the first data set, the Pearson
correlation coefficient was found to be 0.782.

To obtain a final set of binding peaks, we combined the reads from the
two biological replicates, computing the Z score of each window as

Z �
fIP1

� fIP2
� fWCE1

� fWCE2

��2
IP1

� �2
IP2

� �2
WCE1

� �2
WCE2

We conservatively considered all windows with a Z score larger than
4.5 to be significantly enriched (false discovery rate [FDR], 0.6%). The
final binding peaks were obtained by merging consecutive windows that
all passed the cutoff and by considering the “peak” to correspond to the
top-scoring window, i.e., corresponding to the summit of the ChIP-Seq
signal. To determine the PGC-1� distribution genome-wide, peaks were
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annotated according to their closest Mus musculus RefSeq transcripts. We
defined peaks as “intronic” (peak center lying inside an intron), “exonic”
(peak center lying inside an exon), “upstream of TSS” (peak center lying
between kb �10 and 0 relative to the closest transcription start site [TSS]),
“downstream of TES” (peak center lying between kb 0 and �10 relative to
the closest transcription end site [TES]), or “intergenic” (peak center lo-
cated farther than 10 kb from the nearest transcript). Moreover, we com-
puted the ratio between observed and expected peak location distribu-
tions, obtained by generating 100 peak sets composed of 7,512 random
peaks each.

Motif finding and TFBS overrepresentation. The binding peak re-
gions were aligned with orthologous regions from 6 other mammalian
species— human (hg18), rhesus macaque (rheMac2), dog (canFam2),
horse (equCab1), cow (bosTau3), and opossum (monDom4)— using T-
Coffee (18). A collection of 190 mammalian regulatory motifs (position
weight matrices [WMs]) representing the binding specificities of approx-
imate 350 mouse TFs (in many cases, sequence specificities of multiple
closely related TFs were represented with the same WM) were down-
loaded from the SwissRegulon website (19). TFBSs for all known motifs
were predicted using the MotEvo algorithm (20) on the alignments of all
7,512 peak sequences. Only binding sites with a posterior probability of
�0.1 were considered for the further steps of the analysis. In order to
create a background set of regions to assess the overrepresentation of
binding sites within our regions, we created randomized alignments by
shuffling the multiple alignment columns, maintaining both the gap pat-
terns and the conservation patterns of the original alignments. TFBSs
were predicted on the shuffled alignments using the same MotEvo settings
as those for the original peak alignments. Overrepresentation of motifs in
the PGC-1� binding peaks was calculated by comparing total predicted
TFBS occurrence within binding peaks with the predicted TFBS occur-
rence in the shuffled alignments. We evaluated the enrichment of TFBSs
for each motif x by collecting the sum nx of the posterior probabilities of its
predicted sites in the peak alignments as well as the corresponding sum n=x
in the shuffled alignments and computed a Z score:

Z �
fx � f �x

� fx � �1 � fx�
Lx

�
f �x � �1 � f �x�

L�x

where Lx and L=x are the total lengths of the original and shuffled align-
ments, respectively, while fx and f =x are given by the equations nx � lx 	
fx � Lx and n=x � lx 	 f =x � L=x, with lx being the length of motif x.

PCA of TFBS occurrence in binding peaks. The input matrix N for
the principal component analysis (PCA) contained the total number of
predicted binding sites Npm in each of the 7,512 binding peaks p (rows) for
each of the 190 mammalian regulatory motifs m (columns). After mean
centering the columns of this matrix, Ñpm 	 Npm � 
Nm�, i.e., subtracting
the average site count for each motif, singular value decomposition (SVD)
was used to factorize this matrix: Ñ 	 U · S · VT, where U is a P � M matrix
whose columns are the left singular vectors of Ñ; S is an M � M diagonal
matrix containing the singular values, and VT (the transpose of V) is an
M � M matrix whose rows are the right singular vectors, with P the
number of peaks and M the number of motifs. The SVD was performed
using the “svd” package of the “R” programming language.

Gene expression arrays. Whole-gene expression after 48 h of trans-
fection with adenovirus was measured in C2C12 cells with Affymetrix
GeneChip Mouse Gene 1.0 ST microarrays at the Life Science Training
core facility of the University of Basel. Raw probe intensities were cor-
rected for background and unspecific binding using the Bioconductor
package “affy” (21). Subsequently, probes were classified as expressed or
nonexpressed by using the “Mclust” R package (22), and after removal of
nonexpressed probes, the intensity values were quantile normalized
across all samples. Using mapping of the probes to the UCSC collection of
mouse mRNAs, probes were then associated with a comprehensive col-
lection of mouse promoters available from the SwissRegulon database
(19). The log2 expression level of a given promoter was calculated as the

weighted average of the expression levels of all probes associated with
it. Log2 expression levels were then compared between overexpressed
PGC-1� and the control GFP sample; for each promoter, the change in
expression level across the two conditions was measured by log2 fold
change (log2FC), computed as the difference between the mean of the
log2 values in PGC-1� and the mean of the log2 values in GFP. The
significance of the expression change was assessed by a Z score, which
was computed as

Z �
E� PGC1	 � E� GFP

��2
PGC1	

n
�

�2
GFP

n

where n 	 3 is the number of replicate samples, E�PGC1� is the mean log2

expression across the PGC-1� samples, E�GFP is the mean log2 expression
across the GFP samples, and �2

PGC1� and �2GFP are the variances of log2

expression levels across the replicates for the PGC-1� and control sam-
ples, respectively. Promoters were considered significantly upregulated
when log2FC was �1 and Z was �3 and significantly downregulated when
log2FC was ��1 and Z was ��3.

Peaks were assigned to promoters by proximity. To assign each peak to
a promoter, we calculated the distance from the center of the peak to the
center of neighboring promoters; whenever the peak was closer than 10 kb
from at least one promoter, it was assigned to the nearest promoter and,
thus, to its associated gene.

GO enrichment analysis. Gene identifiers (IDs) were extracted from
differentially regulated promoters and divided into four groups: upregu-
lated promoters with an assigned binding peak, upregulated promoters
without an assigned binding peak, downregulated promoters with an as-
signed peak, and downregulated promoters without an assigned peak.
These four gene sets were used as input for the functional analysis tool
FatiGO (23) to identify significantly overrepresented gene ontology (GO)
categories compared to all Mus musculus genes. Only GO terms having an
FDR-adjusted P value of �0.05 were considered significant.

