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The human gut microbiota plays a central role in human well-being and disease. In this study, we present an integrated, iterative
approach of computational modeling, in vitro experiments, metabolomics, and genomic analysis to accelerate the identification
of metabolic capabilities for poorly characterized (anaerobic) microorganisms. We demonstrate this approach for the beneficial
human gut microbe Faecalibacterium prausnitzii strain A2-165. We generated an automated draft reconstruction, which we cu-
rated against the limited biochemical data. This reconstruction modeling was used to develop in silico and in vitro a chemically
defined medium (CDM), which was validated experimentally. Subsequent metabolomic analysis of the spent medium for growth
on CDM was performed. We refined our metabolic reconstruction according to in vitro observed metabolite consumption and
secretion and propose improvements to the current genome annotation of F. prausnitzii A2-165. We then used the reconstruc-
tion to systematically characterize its metabolic properties. Novel carbon source utilization capabilities and inabilities were pre-
dicted based on metabolic modeling and validated experimentally. This study resulted in a functional metabolic map of F. praus-
nitzii, which is available for further applications. The presented workflow can be readily extended to other poorly characterized
and uncharacterized organisms to yield novel biochemical insights about the target organism.

The human gut microbiome is dominated by four phyla, the
Bacteroidetes and Firmicutes, which make up 90 to 99% of the

identified phylotypes in metagenomic analysis, as well as the Ac-
tinobacteria and the Proteobacteria (1), yet it contains an estimated
1,000 species (2). The Human Microbiome Project (3) catalog
currently contains over 700 reference genomes of human gut mi-
crobes, most of which are still biochemically uncharacterized.

Among firmicutes, F. prausnitzii is one of the most abundant
species in humans, accounting for around 8% of the total colonic
microbiota (4), and plays an important role in the healthy gut.
Indeed, F. prausnitzii was found to be underrepresented in the gut
microbiotas of patients with Crohn’s disease, active ulcerative
colitis, alternating-type irritable bowel syndrome (IBS-A) (5), and
diabetes type II (6, 7). One of its main fermentation products, the
short-chain fatty acid butyrate, serves as the main energy source
for colonocytes and has anti-inflammatory properties (8). F.
prausnitzii has been proposed as a potential probiotic for treat-
ment of gut inflammation, as the microbe stimulates the expres-
sion of the anti-inflammatory cytokine interleukin 10 (IL-10) in
peripheral blood mononuclear cells in vitro. Furthermore, cell su-
pernatants of F. prausnitzii culture reduced the secretion of pro-
inflammatory IL-8 and strongly inhibited NF-�B activation in
cancer cells (9). Butyrate alone did not provoke the observed in-
hibitory effect (9), demonstrating that F. prausnitzii likely secretes
an unknown anti-inflammatory metabolite apart from butyrate.

The fermentation pathways and butyrate-producing mecha-
nisms of F. prausnitzii are well described (10). Under in vitro con-
ditions, F. prausnitzii growth is strongly stimulated in the presence
of acetate (11). However, other metabolic pathways have been
comparatively poorly studied, and its growth requirements are
not known (12). F. prausnitzii is known to utilize a variety of
carbohydrates, including the prebiotic inulin, apple pectin, and
some host-derived carbon sources, such as D-glucosamine and
N-acetyl-D-glucosamine (11, 13, 14).

Genome-scale metabolic reconstructions (GENREs) are fre-
quently used in systems biology. These GENREs are generated in a
bottom-up manner and capture the genetic, genomic, and bio-
chemical traits of a given organism. The number of well-curated
GENREs is increasing steadily (15). Particularly well represented
are microbes colonizing the human body (16). GENREs have been
applied successfully to the elucidation of biochemical and meta-
bolic properties of a variety of microorganisms, including the
Fe(III) reducer Geobacter sulfurreducens (17), the photosynthetic
alga Chlamydomonas reinhardtii (18), and the human pathogen
Mycoplasma pneumoniae (19).

Another application of GENREs is the investigation of micro-
bial growth requirements and design of minimal media. For in-
stance, constraint-based modeling was used for minimal medium
design for the lactic acid bacterium Lactococcus lactis (20), for the
eukaryotic pathogen Leishmania major, for which improvements
to gene annotations were also proposed (21), and for the patho-
genic bacterium Neisseria meningitidis (22). However, the de-
scribed approaches targeted moderately well studied to well-stud-
ied organisms. For N. meningitidis, the amount of literature on
growth requirements is particularly high, which facilitated design
of a minimal medium (22). Developing minimal media for poorly
studied organisms remains challenging, as the predictive potential
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of a metabolic reconstruction depends on manual curation of the
draft reconstruction derived from genome annotation (23).

The aim of the present study was to combine state-of-the-art
computational and experimental techniques to elucidate meta-
bolic capabilities of F. prausnitzii type strain A2-165. We assem-
bled a highly curated and validated metabolic reconstruction from
the genome sequence, limited biochemical literature, in vitro cul-
ture, and metabolomic measurements. The reconstruction was
used to develop a chemically defined medium (CDM). During this
process, novel secretion products were discovered, leading to re-
finement of its genome annotation and metabolic reconstruction.
We then used the reconstruction to characterize the metabolic
properties of F. prausnitzii. Novel carbon sources were proposed
and validated in vitro. Finally, we propose a functional metabolic
map of this important beneficial gut microbe.