Motif activity at direct and indirect targets of PGC-1�. To integrate
the information from the PGC-1� binding peaks, we extended motif ac-
tivity response analysis (MARA) (24) to model the direct and indirect
regulatory effects of PGC-1�. Given the input expression data and the
computationally predicted binding sites, MARA infers, for each of 190
regulatory motifs m, the activity Ams of the motif in each sample s when the
motif occurs outside a region of PGC-1� and the activities A*ms of the
motifs when they occur within a PGC-1� binding peak. That is, changes in
the motif activities Ams upon overexpression of PGC-1� indicate indirect
regulatory effects of PGC-1� on each motif m, whereas changes in the
motif activities A*ms reflect direct regulatory effects of PGC-1� as medi-
ated by each motif m. For each promoter p that was not associated with
any PGC-1� binding peak (which we designate indirect targets), we mod-
eled its log-expression in sample s, eps, in terms of the predicted number of
TFBSs Npm that occur in the proximal promoter region (running from
�500 to �500 relative to the TSS) for each regulatory motif m. That is,
MARA assumes the linear model

eps � cp � c̃s � �m NpmAms

where cp is the basal expression of promoter p, c̃s is a sample-dependent
normalization constant, and Ams is the regulatory activity of motif m in
sample s, which is inferred by the model. Formally, Ams quantifies the
amount by which the expression of promoter p in sample s would be
reduced if a binding site for motif m were to be deleted from the promoter.

For each “direct target” promoter p that has an associated PGC-1�
binding peak, which we defined as promoters with a peak within 1 kb or
with a peak within 100 kb that was highly conserved according to the
PhastCons score of the region (25), we model its expression in terms of the
predicted TFBSs in the binding peak, i.e.,

eps � cp � c̃s � �m Npm
* Ams

*

where N*pm is the number of predicted TFBSs for motif m in the peak
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associated with promoter p and A*ms is the motif activity of regulator m in
sample s when this motif occurs in the context of PGC-1� binding. That is,
the inferred motif activities Ams quantify the activities of regulatory motifs
when they occur independently of PGC-1� binding, and the motif activ-
ities A*ms quantify the activities of motifs when they occur in a PGC-1�
binding peak, i.e., the latter activities reflect direct effects of a PGC-1�
while the former activities reflect indirect effects.

MARA predicts activities for 190 different mammalian regulatory mo-
tifs, associated with roughly 350 mouse TFs. Besides motif activities,
MARA also calculates error bars �ms for each motif m in each sample s.
Using these, MARA calculates, for each motif m, an overall significance
measure for the variation in motif activities across the samples analogous
to a Z statistic:

zm ��1

S �
s�1

S �Ams


ms
�2

For each motif, we calculate both a Z score zm associated with its
indirect activity changes and a Z score z*m associated with its direct activity
changes. MARA also ranks the confidence on predicted target promoters
of each motif by a Bayesian procedure that quantifies the contribution of
that factor to explaining the promoter’s expression variation by a chi-
square value (for details, see reference 24). The parameters used for motif
stratification were (i) the Z score z*m for direct activity changes; (ii) the Z
score zm for indirect motif activity changes; (iii) the Z score z�*m for direct
motif activity changes, computed by averaging the sample replicates; and
(iv) the Z score z�m for indirect motif activity changes, computed by aver-
aging the sample replicates. The latter two measures were used to show
which in direction the motif activity changes when overexpressing
PGC-1� with respect to the control condition. All motifs m for which
either the direct or indirect motif activities were changing significantly
(z � 2) were subsequently selected.

De novo motif finding. PhyloGibbs (26) was used to identify de novo
motifs across the 200 top enriched PGC-1� peaks. The parameters used
were -D 1 -z 1 -y 200 -m 10, corresponding to searching on multiple
alignments for a single motif of length 10 with a total of 200 sites. The
resulting motif was scanned for similarity to the other known motifs from
our data set using STAMP (27), with the following settings: Pearson cor-
relation coefficient for column comparison metric, Smith-Waterman for
the alignment method, and penalty of 0.5 and 0.25 for gap opening and
gap extension, respectively.

Real-time PCR and target gene validation. Putative target genes of
distinct transcription factor–PGC-1� combinations were chosen accord-
ing to three criteria: first, positive transcriptional regulation by PGC-1�
by more than 2-fold; second, presence of a PGC-1� binding peak within a
10-kb distance from the TSS; and third, prediction of targeting by MARA
with a positive chi-square score. The sequences of the primers used in
real-time PCR experiments are depicted in Table S1 in the supplemental
material. Relative mRNA was quantified by quantitative PCR (qPCR) on
a StepOnePlus system (Applied Biosystems) using Power SYBR green
PCR master mix (Applied Biosystems).

The values are presented as the mean 
 standard error of the mean
(SEM). Student’s t test was performed, and a P value of �0.05 was con-
sidered significant (*, P � 0.05; **, P � 0.01; ***, P � 0.001).

Animals. Mice were housed in a conventional facility with a 12-h
night/12-h day cycle with free access to chow diet pellet and water. For the
experiments, 22- to 23-week-old skeletal muscle-specific HSA-PGC-1�
knockout (MKO) male mice and 8-week-old PGC-1� muscle-specific
transgenic (TG) male mice were used as previously described (6–8). All
experiments were performed according to the criteria outlined for the care
and use of laboratory animals and with approval of the veterinary office of
the Basel canton and the Swiss authorities.

Treadmill running. Treadmill running was performed with the TG
mice on the Columbus Instruments motorized treadmill with an electric
shock grid. The mice were acclimatized to the treadmill and then allowed
to run till exhaustion. The running protocol is as follows: 10 m/min for 5

min with an increase of 2 m/min every 5 min until 26 m/min and an
inclination of 5 degrees. The speed of 26 m/min was kept until exhaustion
of the mice (7, 28, 29). Mice were killed and tissues were collected 3 h after
exercise.

RNA isolation of muscle tissue. Gastrocnemius and quadriceps were
used to isolate RNA by TRIzol according to the TRIzol reagent RNA
isolation protocol (Invitrogen).

Microarray data accession number. The Gene Expression Omnibus
(GEO) accession number for the ChIP-Seq and gene expression array data
reported in this paper is GSE51191.

RESULTS
Broad recruitment of PGC-1� to the mouse genome. PGC-1�-
dependent gene transcription has been studied in many different
experimental contexts. In isolation, gene expression arrays, how-
ever, are unable to distinguish direct from indirect targets or to
reveal the genomic sites where PGC-1� is recruited to enhancer
and promoter elements, i.e., by coactivating TFs that directly bind
to the DNA. Thus, we first performed chromatin immunoprecipi-
tation followed by deep sequencing (ChIP-Seq) of PGC-1� in
differentiated C2C12 mouse myotubes to identify the locations
where PGC-1� is bound to the genome. To identify genomic re-
gions that are significantly enriched in the ChIP, we slid a 200-bp
window across the genome comparing the local ChIP read density
with the read density from a background whole-cell extract sam-
ple. We selected all regions with a Z-statistic larger than 4.5 as
significantly enriched (FDR, 0.6%) (see Fig. S1A in the supple-
mental material). Using this stringent cutoff, we identified 7,512
binding regions for PGC-1� via interaction with a TF genome-
wide, which include binding regions in the promoters of known
PGC-1� target genes (Fig. 1A), such as medium-chain-specific
acyl coenzyme A (acyl-CoA) dehydrogenase (Acadm) and cyto-
chrome c (Cycs) (30, 31). The enrichment of immunoprecipitated
DNA fragments from the ChIP-Seq was validated for these and
other PGC-1� target genes by semiquantitative real-time PCR
(Fig. 1B). In absolute terms, the distribution of the ChIP-Seq
peaks revealed that PGC-1� is mostly recruited at distal sites from
the assigned targets and, to a lesser extent, to proximal regions of
the gene or within an intronic sequence (Fig. 1C). However, com-
pared to randomly selected DNA regions of equal size and num-
ber, PGC-1� binding peaks occur twice as often within 10 kb
upstream of the transcription start site (TSS).

In parallel to the ChIP-Seq experiment, we furthermore ana-
lyzed gene expression patterns in differentiated muscle cells both
under control conditions and under PGC-1� overexpression. Us-
ing a reference set of mouse promoters (19) and associating mi-
croarray probes with promoters by mapping to known tran-
scripts, we found 1,566 promoters (corresponding to 984 genes)
to be significantly upregulated (log2 fold change, �1; Z score, �3)
and 1,165 promoters (corresponding to 727 genes) to be signifi-
cantly downregulated (log2 fold change, ��1; Z score, ��3).
Thus, similarly to previous reports, PGC-1� induced and re-
pressed the transcription of almost the same number of genes,
respectively, indicating that the physiological function of PGC-1�
includes both the activation and the inhibition of substantial
numbers of genes.

To combine the DNA-binding results from the ChIP-Seq with
the data of the gene expression arrays, we then assigned ChIP-Seq
peaks to the closest promoter (and the associated gene) within a
maximum distance of 10 kb. In this way, about 30% of all peaks
(2,295 of 7,512) could be associated with a target promoter. In-

Transcriptional Network Regulation by PGC-1�

August 2014 Volume 34 Number 16 mcb.asm.org 2999

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51191
http://mcb.asm.org


FIG 1 Genome-wide DNA recruitment of PGC-1� in mouse muscle cells. (A) PGC-1� ChIP-Seq binding peaks (read densities) around the TSSs of the genes
Acadm and Cycs obtained from the UCSC Genome Browser. (B) Real-time PCR validation of the ChIP enrichment measured at the promoter of a set of PGC-1�
target genes. Bars represent fold enrichment over that of the Tbp intron; error bars represent SEMs. *, P � 0.05; **, P � 0.01; ***, P � 0.001. (C) Mapping
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versely, for about 35% of all significantly upregulated genes (341
of 984), a PGC-1� binding peak is found within 10 kb of the
promoter. Since some of the upregulated promoters may be reg-
ulated by more distal peaks, this is only a lower bound on the
fraction of genes that are directly regulated. In stark contrast, only
about 5% of all repressed genes harbor one or more PGC-1� DNA
recruitment peaks in their vicinity (36 of 727), compared with
95% indirectly downregulated PGC-1� target genes (691 genes)
(Fig. 1D). Moreover, the distribution of the distances between
PGC-1� peaks and their associated promoters revealed a tight
cluster of 532 peaks close to promoter regions for upregulated,
direct PGC-1� target genes (Fig. 1E), whereas the distribution of
the 43 peaks associated with downregulated genes was much
wider, raising the possibility that the association of peaks with
transcriptionally repressed genes was spurious (Fig. 1F). In sum-
mary, the strong enrichment of binding peaks near upregulated
genes and the almost complete absence of binding peaks near
downregulated genes suggest that direct regulation of transcrip-
tion by PGC-1� is almost exclusively activating. We note that
there is a large fraction of binding peaks (75%) that are associated
with target genes that do not significantly alter their expression.
These peaks may have been wrongly assigned, their functionality
may be dependent on additional factors not active in these cells, or
they may simply be spurious binding events that are not func-
tional.

We next used this stratification of peaks and genes to study
whether direct (i.e., with an associated binding peak) and indirect
PGC-1� target genes exert different biological functions and iden-
tified gene ontology (GO) terms that were overrepresented in any
of the four categories. First, we observed that the most signifi-
cantly enriched functional categories for directly and indirectly
upregulated genes were those related to mitochondria, oxidative
phosphorylation, and energy production (Fig. 1G; see also Fig.
S1B in the supplemental material). In contrast, GO analysis of
indirectly downregulated PGC-1� target genes revealed a high
prevalence of terms related to inflammation and immune re-
sponse (Fig. 1H; see also Fig. S1C). Assuming that the assignment
of peaks to repressed genes is not spurious, the few directly re-
pressed PGC-1� targets exhibit an enrichment in functions re-
lated to muscle contraction, in particular for genes that are linked
to contractile and metabolic properties of glycolytic, fast-twitch
muscle fibers (Fig. 1H; see also Fig. S1D), as would be expected
from the observed shift from glycolytic to oxidative fibers medi-
ated by PGC-1� in muscle (6).

Modeling the direct and indirect gene regulatory effects of
PGC-1�. As a next step, we rigorously modeled the effects of
PGC-1� on its target genes in terms of the occurrence of TFBSs for
a large collection of mammalian regulatory motifs. We previously
introduced a general framework, called motif activity response
analysis (MARA) (24), for modeling the gene expression profiles
as a linear function of the TFBSs occurring in the promoters and
unknown regulatory “activities” of each of the regulators. As de-

tailed in Materials and Methods, we here extended MARA to in-
corporate information from the PGC-1� ChIP-Seq data, with the
aim of identifying which other TFs are involved in mediating both
the direct and indirect regulatory effects of PGC-1�. Specifically,
for all “direct target” promoters that were associated with a
PGC-1� binding peak, we modeled the expression of the pro-
moter in terms of the predicted TFBSs in the neighborhood of the
binding peak, while for “indirect target” promoters, we modeled
the promoter’s expression in terms of the predicted TFBSs in the
proximal promoter region, according to the conventional MARA
approach (Fig. 2A and B).

First, further supporting our analysis above, direct target pro-
moters were almost exclusively upregulated and only in a few ex-
ceptional cases reached statistical significance for PGC-1�-re-
pressed transcripts (Fig. 2C). Among the direct motif activities,
the ESRRA position weight matrix was the top-ranking motif with
a Z score of 6.04 (see Fig. S2 in the supplemental material). The
corresponding TF estrogen-related receptor � (ERR�), an orphan
nuclear receptor, has been extensively studied as a central binding
partner for PGC-1� in the regulation of mitochondrial gene ex-
pression (30–32). To stratify the different motifs according to
their predicted functions, we then divided all motifs into groups
according to the behavior of both their direct and indirect activity
changes. Strikingly, all motifs exhibited one of only four different
motif activity patterns. First, 6 TFs (see Fig. S2) were predicted to
positively regulate PGC-1� target genes only in the presence of
PGC-1� (Fig. 2D). Second, we found 6 motifs (see Fig. S2) with
significantly upregulated direct and indirect motif activities upon
PGC-1� overexpression (Fig. 2E). To our surprise, ERR� was pre-
dicted to regulate PGC-1� target genes in this manner, even
though in previous reports gene regulation by ERR� in the con-
text of activated PGC-1� was suggested to be dependent on
PGC-1� coactivation (30–32). Third, we found 13 motifs (see Fig.
S2) that were predicted to regulate PGC-1� target genes but, how-
ever, only in the absence of PGC-1� (Fig. 2F). Fourth, there was a
group of 28 motifs (see Fig. S2) that showed a significant decrease
of indirect motif activity upon PGC-1� overexpression, but no
significant change of their direct motif activity, including NF-�B
(Fig. 2G), a central regulator of inflammation which is indirectly
repressed by PGC-1� (33). Intriguingly, however, no motif was
found that showed significant direct repression of target genes,
reinforcing the hypothesis that PGC-1�-dependent gene repres-
sion is an indirect event.