MATERIALS AND METHODS
Manual curation of Model SEED draft reconstruction. The Faecalibac-
terium prausnitzii A2-165 genome, consisting of 3,475 protein-coding
genes, was retrieved from the Integrated Microbial Genomes-Human Mi-
crobiome Project (24) website and imported into the RAST server (25). A
draft reconstruction of the microbe was retrieved from the Model SEED
pipeline, which is a web-based resource that constructs analysis-ready
genome-scale draft metabolic reconstructions based on the genome se-
quence (26). The draft reconstruction was exported in SBML format and
further analyzed using COBRA Toolbox (27) methods.

The content of the draft reconstruction was subsequently manually
inspected, curated, validated, and expanded based on a protocol for cura-
tion of automated models (26) and established methods in metabolic
network reconstruction (23). Similar to our previously described recon-
struction approach (28), we manually curated the Model SEED draft re-
construction based on literature and database mining. To streamline the
nomenclature used in the draft reconstruction, reaction and metabolite
names were translated to BiGG (29) standard identifiers. All reactions,
metabolites, and genes included in the draft reconstruction were subse-
quently inspected and evaluated manually. Reaction directionalities were
inspected, and appropriate directionality changes were made based on the
BiGG database (29). Gap filling of central pathways was performed and
species-specific pathways were filled in manually based on information
from the literature. Model predictions were evaluated based on published
experimental data. Carbon source utilization predicted by the model was
compared with experimental data (11, 13). Furthermore, it was ensured
that experimentally observed secretion products (11) could be produced
by the model. At this stage of the reconstruction process, the minimal
nutrient requirements of F. prausnitzii were predicted in silico (Fig. 2). A
minimal medium composition was defined based on computational pre-
dictions and tested experimentally (see the section on laboratory proce-
dures). Furthermore, experiments were performed to test carbon sources
for which no experimental data were yet published. Based on the results,
a final curation step was performed. The finished, manually curated
and validated reconstruction, accounting for 602 genes, was named
iFpraus_v1.0.

Figure 1 sums up the applied reconstruction curation and validation
pipeline. A detailed description of the manual curation and validation
process can be found in the supplemental material. Details on the biomass
reaction can also be found in the supplemental material. The content of
the final reconstruction iFpraus_v1.0 is presented in spreadsheet format
in Table S7 in the supplemental material and is available in SBML format
at http:/thielelab.eu.

Genomic analysis. Comparative genomic identification of transcrip-
tion factor binding sites and reconstruction of corresponding regulons
were performed according to the approach established previously (30),
implemented in the RegPredict Web server tool (31). Initial DNA binding
site profiles for previously described transcription factors were collected

from the RegPrecise database (32). RNA regulatory elements (ribo-
switches) were identified using the RibEx tool (33).

In silico growth simulations. Unless stated otherwise, for all simula-
tions with glucose as the carbon source, uptake of glucose was allowed at
a rate of 10 mmol g (dry weight)�1 h�1. The uptake rates of other carbon
sources were always scaled to the number of carbon atoms with glucose
(six carbons) as a reference, e.g., when the glucose uptake rate was 10
mmol g (dry weight)�1 h�1, the uptake rate for lactose (12 carbon atoms)
was 5 mmol g (dry weight)�1 h�1.

Gene essentiality in iFpraus_v1.0 was determined using methods im-
plemented in the COBRA Toolbox while simulating growth on glucose
minimal medium (see Table S8 in the supplemental material) and rich
medium, which consisted of all compounds the model is able to transport.
Genes whose deletion resulted in a growth rate of zero were considered
essential.

In silico carbon source utilization was tested by simulating minimal
medium (see Table S8 in the supplemental material) while omitting glu-
cose and adding the carbon sources one by one.

For simulated YCFAG10 and YCFAG(O2) media (i.e., medium con-
taining yeast extract, Casitone, and fatty acids and supplemented with 25
mM glucose, and the same medium used to determine oxic growth), glu-
cose uptake was allowed up to an uptake rate of 100 mmol g (dry
weight)�1 h�1, and oxygen uptake was allowed up to an uptake rate of 100
mmol g (dry weight)�1 h�1. Yeast extract was assumed to consist of all
metabolites included in the yeast reconstruction iMM904 (34) that could
also be transported by iFpraus_v0.2. Casitone was assumed to consist of
all 20 amino acids. Simulation constraints are listed in Table S9 in the
supplemental material.

Constraints used to simulate the expanded defined medium CDM2
are listed in Table S10 in the supplemental material.

Phenotypic phase plane analysis. Phenotypic phase plane analysis
was performed as described previously (35). Briefly, fluxes through two
exchange reactions representing metabolite uptake or secretion were fixed
at different intervals, while biomass production was set as the objective
function. For each step, the objective value and the shadow prices for all
metabolites in the model were computed and plotted as heat maps. The
analysis was performed while minimal medium was simulated (see Table
S8 in the supplemental material), with the exception that acetate and
carbon source exchange were varied.

Strain used for experimental culture. A stock of Faecalibacterium
prausnitzii A2-165 DSM 17677, isolated by S. H. Duncan (University of
Aberdeen, United Kingdom) was donated to and maintained by H. J. M.
Harmsen, Department of Medical Microbiology, University of Gro-
ningen, Groningen, The Netherlands.