Nuclear receptors and activator protein-1-like leucine zipper
proteins are the main functional partners of PGC-1� in muscle
cells. As a next step, we analyzed the occurrence of TF DNA-
binding motifs in the PGC-1� peaks identified by ChIP-Seq. We
first performed de novo motif prediction on the top 200 peaks,
using PhyloGibbs (26). As shown in Fig. 3A, the motif that
PhyloGibbs identified matches significantly (E value 	 7.7834e�10,
as calculated by STAMP [27]) the canonical ESRRA motif. In ad-
dition to the de novo prediction, we also used the same collection

ChIP-Seq PGC-1� peaks across the genome. Transcription start site (TSS) and transcription end site (TES) are relative to mm9 RefSeq transcripts. “Intergenic,”
�10 kb from the nearest transcript; “Upstream of TSS,” kb �10 to 0 relative to the TSS; “Downstream of TES,” kb 0 to �10 relative to the TES. Numbers in
parentheses indicate, for each category, the ratio between the percentage of PGC-1� peaks and the percentage of the same number of randomly distributed peaks.
(D) Histogram illustrating the number of direct and indirect genes either up- or downregulated by overexpression of PGC-1� in muscle cells. Direct genes are
those associated with promoters found within 
10 kb relative to the nearest peak. (E) Distribution of the distances of 532 peaks from their associated upregulated
gene promoters. (F) Distribution of the distances of 43 peaks from their associated downregulated gene promoters. (G and H) Subset of the top significantly
enriched GO Biological Process terms identified for directly and indirectly upregulated (G) and downregulated (H) PGC-1� target genes.

Transcriptional Network Regulation by PGC-1�

August 2014 Volume 34 Number 16 mcb.asm.org 3001

http://mcb.asm.org


of 190 mammalian regulatory motifs used by MARA (19) to check
which known TF DNA-binding motifs were significantly overrep-
resented in the PGC-1� peaks relative to a set of background re-
gions. Many of the most significantly enriched motifs represent
variations of nuclear receptor binding sequences that are based on
the “AGT/GTCA” core hexamer and occur either alone or in direct,
inverted, or everted repeats with variable spacing (Fig. 3B). Of
these, the most significantly enriched motif was ESRRA, which is
present in �20% of all peaks. Moreover, among all genes with at
least one associated binding peak within 10 kb, �28% are associ-
ated with a peak containing a predicted ERR� site. Interestingly,
besides the nuclear receptor motifs, we also found the DNA-bind-
ing element of the insulator protein CCCTC-binding factor
(CTCF), and a set of highly similar DNA elements sharing the
FOS-JUN-like recognition sequence “TGA(G/C)TCA” was
bound by the TFs BACH2, FOS, FOSB, FOSL1, JUN, JUNB,
JUND, FOSL2, NFE2, and NFE2L2 among the top 15 motifs en-
riched in PGC-1� peaks (Fig. 3B).

The identity of the exact nuclear receptor binding partner that
is bound at each peak is difficult to deduce from DNA-binding
motifs, since considerable promiscuity exists between receptors
and DNA-binding elements in different configurations of hexam-
eric repeats (34). Moreover, non-nuclear receptor-like TFs are less
well studied in the context of PGC-1�-controlled gene expression.
Thus, to identify which regulatory motifs are most overrepre-
sented among peaks that do not contain nuclear receptor-like
sites, we first manually grouped all of the motifs with a sequence

logo very similar to that of ESRRA. Next, we discarded all peaks
that had one or more predicted TFBSs for any of the motifs in this
set. With the remaining 3,856 DNA sequences (51.33% of the peaks),
we then again assessed the overrepresentation of each of the 190
mammalian regulatory motifs. In this analysis, “TGA(G/C)TCA”
recognition elements, hence, FOS-JUN-like motifs, were the most
significantly enriched among these peaks (Fig. 3C). This result
suggests that PGC-1� peaks naturally fall into two classes: those
containing ESRRA-like sites and those containing sites for FOS-
JUN-like motifs.

We then constructed a matrix N, whose elements Npm contain
the number of predicted TFBSs for each motif m in each peak
region p. We then performed principal component analysis (PCA)
on this site-count matrix to identify linear combinations of regu-
latory motifs that explain most of the variation in site-counts
across the PGC-1� peaks. The first two components (out of 190 in
total) clearly proved to be the most relevant ones, accounting for
10% and 9.6% of the total variation in our data set, respectively
(Fig. 3D). Figure 3E shows the projection of all motifs on these
first two principal components, with the names of the motifs with
the largest projections indicated in the figure. Whereas most mo-
tifs have projections close to zero along the first component, there
is one group of motifs with strong negative projections (ESRRA,
NR1H4, NR5A1,2, and NR6A1) and one group of motifs with
strong positive projections [BACH2, FOS_FOS(B,L1)_JUN(B,D),
FOSL2, NFE2, NFE2L1, and NFE2L2]. These two sets of sites cor-
respond precisely to the two classes of motifs identified above,