Growth experiments. Faecalibacterium prausnitzii strain A2-165 was
grown under anaerobic conditions at 37°C on CDM1, CDM2, and
YCFAG medium (see the supplemental material). One or two colonies of
F. prausnitzii A2-165 grown on YCFAG agar were inoculated into the
respective growth medium. Carbon source utilizations were performed by
adding filter-sterilized carbon source solutions to YCFA medium. The
final concentration of carbon sources in the solution was 1 mg/ml.
Growth was confirmed by Gram staining as well as measuring acid pro-
duction. In both minimal medium and carbon source tests, a decrease in
pH value of �0.2 was considered indicative of growth.

Growth curve. A growth curve was plotted for F. prausnitzii A2-165
grown on CDM2. Each growth curve represented the average for three
biological replicates. Cell numbers were determined with fluorescence in
situ hybridization (FISH) for samples collected at 0 h, 4 h, 8 h, 12 h, 16 h,
20 h, and 24 h. The FISH was performed with the Cy3-labeled probe
Fprau645 (36) as described before (37).

Liquid chromatography-mass spectrometry (LC-MS). Samples for
mass spectrometry analysis were taken from the in vitro cultures grown in
CDM2 described above for the entire length of the experiment (before
inoculation and at 4, 8, 12, 16, 20, and 24 h). The results represented the
average of three biological replicates.
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An ultra-high-performance liquid chromatography (UPLC) system
(UPLC Acquity; Waters, Manchester, United Kingdom) coupled in line with
a quadrupole-time of flight hybrid mass spectrometer (Synapt G2; Waters,
Manchester, United Kingdom) was used for the analysis of small polar me-
tabolites in spent culture medium as previously reported (38). All materials
used in the LC-MS experiments were purchased from Sigma-Aldrich (Ger-
many). All chemicals and solvents were of analytical-grade or higher purity.

A one-way analysis of variance (ANOVA) was used to define measure-
ments presenting a significant change over time (P � 0.05 and P � 0.01).

Growth medium preparation. The composition of the initial minimal
medium, CDM1, was determined by assessing the minimal requirements of
the F. prausnitzii reconstruction after manual curation based on databases
and literature. To determine the composition of a chemically defined me-
dium allowing F. prausnitzii to grow, the initial minimal medium was en-
riched with additional vitamins, amino acids, and bases, resulting in CDM2.
CDM1 and CDM2 were prepared as follows: components (the composition is
presented in Tables S11 and S12 in the supplemental material) were added to
double-distilled H2O, the final pH value was set to 6.8, and the solutions were
filter sterilized. Cysteine (final concentration 1 mg/ml) was used as a reducing
agent, while resazurin was added as a redox indicator.

YCFAG medium was prepared as previously reported (11). Before
autoclaving, the pH value of the solution was set to 6.5. YCFA medium
consisted of the same components as YCFAG medium, except that glu-
cose was omitted, and was prepared in the same way.

RESULTS

We present an approach combining in silico and in vitro steps to
build a high-quality reconstruction of F. prausnitzii A2-165 and
gain insight into its metabolic potential. A schematic overview of
the workflow is presented in Fig. 1.

Generation of a curated draft metabolic reconstruction. A
draft metabolic reconstruction for any microbial organism with
sequence genome can be obtained using the web-based Model

SEED resource (26). While this resource greatly accelerates the
reconstruction process, substantial manual curation of its content
is required to ensure accordance between known biochemical and
physiological capabilities of the target organism and its in silico
representation.

The F. prausnitzii A2-165 genome, consisting of 3,475 protein-
coding genes, was obtained from the Integrated Microbial Ge-
nomes-Human Microbiome Project (24) and imported into the
RAST server (25). The resulting draft reconstruction, named
iFpraus_v0.1, was manually curated, which included inspection of
reaction directionalities and gap filling of central pathways and of
species-specific pathways based on biochemical information from
the available 23 primary research articles. Most importantly, it was
ensured that known secretion products (11) and carbon source
utilization capabilities (11, 13) were accurately represented. This
refined reconstruction was named iFpraus_v0.2 and consisted of
997 reactions across two compartments (extracellular space and
cytosol), 818 metabolites, and 585 genes (Table 1). The manual
validation and curation process is described in detail in the sup-
plemental material.

An established way of assessing the predictive potential of the
models derived from the metabolic reconstructions is the compar-
ison of in silico phenotypic traits with experimental data (23). To
determine the model’s ability to produce known secretion prod-
ucts, biomass production by iFpraus_v0.2 was simulated on
YCFAG medium using flux variability analysis. The model pre-
dicted that acetate was consumed and butyrate was produced to
achieve optimal growth. Formate and D-lactate were produced in
some alternate solutions (Table 2). The model thus captured pro-
duction of F. prausnitzii’s major secretion products (11). The cal-
culated growth rate was compared with experimental data col-

FIG 1 Schematic overview of the reconstruction assembly, curation, and val-
idation pipeline employed in this study.

TABLE 1 Comparison of automated (iFpraus_v0.1), curated
(iFpraus_v.02), and experimentally validated (iFpraus_v1.0) F.
prausnitzii A2-165 reconstruction

Feature iFpraus_v0.1 iFpraus_v0.2 iFpraus_v1.0

No. of:
Total reactions 820 997 1,030
Metabolic and transport

reactions
755 855 873

Exchange and demand
reactions

65 142 157

Gene-associated reactions 734 793 807
Compartment-specific

metabolites
874 818 833

Genes 598 585 602

% reversible reactions 62.80 39.22 39.13
% irreversible reactions 37.20 60.78 60.87

No. of:
Blocked reactions 649 220 222
Compartments 2 2 2
Usable carbohydrates as

sole carbon sources
3 17a 17a

Produced
published/measured
secretion products

1 11 17

Ability to produce biomass No Yes Yes
a See Table S1 in the supplemental material.
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lected for F. prausnitzii strain A2-165 grown experimentally in
rumen fluid-containing minimal medium with 0.2% glucose
(M2G medium) with and without acetate in medium (11).
Growth on rumen fluid was approximated by simulating YCFAG
medium, which consists of acetate, glucose, Casitone, yeast ex-
tract, cysteine, minerals, and vitamins. The predicted growth rate
was 0.29 h�1 with acetate in the medium and 0.24 h�1 without
acetate. The in vitro growth rate on rumen fluid-containing M2G
medium was 0.32 h�1 with acetate and 0.10 h�1 when acetate was
omitted (11). While one cannot directly compare in silico and in
vitro growth rates, as the medium conditions are different, the
model captures F. prausnitzii’s known trait that acetate supple-

mentation enhances growth (11). Similarly, qualitative carbon
source utilization capabilities predicted by the model were com-
pared with experimental data (11, 13) and found to be in agree-
ment (see Table S1 in the supplemental material).

Design of a chemically defined medium using an iterative
computational, in vitro, and metabolomics approach. F. praus-
nitzii A2-165 is routinely cultivated on YCFAG medium but fails
to grow when yeast extract is omitted from the growth medium.
Furthermore, the absence of acetate significantly retards growth
(11). Hitherto, growth requirements for specific vitamins, cofac-
tors, minerals, and amino acids have not been reported. The met-
abolic model (iFpraus_v0.2) predicted the inability of F. praus-
nitzii A2-165 to synthesize the amino acids alanine, cysteine,
methionine, serine, and tryptophan and the vitamin and cofactors
biotin, cobalamin, folic acid, hemin, nicotinic acid or nicotin-
amide, pantothenic acid, and riboflavin (see Table S2 in the sup-
plemental material). These in silico phenotypes were used to de-
fine in vitro a chemically defined medium (named CDM1);
however, F. prausnitzii A2-165 was unable to grow on it. CDM1
was supplemented with amino acids, nucleobases, and vitamins
(Fig. 2). This modified CDM1, named CDM2, did indeed support
the growth of F. prausnitzii in vitro. The experimentally deter-
mined growth rate was 0.13 h�1, compared to an in silico growth
rate of 0.26 h�1. An explanation of the higher in silico growth rate
could be that the applied uptake constraints are higher than the in
vitro uptakes fluxes.

To optimize the composition of CDM2, the spent CDM2 of F.
prausnitzii was quantified by LC-MS (38) to reveal consumed and

TABLE 2 Growth rates and allowed flux spans of secretion products
predicted for iFpraus_v0.2 on YCFAG mediuma

Simulation
Prediction on YCFAG
medium

Growth rate (h�1) 0.29

Production (mmol g (dry wt)�1 h�1) of:
Acetate �16.13 to �8.61
Butyrate 12.82 to 17.13
Formate 0 to 5.03
D-Lactate 0 to 2.51
CO2 15.83 to 21.21

a Constraints for simulated YCFAG medium are listed in Table S9 in the supplemental
material. Flux variability analysis (FVA) was carried out with 95% satisfaction of
objective required.

FIG 2 Description of the overlap between the chemically defined media utilized in this study. Blue circle, compounds included in CDM1 (initial minimal
medium proposed by model); orange circle, compounds included in CDM2 (expanded defined medium enabling growth); purple circle, compounds included
in CDM3 (final defined medium based on LC-MS data). Green metabolites are those significantly secreted during growth on CDM2; red metabolites are those
significantly consumed during growth on CDM2.
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secreted metabolite profiles. We found that the concentration of
28 metabolites changed significantly after 20 h growth in CDM2.
Of those, 18 were net consumed by F. prausnitzii, while 10 were
net secreted (see Table S2 in the supplemental material). Six pre-
dicted nonessential amino acids were consumed in significant
amounts, namely, arginine, histidine, (iso)leucine, lysine, and
phenylalanine (note that isoleucine and leucine cannot be distin-
guished by our LC-MS approach). Of those, only phenylalanine
was included in CDM1, and the remaining five may thus be some
of the missing components whose absence prevented growth on
CDM1. Significant secretion of glutamine and threonine was ob-
served. Furthermore, five amino acids (alanine, cysteine, proline,
serine, and valine) were net secreted, but the observed changes
were statistically not significant (see Table S2 in the supplemental
material). Of the added metabolites in CDM2, 11, including all
four added nucleobases, were taken up (Fig. 2; also, see Table S2 in
the supplemental material). These findings reveal that CDM2 rep-
resents a defined nonminimal medium that enables growth of F.
prausnitzii in silico and in vitro.