FIG 2 Four distinct mechanistic modes of action for gene expression regulated by PGC-1� and TF partners. (A) Classification of direct and indirect target genes
in MARA (see Materials and Methods). (B) Distribution of peak distance from the closest promoter and PhastCons conservation score of the peak. (C)
Distribution of log2 expression values for all mouse promoters. Expression values were averaged across the 3 GFP and the 3 PGC-1� samples. Direct targets are
depicted in red; indirect targets are depicted in gray. (D to G) Activity plot of the motifs ELF1,2,4 (D), ESRRA (E), REST (F), and NFKB1_REL_RELA (G) as
predicted by MARA (motif activity response analysis). Red, direct targets; green, indirect targets.
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FIG 3 PCA reveals FOS-JUN-like leucine zippers as a new class of putative functional PGC-1� partners. (A) Sequence logo of the top position weight matrix
discovered de novo by PhyloGibbs in the top 200 scoring peaks and of the corresponding canonical motif of ERR� as predicted by STAMP. (B) Top-scoring results
of motif search performed on all 7,512 PGC-1� peaks with MotEvo. Motifs depicted in red and blue correspond to the clusters identified by PCA in panel D. (C)
Top-scoring results of motif search performed on the 3,656 “non-ESRRA-like” peaks with MotEvo. (D) Fraction of explained variance of the top 10 PCA
components. (E) PCA of the 7,512 PGC-1� peaks. Eigenmotif scores across principal component 1 (PC1) and principal component 2 (PC2) are shown. Red and
blue ellipses highlight motif clusters, as identified by PC1, of nuclear hormone receptor-like zinc finger and FOS-JUN-like leucine zipper proteins, respectively.
(F) Correlation between principal component 2 scores and binding site posterior sum for each peak relative to the top 10 PCA motifs. “r” refers to the Pearson
correlation coefficient.
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confirming that the most significant variation in TFBSs across
PGC-1� peaks is caused by the occurrence of either ESRRA-like
motifs or FOS-JUN-like motifs. Most interestingly, these two
clusters of motifs reflect structurally distinct classes of TFs; the
negatively scoring eigenmotifs are characterized by binding of nu-
clear receptor-type zinc finger domains, while the eigenmotifs
with a positive score correspond to activator protein 1 (AP-1)-like
leucine zipper domains.

The second principal component corresponds to the strength
of the binding signal for these 10 motifs, as confirmed by the
robust negative correlation (r 	 �0.92) between the TFBS poste-
rior sum per peak and the peak’s projection along the second
principal component (Fig. 3F).

Validation of top-scoring motifs reveals novel functional
partners of PGC-1�. Our analysis identified a number of so-far-
uncharacterized TFs as potentially functional partners for PGC-
1�-controlled gene expression in skeletal muscle cells. In order to
experimentally validate some of these candidates, we sorted all TFs
by a number of criteria, including TFBS overrepresentation in
binding peaks, MARA activity upon PGC-1� overexpression, and
the expression pattern of the TFs themselves. Table 1 shows the
top 15 ranked TFs according to this selection. As expected, the
well-known PGC-1� partner ERR� was identified as the most
important factor. For our validation experiments, we chose the
next two motifs [FOS_FOS(B,L1)_JUN(B,D) and ZNF143,
which is also known as ZFP143] as well as three motifs from
further down the list of the top 15 motifs (GTF2I, NFE2L2, and
NFYC).

FOS, the most upregulated TF (log2 fold change 	 1.78) among
the TFs associated with the motif FOS_FOS(B,L1)_JUN(B,D), is a
basic leucine zipper transcription factor known to heterodimerize
with other leucine zipper proteins in order to form the AP-1 com-

plex (35). The AP-1 complex furthermore contains JUN as well as
ATF proteins. Thus, to dissect the function of the AP-1 protein
complex, we also included JUN and ATF3, the most highly ex-
pressed isoforms of their respective protein families in muscle
cells.

For each of these 7 TFs (ATF3, FOS, GTF2I, JUN, NFE2L2,
NFYC, and ZFP143), we selected a dozen target genes based on the
chi-square score of the MARA prediction, the presence of a
PGC-1� binding peak with at least one predicted binding site for
the factor of interest, and the presence of at least a 2-fold induction
upon overexpression of PGC-1�. As summarized in Fig. 4 and Fig.
S3 in the supplemental material, siRNA-based knockdown of all
TFs resulted in a robust reduction of the target mRNAs from
�40% to �75%. With the exception of NFYC and JUN, we found
that the large majority of predicted target genes were downregu-
lated upon knockdown of the factor, confirming our predictions
(Fig. 4). The most consistent effects were observed for FOS and
ZFP143 (all targets downregulated), followed by GTF2I (11 out of
12 downregulated) and NFE2L2 and ATF3 (10 out of 12 down-
regulated). Interestingly, distinct target genes of the AP-1 complex
showed differential responsiveness to knockdown of the three
AP-1 complex components FOS, JUN, and ATF3 (Fig. 4B, C,
and D). Similarly, PGC-1�-mediated induction of a majority
of the predicted target genes for NFE2L2 (Fig. 4E), ZFP143
(Fig. 4F), and GTF2I (Fig. 4G) was reduced upon knockdown
of the respective TF compared to the expression in cells with
overexpressed PGC-1� and a scrambled siRNA control. Sur-
prisingly, only 1 of the 11 predicted target genes for NFYC that have
been chosen for validation was significantly repressed by siRNA-in-
duced reduction of this TF (Fig. 4H), suggesting that other TFs may
be involved in mediating the regulatory effects of the NFYC regula-
tory motif.

TABLE 1 Global summary of all analyses performed on PGC-1� peaksf

Motif name PCAa

Overrepresentation inb: MARA activity Z scorec

Log2 FC in
expression
arrayd

Absolute expression
in PGC-1� samplee

Final
ranking

All PGC-1�
peaks

“Non ESRRA-like”
peaks Direct Indirect

ESRRA Yes 1 182 6.04 (14.78) 15.49 (37.94) 2.31 1,829.45 6
FOS_FOS(B,L1)_JUN(B,D) Yes 5 2 0.88 (2.14) 1.81 (�4.34) 1.78 1,508.85 5
ZNF143 27 28 2.48 (6.05) 4.65 (9.68) 0.38 384.36 5
BPTF 21 12 1.38 (3.37) 2.56 (�6.25) �0.56 333.34 4
ESR1 17 50 2.33 (5.69) 4.53 (11.04) �0.47 232.42 4
FOSL2 Yes 6 3 0.88 (2.14) 1.51 (3.65) �0.98 717.09 4
GTF2I 34 13 2.09 (5.10) 2.38 (�5.80) �0.55 1,207.81 4
NFE2L2 Yes 8 5 0.57 (1.38) 1.01 (�2.37) �0.38 3,673.63 4
NFY(A,B,C) 96 116 2.37 (5.80) 3.56 (7.62) 1.07 2,409.48 4
NR5A1,2 Yes 3 188 3.53 (8.66) 7.73 (17.00) �0.08 80.97 4
REST 12 6 0.48 (1.15) 2.41 (5.70) �0.89 328.04 4
RREB1 15 10 1.56 (3.82) 2.39 (�5.42) 0.05 678.44 4
SP1 24 22 3.99 (9.76) 0.61 (0.33) �0.32 751.98 4
STAT2,4,6 29 23 0.35 (0.52) 4.81 (�9.67) �2.72 380.12 4
TLX1.3_NFIC (dimer) 19 17 0.84 (�2.05) 4.91 (�11.97) �0.34 2,339.33 4
a Requirement for PCA: being among the top 10 motifs contributing most to PC1 and PC2.
b Requirement for motif overrepresentation: being among the top 30 significant motifs; ranking position shown.
c Requirement for MARA: having a Z score of �2.0. Numbers in parentheses show the difference between the PGC-1� state and the GFP state, representing the direction in which
the motif activity changes following PGC-1� overexpression.
d Requirement for the expression array (i): having a log2 fold change value of �1.0 (corresponding to 2-fold upregulation).
e Requirement for the expression array (ii): having an absolute expression in the PGC-1� sample of �100.
f The final score is the count of all analyses where a certain motif passed the defined cutoffs. The motifs chosen for validation and their corresponding values which satisfied the
cutoffs are shown in bold.
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Functional interaction between PGC-1� and different com-
positions of the AP-1 protein complex. Our targeted validation
strategy revealed that PGC-1� target genes predicted to be regu-
lated by the FOS-JUN-like motif react in distinct manners to

siRNA-mediated knockdown of individual components of the
AP-1 transcription factor protein complex. For example, some
genes reacted only to reduction of FOS (Fig. 5A), while others
were responsive to the knockdown of two (Fig. 5B) or even all