F. prausnitzii consumes and secretes a variety of com-
pounds. We aimed to identify nonessential metabolites
through the consumed and secreted metabolite profiles for
growth on CDM2. No growth was observed when adenine and
xanthine were removed from the medium. The precise mech-
anism for this phenotype remained ambiguous, as complete
biosynthesis pathways for both bases are annotated in the F.
prausnitzii A2-165 genome (see Table S3 in the supplemental
material). LC-MS analysis revealed a highly significant de-
crease in adenine (P � 2.363 � 10�7) and a corresponding in-
crease in hypoxanthine (P � 7.034 � 10�7) (see Table S2 in the
supplemental material), suggesting that adenine is metabolized
viaadeninedeaminase(FAEPRAA2165_01453orFAEPRAA2165_
01454; EC 3.4.5.2), liberating ammonium ion (Fig. 3). This indi-
cates that adenine serves as an important nitrogen source for these
bacteria. Consistently, in silico simulations predicted adenine, un-
like other nucleobases, as well as ammonium ion to serve as a sole
nitrogen source (see Table S2 in the supplemental material).

Furthermore, hemin could be omitted. Hemin biosynthesis is
absent (see Table S3 in the supplemental material), and the lack of
a requirement suggests that heme-containing proteins may not be
encoded by F. prausnitzii A2-165. Indeed, we were unable to iden-
tify a cytochrome c oxidase in its genome (see the supplemental
material).

We observed a significant uptake of the vitamins biotin, pan-
tothenic acid, and pyridoxal, confirming the model’s predictions
that they are essential (see Table S2 in the supplemental material).
Cobalamin, folic acid, and riboflavin consumption did not reach
significance, although they are predicted to be essential. Ribofla-
vin auxotrophy has been previously demonstrated for F. praus-
nitzii A2-165 (39). Possibly, riboflavin consumption did not reach
significance because the vitamin is mainly utilized for an extracel-
lular electron shuttle (39). Thiamine was significantly taken up
(see Table S2 in the supplemental material) despite a biosynthesis
pathway being annotated in F. prausnitzii A2-165. Surprisingly,
pyridoxamine was consumed in significant amounts (see Table S2
in the supplemental material). However, no gene for pyridoxam-
ine 5=-phosphate oxidase (EC 1.4.3.5) could be identified in the F.
prausnitzii A2-165 genome, which is a prerequisite for pyridox-
amine utilization.

A statistically significant net secretion of p-aminobenzoic acid

in the medium was observed between 0 and 4 h, while a decrease
occurred between 4 and 20 h, suggesting that F. prausnitzii may be
able to utilize or synthesize p-aminobenzoic acid. However, we
could not identify the p-aminobenzoic acid biosynthesis pathway
in the genome (see Table S2 in the supplemental material), in line
with previous results that F. prausnitzii M21/2 does not possess the
complete folate biosynthesis pathway (40).

Finally, F. prausnitzii secreted five previously unreported me-
tabolites (see Table S2 in the supplemental material), namely, di-
hydroorotic acid, N-acetylglutamic acid, N-acetylaspartic acid,
and 3-methy2-oxovaleric acid, as well as phenyllactic acid, which
has already been shown to be produced by F. prausnitzii strains
M21/2 and SL3/3 (41).

We then aimed to refine CDM2. Glutamine and threonine
could be omitted from CDM2, in line with model predictions that
F. prausnitzii A2-165 is prototrophic for these amino acids. Pyri-
doxamine and p-aminobenzoic acid could further be omitted,
confirming that pyridoxal is a sufficient source of vitamin B6 but
pyridoxamine may be unusable. Furthermore, guanine, uracil,
and orotic acid could be omitted. Biosynthesis pathways for uracil,
guanine, and orotic acid are completely annotated in F. prausnitzii
A2-165, confirming that these growth components are nonessen-
tial. Deletion of these three compounds from CDM2 resulted in
poor and unreliable growth, however. We conclude that F. praus-
nitzii’s growth is unstable in noncomplex media, possibly due to
low nutrient concentrations.

The composition of the more refined form of CDM2, named
CDM3, which allows growth, though poor and unreliable, of F.
prausnitzii in vitro is shown in Fig. 2.

Exometabolomic data guide the refinement of F. praus-
nitzii’s genome annotation. Uptake of six vitamins was observed,
for which the current annotation for F. prausnitzii A2-165 in
NCBI Protein, The Seed, IMG, and BioCyc does not include trans-
porters (see Table S3 in the supplemental material). Using com-
parative genomics analysis, we identified energy-coupling factor
(ECF) family transporters for biotin, folic acid, pyridoxine, pan-
tothenic acid, riboflavin, and thiamine in the F. prausnitzii A2-165
genome, supporting the idea that these vitamins can be consumed
(Table 3). All transporters require shared ecfAAT energizing
components (encoded by FAEPRAA2165_02788-02790), which
are energy-coupling modules required for substrate binding that
include the components EcfA, EcfA=, and EcfT (42). Further-
more, a currently unannotated pyridoxine-responsive regulon,
corresponding to PdxR (FAEPRAA2165_02613), and a niacin-
responsive regulon, corresponding to NiaR (FA-
EPRAA2165_01816), which regulate the associated ECF trans-
porters, were identified. Some of the transporter-encoding
genes mentioned are currently mis- or unannotated (Table 3).