FIG 4 Validation of TFs associated with top-scoring motifs reveals novel functional PGC-1� partners. (A) siRNA-mediated knockdown efficiency for FOS. Bars
represent fold induction over GFP/siCtrl value; error bars represent SEMs. *, P � 0.05; **, P � 0.01; ***, P � 0.001. See also Fig. S3 in the supplemental material.
(B to H) Quantitative real-time PCR analysis of PGC-1� target genes whose associated peak contains at least one binding site for the motif
FOS_FOS(B,L1)_JUN(B,D) (B to D), NFE2L2 (E), ZNF143, also known as ZFP143 (F), GTF2I (G), or NFY(A,B,C) (H). Bars represent % change compared to
PGC-1�/siCtrl values. Error bars represent SEMs. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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three (Fig. 5C) AP-1 protein partners that we have tested using the
siRNA-based approach. To further dissect the responsiveness of
PGC-1� target genes to different AP-1 protein complexes, we per-
formed global gene expression arrays upon knockdown of each of
the three TF components of the AP-1 complex. Figure 5D depicts
the number of genes that were induced by PGC-1� and that were,
at the same time, downregulated by the siRNA knockdown of any
of the three AP-1 complex members. Among a total of 477 genes,
89% responded to FOS knockdown, 52% to ATF3 knockdown,
and 31% to JUN knockdown. Moreover, while 37% of all targets
responded exclusively to FOS, the fraction of targets respond-
ing exclusively to either JUN or ATF3 was at most 5%. This
analysis shows that, whereas different target genes respond dif-
ferently to the knockdown of distinct AP-1 components, FOS is
the dominant factor in determining AP-1 function under these
conditions.

As shown in Fig. 3B, 341 genes were associated with a PGC-1�
binding peak containing a predicted site for the FOS-JUN-like
motif bound by the AP-1 complex. Of these genes, the expression
of 55 was significantly induced by PGC-1� overexpression in
muscle cells. In our siRNA-based validation experiment, we found
that 47 out of these 55 PGC-1�-induced/AP-1 predicted targets
were significantly downregulated by knockdown of the AP-1 com-
plex components, and we called these genes “direct PGC-1�/AP-1
targets.” The remaining 430 genes out of 477 (Fig. 5D) were de-
fined accordingly as “indirect PGC-1�/AP-1 targets” that lack a
PGC-1� peak containing a FOS-JUN-like motif but still are regu-
lated by PGC-1� and the AP-1 protein components (Fig. 5E). To
reveal whether these gene categories exert distinct functions, GO
and KEGG enrichment analyses were performed. Surprisingly, the
47 direct PGC-1�/AP-1 target genes showed a distinct and signif-
icant overrepresentation of the terms “response to hypoxia” (GO
ID, 0001666; adjusted P value, 0.0247542) and “mTOR signaling
pathway” (KEGG ID, mmu04150; adjusted P value, 0.030674)
that were absent in the GO analysis of the remaining PGC-1�/
AP-1 targets (Fig. 5F). Recruitment of FOS to the same regulatory
regions as PGC-1� in the direct AP-1/PGC-1� target genes was
subsequently validated by ChIP (Fig. 5G). These results suggest
that AP-1, when interacting with PGC-1�, drives a synergic effect
of response to hypoxia; on the other hand, when AP-1 and
PGC-1� act separately and, furthermore, through downstream
intermediate TFs, they regulate the expression of genes involved in
mitochondrial organization and energy metabolism.

Intriguingly, several of the predicted AP-1/PGC-1� target
genes are also under the control of PGC-1� working with other

transcription factors. For example, the vascular endothelial
growth factor (VEGF) or, based on the gene expression arrays, 8
OXPHOS genes seem likewise to be under the control of AP-1 as
well as ERR� in the context of elevated PGC-1� in skeletal muscle
(31, 36). We therefore assessed the predicted and experimental
overlap of these two transcription factors in the regulation of AP-
1/PGC-1� target genes. Interestingly, when the PCA of the
PGC-1� peaks was stratified in terms of eigenpeaks, we observed
two distinct groups of peaks associated with AP-1/PGC-1� target
genes (Fig. 5H). First, some of these genes exclusively harbored
peaks with FOS-JUN-like TFBSs, whereas the second group ex-
hibited either peaks with both FOS-JUN- and ESRRA-like TFBSs
or a combination of distinct peaks with either of these sites within
10 kb from their promoters (Fig. 5H). Next, we validated this
prediction by investigating the change in expression of different
AP-1/PGC-1� target genes in the context of reduced ERR� ex-
pression and function, elicited by a combination of shRNA-me-
diated knockdown and pharmacological treatment of muscle cells
with the ERR� inverse agonist XCT-790 (31). In line with the
PCA, two distinct groups of ERR� inhibition-sensitive (Fig. 5I to
K) and -insensitive (Fig. 5L to N) AP-1/PGC-1� target genes were
found.

Finally, since all of the experiments were performed in differ-
entiated myotubes in culture, we assessed whether similar gene
expression changes of the direct AP-1/PGC-1� targets involved in
hypoxic gene regulation are also observed in skeletal muscle tissue
of different gain-of-function (6) and loss-of-function (7, 8)
mouse models in vivo. In skeletal muscle-specific PGC-1� knock-
out mice, the expression of several of these genes was reduced
significantly (Fig. 6A to F). Surprisingly, however, some of the
predicted transcripts were not altered in this loss-of-function
model for PGC-1�, for example, Nr0b2 (Fig. 6E). To further clar-
ify the role of PGC-1� in the regulation of these genes, relative
transcript levels were next assessed in muscle-specific transgenic
mice for PGC-1� (Fig. 6G to L). In most cases, the genes with a
reduction in their transcription in the PGC-1� muscle-specific
knockout animals were inversely elevated in the PGC-1� muscle-
specific transgenic mice. Moreover, some of these genes were like-
wise induced by exercise (Fig. 6G to L), and at least in some cases,
for example, Twf2 and Nr0b2 (Fig. 6J and K), PGC-1� overex-
pression and physical activity synergistically boosted gene expres-
sion; for Nr0b2, this occurred even in the absence of any effect of
the muscle-specific PGC-1� transgene per se (Fig. 6K).