Furthermore, we aimed to confirm the presence of func-
tional biosynthesis pathways and transporters for amino acids
not present in CDM1 that were consumed in significant
amounts. We newly identified a histidine regulon, correspond-
ing to HisR (FAEPRAA2165_01654), which regulates the
histidine biosynthesis operon hisGD1DCBHAFEJ (FAEPRAA
2165_00489-480), a T-box regulon, leuABCD, for leucine
(FAEPRAA2165_01127-31), and ilvD for isoleucine (FAEPRAA
2165_00371) (Table 3). We confirmed the presence of an arginine
regulon containing the arginine biosyn-thesis operon argGHCJBDF
(FAEPRAA2165_00172-163), argF (FAEPRAA2165_00366), and
newly identified a predicted major facilitator superfamily (MFS)-
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type arginine transporter (FAEPRAA2165_02750). Histidine, argi-
nine, leucine, and isoleucine biosynthesis is thus most likely
functional in F. prausnitzii A2-165. We further identified ABC-type
transporters for histidine (hisXYZ; FAEPRAA2165_03376-74), lysine
(lysXYZ; FAEPRAA2165_03085-88), methionine (metQPN;
FAEPRAA2165_03033-35), and tryptophan (trpXYZ; FA-
EPRAA2165_01745-48) that are controlled by a lysine riboswitch and
amino acid-specific T boxes. Finally, we identified a previously mis-
annotated D-lactate dehydrogenase and a putative hydroxyacid oxi-
dase (Table 3; also, see the supplemental material).

In summary, several biomass precursor transporters included
in the corresponding biosynthesis regulons were identified, and 33
novel gene annotations for F. prausnitzii A2-165 were proposed.
In particular, we identified the transported substrates for trans-
porters with currently generic annotations (Table 3).

Reconstruction content, refinement, and characteristics.
iFpraus_v0.2 was consequently refined. Missing transport reac-
tions for all metabolites observed to be consumed or secreted were
added, and the corresponding transporter-including genes (Table
3) were assigned accordingly. Reactions consuming or producing
the metabolites were included as necessary to connect the metab-
olites to the network if supporting gene annotations could be
identified (Table 3; also, see the supplemental material). In total,
37 reactions, 15 nonunique metabolites, and 17 genes were added,

and six reactions were replaced during the refinement based on
exometabolome measurements (for details, see the supplemental
material and see Table S2 in the supplemental material). The re-
sulting final reconstruction was named iFpraus_v1.0, accounting
for 602 genes, 1,030 reactions, and 833 metabolites, with a final
average confidence score of 2.29 (see the supplemental material)
and a genome coverage of 17%. Excluding exchange and demand
reactions, only 66 of all 1,030 reactions are not supported by ge-
nome annotation. iFpraus_v1.0 is able to utilize carbon sources
and produce secretion products in good agreement with literature
and our in vitro experiments (see Tables S1 and S4 in the supple-
mental material). The expansion of the reconstruction resulted in
only minor changes in growth rate and secretion product predic-
tions (data not shown).

At its end, this integrated systems biology approach yielded a
metabolic chart of F. prausnitzii summarizing its metabolic capa-
bilities and connections with the environment (Fig. 2). Our pro-
posed refinements to F. prausnitzii’s genome annotation are
summed up in Table 3. A comparison of proposed function, NCBI
Protein, IMG, BioCyc, and The Seed gene annotations for all genes
included in the reconstruction is listed in Table S3 in the supple-
mental material.

The subsystem participation of reactions in iFpraus_v1.0 was
analyzed and compared with that of the previously assembled Bac-

TABLE 3 Proposed improvements and specifications to the genome annotation of F. prausnitzii A2-165

NCBI Protein ID Current annotation (NCBI)a Proposed annotation

FAEPRAA2165_01205 Hypothetical protein Pantothenate transporter gene panT
FAEPRAA2165_01298 Hypothetical protein Riboflavin transporter gene ribU
FAEPRAA2165_01333 Putative proton-coupled thiamine transporter YuaJ Thiamine transporter gene thiT
FAEPRAA2165_01388 4-Phosphoerythronate dehydrogenase D-Lactate dehydrogenase
FAEPRAA2165_01654 TrpR family protein YerC/YecD Histidine repressor HisR
FAEPRAA2165_01745 ABC transporter substrate binding protein Tryptophan ABC transporter gene trpX
FAEPRAA2165_01747 Branched-chain amino acid ABC transporter, permease protein Tryptophan ABC transporter gene trpY
FAEPRAA2165_01748 ABC transporter, ATP-binding protein Tryptophan ABC transporter gene trpZ
FAEPRAA2165_01816 3H domain protein Niacin-responsive regulator NiaR
FAEPRAA2165_01935 Dehydrogenase, FMN dependent Hydroxyacid oxidase gene (similar to eukaryotic gene Hao2)
FAEPRAA2165_02602 Hypothetical protein Niacin transporter gene niaY
FAEPRAA2165_02613 Transcriptional regulator, GntR family Pyridoxine-responsive regulator PdxR
FAEPRAA2165_02615 Hypothetical protein ECF-family pyridoxine transporter gene pxdT
FAEPRAA2165_02750 Transporter, major facilitator family protein MFS-type arginine transporter
FAEPRAA2165_02761 Glycosyl hydrolase family 32 Beta-fructosidase (levanase/invertase) gene
FAEPRAA2165_02762 Tat pathway signal sequence domain protein Fructooligosaccharide ABC transporter
FAEPRAA2165_02763 ABC transporter, permease protein Fructooligosaccharide ABC transporter
FAEPRAA2165_02764 ABC transporter, permease protein Fructooligosaccharide ABC transporter
FAEPRAA2165_02765 Transcriptional regulator, LacI family Fructooligosaccharides utilization transcriptional regulator