FIG 5 PGC-1� controls the hypoxia gene program via a functional interaction with different configurations of the AP-1 protein complex. (A to C) Quantitative
real-time PCR analysis of Cdk15 (A), Nppb (B), and Slc6a19 (C) mRNA levels in response to PGC-1� overexpression and either siFos, siJun, or siAtf3 knockdown.
Data are normalized to mRNA levels in GFP adenovirus-infected cells. Error bars represent 
SEMs. *, P � 0.05; **, P � 0.01; ***, P � 0.001. (D) Venn diagram
illustrating the overlap in number of genes upregulated by PGC-1� and downregulated by either FOS, JUN, or ATF3 knockdown. (E) Histogram illustrating the
number of direct and indirect PGC-1�/AP-1 target genes. (F) Subset of the top significantly enriched Gene Ontology and KEGG terms identified for the two gene
groups illustrated in panel E. TCA, tricarboxylic acid. (G) Quantitative real-time PCR validation of the ChIP enrichment of c-Fos measured at the gene TGF�1
(validated) and at the promoters of Nr0b2, Gprc5a, and Dbt (predicted) target genes. Bars represent fold enrichment over PGC-1� exon 2 set as 1. Error bars
represent SEMs. *, P � 0.05; **, P � 0.01; ***, P � 0.001. (H) PCA of the 7,512 PGC-1� peaks. Eigenpeak scores across principal component 1 and principal
component 2 are shown. Colored dots correspond to peaks associated to the 47 direct PGC-1�/AP-1 targets. Blue dots refer to genes associated with peaks
containing only FOS-JUN TFBSs, while red dots refer to genes associated with peaks with FOS-JUN and ESRRA TFBSs, located either in the same peak or in
distinct PGC-1� peaks. (I to K) Quantitative real-time PCR analysis of PGC-1�/AP-1 targets whose associated peaks contain an ESRRA binding site. The bars
represent relative mRNA levels compared to AV-shGFP plus AV-GFP plus vehicle, which is set as 1. The error bars represent SEMs. *, P � 0.05; **, P � 0.01; ***,
P � 0.001. (L to N) Quantitative real-time PCR analysis of PGC-1�/AP-1 targets whose associated peaks (if any) do not contain an ESRRA binding site. The bars
represent relative mRNA levels compared to AV-shGFP plus AV-GFP plus vehicle, which is set as 1. The error bars represent SEMs. *, P � 0.05; **, P � 0.01; ***,
P � 0.001.

Transcriptional Network Regulation by PGC-1�

August 2014 Volume 34 Number 16 mcb.asm.org 3007

http://mcb.asm.org


Baresic et al.

3008 mcb.asm.org Molecular and Cellular Biology

http://mcb.asm.org


DISCUSSION

Exercise-induced skeletal muscle cell plasticity is a highly complex
biological program that involves the remodeling of a number of
fundamental cellular properties. Since PGC-1� function has been
strongly linked to the induction of an endurance-trained muscle
phenotype, we here dissected the PGC-1�-controlled transcrip-
tional network in muscle cells. First, our results reveal a broad
recruitment of PGC-1� to many different sites in the mouse ge-
nome (7,512 peaks), the majority of which were either not located
within 10 kb from a promoter or close to a gene that was not
regulated by PGC-1� overexpression at the time of harvest of the
cells, as has analogously been observed in many other ChIP-Seq
experiments (for example, see reference 37). Apart from the fact
that PGC-1� could mediate long-range enhancer effects that were
excluded in our peak-gene assignment, it is conceivable that
PGC-1� recruitment is transcriptionally silent in some binding
peaks because it requires the recruitment of additional cofactors
for activation, which are not present under the conditions or in the
cell type in which our experiments were performed. In addition, it
is possible that a large fraction of PGC-1� binding peaks are “neu-
tral” in the sense of not having any direct role in regulating gene
expression.

Second, while an almost equally strong effect of PGC-1� on
gene induction and repression has been reported (31), our analy-
sis now indicates that direct PGC-1�-mediated gene expression is
restricted almost exclusively to positively regulated PGC-1� target
genes, whereas the vast majority of gene repression is indirect, i.e.,
not associated with PGC-1� recruitment within a 10-kb distance
to the genes’ promoters. Thus, the fact that almost 95% of all
repressed genes were not linked to PGC-1� recruitment strongly
implies that this coregulator primarily acts as a coactivator, and
not as a corepressor, as suggested by the data of some studies
(38–40). Importantly, indirect repression of PGC-1� target genes
was also supported by the MARA prediction. The strong indirect
inhibition of genes, many of which are involved in inflammatory
processes, is predicted by MARA to be mediated by TFs such as
NF-�B and interferon regulatory factor (IRF). Such an indirect
inhibition of NF-�B and proinflammatory genes by PGC-1� in
muscle cells has been reported previously (33).

One of the main functions of PGC-1� in all cells and organs is
to boost mitochondrial gene transcription and oxidative metabo-
lism. Accordingly, we observed that Gene Ontology terms related
to these pathways were highly enriched when analyzing positively
regulated PGC-1� target genes in muscle cells. Based on previous
studies, the regulation of this core function could have been as-
signed to the direct interaction of PGC-1� and ERR� binding to
regulatory elements of these genes (31, 32). Surprisingly, our data
indicate that many of the genes that are involved in oxidative
metabolic pathways are indirectly controlled by PGC-1� and,
hence, do not require PGC-1� recruitment to enhancer and pro-
moter elements. Likewise unexpectedly, the MARA implies ERR�
action on direct and indirect PGC-1�-induced target genes, i.e., in

the presence or absence of PGC-1� coactivation. Thus, while these
observations might obviously reflect a temporally distinct control
of different PGC-1� target genes that is not represented in our
simultaneous analysis of DNA binding and gene expression at one
time point, it is conceivable that PGC-1� acts primarily as an
upstream regulator of other factors that are subsequently control-
ling more downstream PGC-1� target genes without direct in-
volvement of PGC-1� itself.