SusR, LacI family
FAEPRAA2165_02788 Cobalt transport protein EcfT energizing component
FAEPRAA2165_02789 ABC transporter, ATP-binding protein EcfA= energizing component
FAEPRAA2165_02790 Cobalt ABC transporter, ATP-binding protein EcfA energizing component
FAEPRAA2165_03014 Hypothetical protein Folate transporter gene folT
FAEPRAA2165_03033 NlpA lipoprotein Predicted methionine ABC transporter gene metQ
FAEPRAA2165_03034 ABC transporter, ATP-binding protein Predicted methionine ABC transporter gene metP
FAEPRAA2165_03035 ABC transporter, permease protein Predicted methionine ABC transporter gene metN
FAEPRAA2165_03085 ABC transporter, substrate-binding protein, family 3 Lysine ABC transporter gene lysX
FAEPRAA2165_03087 ABC transporter, permease protein Lysine ABC transporter gene lysY
FAEPRAA2165_03088 ABC transporter, permease protein Lysine ABC transporter gene lysZ
FAEPRAA2165_03374 ABC transporter, ATP-binding protein Histidine ABC transporter gene hisZ
FAEPRAA2165_03375 ABC transporter, permease protein Histidine ABC transporter gene hisY
FAEPRAA2165_03376 ABC transporter, substrate-binding protein, family 3 Histidine ABC transporter gene hisX
a FMN, flavin mononucleotide.
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teroides thetaiotaomicron strain VPI 5482 reconstruction iAH991
(28) (Fig. 4). As expected, the most striking difference between the
two reconstructions is the percentage of reactions and genes in-
volved in polysaccharide degradation, which make up 9% and
26%, respectively, in the B. thetaiotaomicron reconstruction but
only 2% in F. prausnitzii (Fig. 4). This difference reflects the sig-
nificantly higher saccharolytic potential of B. thetaiotaomicron, in
line with observations that B. thetaiotaomicron possesses 255 gly-
coside hydrolases and 29 polysaccharide lyases, while the F. praus-
nitzii genome encodes only 17 glycoside hydrolases and one poly-
saccharide lyase (43). Moreover, 61% of B. thetaiotaomicron’s
glycosylhydrolases are noncytosolic (44), while F. prausnitzii pos-
sesses mainly cytosolic enzymes. Accordingly, 22% of the genes in
the F. prausnitzii reconstruction but only 8% of the genes in the B.
thetaiotaomicron reconstruction are involved in transport (Fig.
4b), in line with the fact that firmicutes possesses a number of
phosphotransferase systems (PTS) for efficient nutrient uptake
while B. thetaiotaomicron has no genes encoding PTS (45).

Prospective use of the metabolic reconstruction: assessing
the metabolic capability of F. prausnitzii in silico and in vitro.
(i) Insights into the central metabolism of F. prausnitzii. Net-
work analysis revealed the central carbon metabolism of F. praus-
nitzii (Fig. 3). Glucose and most other carbon sources are metab-
olized via glycolysis. Amino sugars enter metabolism via the
amino sugar pathway with fructose-6-phosphate as the product,
while uronic acids are converted to pyruvate and glyceraldehyde-
3-phosphate via pentose and glucuronate interconversions. For-
mate is produced via pyruvate formate lyase and can be further
converted to CO2 by formate dehydrogenase. The citric acid cycle
is incomplete, as malate dehydrogenase (EC 1.1.1.37) and oxoglu-
tarate dehydrogenase (EC 1.2.4.2) are not annotated. However,
the steps for conversion of succinate to malate and oxaloacetate to

2-oxoglutarate are present, in agreement with the observation that
malate and succinate are formed from fumarate (39). Finally, an
incomplete pentose phosphate pathway is annotated in the F.
prausnitzii A2-165 genome that does not allow the microbe to
generate NADPH via the pentose phosphate pathway. However,
the necessary enzymes for synthesis of erythrose-4-phosphate as
precursors for synthesis of aromatic amino acids and 5-phospho-
ribosy1-pyrophosphate (PRPP), which is required for synthesis of
purines and pyrimidines, are accounted for (Fig. 3).

(ii) Acetate supplementation increases energy harvest from
glucose. We investigated in silico how acetate consumption en-
ables F. prausnitzii to harvest more energy from carbon sources.
Using flux balance analysis (46) while minimizing internal flux,
we calculated the predicted ATP yield per mmol glucose, without
and with acetate present in the in silico medium. The predicted
ATP yields were 2 and 3, respectively. Flux balance analysis re-
vealed that, in the absence of acetate, glucose was fermented to
D-lactate and ATP was produced via phosphoenolpyruvate car-
boxykinase (BiGG ID: PPCKr) (see Fig. S3a in the supplemental
material). When acetate uptake was allowed, the model switched
from D-lactate to butyrate and CO2 production, leading to proton
transport to the extracellular compartment via NADH:ferredoxin
oxidoreductase (BiGG ID: FDNADOX_H). This proton motive
force enabled ATP production via ATP synthase (BiGG ID:
ATPS4) (see Fig. S3a in the supplemental material), thus allowing
more efficient utilization of glucose. The predicted flux ratio be-
tween ATP synthase and acetate uptake was 1:2; hence, 1 mmol g
(dry weight)�1h�1 ATP per 2 mmol g (dry weight)�1h�1 acetate
was produced.