In skeletal muscle, PGC-1� has been reported to interact with
ERRs, peroxisome proliferator-activated receptors (PPARs), and
other nuclear receptors, as well as myocyte enhancer and nuclear
respiratory factors, to mediate transcriptional regulation (3). Ac-
cordingly, ERR� and other nuclear receptor binding motifs were
among the most highly significant binding elements in our present
report. Importantly, however, we also predict a number of so-far
unknown TFs to functionally interact with PGC-1� and thereby
contribute to PGC-1�-controlled gene expression in skeletal mus-
cle. Since a complete functional validation of all new putative TF
partners is beyond the scope of this paper, we combined the high-
throughput results with several computational analyses (Table 1)
to select and test some of the potentially most important factors
together with predicted target genes. Notably, in siRNA-based
knockdown experiments, we could show that depletion of FOS
and its putative AP-1 multimerization partners JUN and ATF3 as
well as NFE2L2, ZFP143, and GTF2I in muscle cells reduced the
ability of PGC-1� to positively regulate target genes. Second, we
could provide evidence of a corecruitment of FOS and PGC-1� to
the same regulatory sites in the vicinity of AP-1/PGC-1� target
genes, confirming a functional interaction between these TFs and
PGC-1�. Thus, our results indicate that the coactivation reper-
toire of PGC-1� in muscle exceeds the prediction of previous
studies by far. For example, even in our list of the top 15 motifs,
several predicted TFs have not yet been investigated in the context
of PGC-1�-controlled gene expression, including BPTF, FOSL2,
REST, or RREB1. Future studies will aim at a more detailed dis-
section of the global functional consequences of PGC-1� coacti-
vation of these TFs in muscle cells.

Curiously, almost all of our analyses, and in particular the
principal component analysis, highlighted the relevance of FOS-
JUN-like motifs. In fact, the largest amount of variation in TFBS
occurrence within PGC-1� binding peaks results from either ES-
RRA-like or FOS-JUN-like motifs. The FOS-JUN-like motif, in
particular, embodies the main binding elements of the AP-1 com-
plex, which consist of different configurations of FOS, JUN, ATF,
and MAF proteins (35, 41). Our data comparing gene expression
in cells with reduced FOS, JUN, and ATF3 levels indicate that
PGC-1� functionally interacts with the AP-1 complex in different
configurations in the regulation of specific genes. The differential
requirement observed for distinct AP-1 components might pro-
vide an additional layer of control for specific PGC-1� target gene
regulation.

AP-1 function itself is regulated by a variety of stimuli, includ-

FIG 6 PGC-1� controls the hypoxic gene program in muscle in vivo. (A to F) Quantitative real-time PCR analysis of hypoxic genes in sedentary control (ctrl)
and muscle-specific knockout (MKO) mice. The control group is set as 1. Error bars represent SEMs. *, P � 0.05; **, P � 0.01; ***, P � 0.001. (G to L)
Quantitative real-time PCR analysis of hypoxic genes in treadmill-running mice. Control (ctrl) and muscle-specific transgenic (TG) mice were used under
sedentary and exercise conditions. The control group under sedentary conditions is set as 1. Error bars represent SEMs. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
(M) Schematic representation depicting the downstream effects of the functional interaction between PGC-1� and the AP-1 complex in the context of the
hypoxia gene program. Direct targets of PGC-1� and AP-1 are indicated in bold.

Transcriptional Network Regulation by PGC-1�

August 2014 Volume 34 Number 16 mcb.asm.org 3009

http://mcb.asm.org


ing cytokines, growth factors, and stress, and subsequently con-
trols a number of cellular processes, including apoptosis, cell pro-
liferation and differentiation, stress response, and hypoxia (41,
42). Mechanistically, we classified PGC-1�-induced/AP-1-knock-
down targets in either direct or indirect genes. Most interestingly,
functional analysis of these two groups of genes revealed that
when AP-1 and PGC-1� act disjointedly, they are involved in the
regulation of mitochondrial and other metabolic genes, while
when coactivated by PGC-1�, AP-1 distinctly alters the expression
of genes that are enriched in the ontology terms “response to
hypoxia” and “mTOR signaling” (Fig. 5F). Intriguingly, a closer
analysis of all 47 direct AP-1/PGC-1� target genes revealed 24
genes that are induced by hypoxia, are effectors of hypoxia, or
attenuate the detrimental consequences of hypoxia (Fig. 6M). For
example, several inhibitors of the mTOR signaling pathways are
included in this group of genes, and hypoxia has been described as
a suppressor of mTORC1 activity (43). Another group of genes
contributes to the reduction of cellular stress, detrimental metab-
olites, and reactive oxygen species and an increase in cellular sur-
vival to reduce potential harmful consequences of prolonged hyp-
oxia (44). Furthermore, several genes promote endothelial
regeneration, vascular remodeling, and vascularization (45). In
this context, PGC-1� has previously been shown to promote
VEGF-induced angiogenesis in skeletal muscle in a hypoxia-in-
ducible factor 1� (HIF-1�)-independent, ERR�-dependent man-
ner (36). Similarly, PGC-1� regulates the hypoxic response of
brown fat (46) and neuronal and endothelial cells (47), even
though the mechanisms of cellular protection exerted by PGC-1�
in these experimental contexts have not been elucidated. Our
findings now indicate that, to ensure adequate oxygen and nutri-
ent supplies for oxidative metabolism in skeletal muscle cells,
PGC-1� might coordinate metabolic needs through ERR�-in-
duced Vegf expression with a broad, stress-induced AP-1-depen-
dent hypoxia program. Such a functional convergence was found
for a subset of the direct AP-1/PGC-1� target genes that likewise
seem to be under the control of ERR� together with PGC-1� (Fig.
5H and I to K). Inversely, for the complementary subset of these
genes, the functional interaction between AP-1 and PGC-1�
seems distinct from the ERR�-dependent PGC-1� target gene
regulation. Finally, in vivo evidence supports our muscle cell cul-
ture-based prediction, considering that many of the AP-1/
PGC-1� hypoxia-related target genes exhibit reduced and ele-
vated transcript levels in PGC-1� muscle-specific knockout and
transgenic animals, respectively. As previously demonstrated for
VEGF and skeletal muscle vascularization (36), many aspects of
the phenotypic consequences of exercise-induced muscle hypoxia
occur in the muscle-specific transgenic mice even in the absence of
physical activity. In an extension of these studies, we now, how-
ever, found additional genes involved in this process that show an
additional, or in the case of Nr0b2, even an exclusive synergistic
activation by exercise in the PGC-1� transgenic animals. Thus,
combined with previous descriptions of muscle plasticity in these
mice postexercise in regard to insulin sensitivity (29), our present
findings reiterate the importance of bona fide exercise even in a
genetic model for endurance training such as the PGC-1� muscle-
specific transgenic animals.

In summary, our data provide a first insight into the transcrip-
tional network controlled by PGC-1� in muscle cells. While one
other study of global DNA recruitment of PGC-1� has been per-
formed in the human hepatoma cell line HepG2 (48), our results

highlight the importance of combining ChIP-Seq experiments
and transcriptional data together with a comprehensive compu-
tational modeling approach and experimental validation of pre-
dicted key regulators, in order to be able to discover mechanistic as
well as functional outcomes of such a network. Combined with
the knowledge of transcriptional regulation, posttranslational
modifications, alternative splicing, and recruitment of different
chromatin remodeling protein complexes, a scenario can thus be
conceived in which PGC-1� is able to control and integrate dif-
ferent signaling pathways using a multitude of different transcrip-
tion factor binding partners (10, 11). A better understanding of
such regulatory networks will eventually allow the targeting of
whole biological programs or specific submodules in pathological
states of dysregulation.
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