(iii) Metabolic modeling reveals novel carbon sources. Using
flux balance analysis, novel carbon sources were predicted.
iFpraus_v1.0 has exchange reactions defined for 154 unique me-

FIG 4 Comparison of subsystem participation in the F. prausnitzii A2-165 reconstruction iFpraus_v1.0 and the B. thetaiotaomicron VPI-5482 reconstruction
iAH991. (a) Reactions; (b) genes.
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tabolites, of which 90 contain carbons. We supplemented the in
silico YCFA medium with each of these candidate carbon sources
and found that 17 of 90 indeed supported growth in silico, includ-
ing 14 known sole carbon sources (11, 13) (see Table S1 in the
supplemental material) as well as lactose, inosine, and the host-
derived monosaccharide N-acetylneuraminic acid. The utilization
pathways for these three novel substrates are supported by the
genome annotation (for details, see the supplemental material).
Furthermore, very poor growth on malate was predicted. Unus-
able sole carbon sources included all amino acids and dipeptides
(see Table S1 in the supplemental material), consistent with re-
ports that F. prausnitzii has little or no ability to utilize peptides
(13).

We validated 10 of these predictions in in vitro cell culture
(Table 4). As predicted in silico, F. prausnitzii A2-165 grew on
lactose and N-acetylneuraminic acid, confirmed by acid produc-
tion. On inosine, acid production was detectable but weak, and
the difference in pH value did not reach 0.2. F. prausnitzii A2-165
is thus able to utilize inosine as a carbon source, but to an extent
that may not be sufficient for growth if no other usable carbon
source is provided. Furthermore, recent experimental evidence
suggested that fumarate can serve as a carbon source (39). The
model predicted that F. prausnitzii A2-165 could utilize fumarate
as an additional, though not as the sole, carbon source. Our in
vitro experiments agreed with this prediction (Table 4). Further-
more, F. prausnitzii A2-165 did not grow on malate, for which
poor growth was predicted (Table 4). Both compounds likely fail
to sustain growth as sole carbon sources due to the loss of one
carbon atom when malate is converted to pyruvate via fumarase
(BiGG ID: FUM; FAEPRAA2165_03471-03472) and malic en-
zyme (BiGG ID: ME1; FAEPRAA2165_03473). Moreover, in
agreement with model predictions, F. prausnitzii A2-165 was also
unable to grow on arbutin, citrate, mannose, salicin, and succinate
(Table 4).

Taken together, these data indicate that F. prausnitzii’s genome
encodes numerous transporters and the microorganism is also
able to utilize many host- and diet-derived metabolites for energy
and biomass production.

(iv) Utilization of oxygen benefits F. prausnitzii. Recently, it
was shown that F. prausnitzii utilizes oxygen or fumarate as elec-
tron acceptors for an extracellular electron shuttle involving cys-
teine or glutathione and riboflavin (39). Using flux balance anal-

ysis, we investigated how the addition of oxygen to the in silico
YCFAG medium benefits the microbe and changes pathway utili-
zation by F. prausnitzii. Therefore, we modeled two conditions,
anoxic growth in YCFAG medium with glucose (YCFAG10 me-
dium) and oxic growth in YCFAG medium with glucose
[YCFAG(O2) medium], after experimental conditions (39) and
predicted molar yields for secretion products and biomass (see
Table S5 in the supplemental material).

We inspected the pathway usage for the two conditions. Flux
through the reactions representing the extracellular electron shut-
tle (BiGG IDs: ESHCYS_FPe, ESHCYS2_FPe, ESHGLU_FPe, and
ESHGLU2_FPe) was enabled for YCFAG(O2) but not for
YCFAG10 (see Fig. S3b in the supplemental material), confirming
that the model correctly captured the recently discovered electron
shuttle. Furthermore, oxygen consumption increased the in silico
growth rate by 30% (see Table S5 in the supplemental material).
Flux balance analysis revealed that flux through a flavin reductase
(BiGG ID: FLVRxe; FAEPRAA2165_00362), which regenerates
NAD� from NADH (see Fig. S3b in the supplemental material),
increased 15-fold under the YCFAG(O2) condition. In contrast, if
no flux through FLVRxe was allowed, oxygen uptake could no
longer increase the in silico growth rate (see Table S6 in the sup-
plemental material), demonstrating that this reaction is indeed
responsible for the predicted growth stimulation by oxygen. We
thus propose that the uptake of oxygen leads to a higher flux
through the extracellular electron shuttle and through the stoichi-
ometrically coupled flavin reductase, which subsequently moves
the NAD�/NADH ratio in a favorable direction, leading to an
increase in growth yield. The model predicted acetate production
rather than consumption on YCFAG(O2) medium (see Table S5
in the supplemental material). In contrast, acetate consumption
was observed in vitro on YCFAG(O2) medium (39). Due to NAD�

being regenerated mainly via flavin reductase, flux through bu-
tyrate fermentation pathway, which also converts NADH to
NAD�, was not enforced at optimal growth yield, and acetyl-CoA
was mainly converted to acetate. The reason for this discrepancy
with in vitro results may be explained by missing regulatory con-
straints in the model or incomplete knowledge about the molec-
ular composition of the yeast extract present in the in vitro YCFAG
medium.

(v) Phenotypic phase plane analysis predicts growth-limit-
ing nutrients. The effect of secretion product ratio on growth rate
was predicted using phenotypic phase plane (PhPP) analysis.
Briefly, in the PhPP analysis, two constraining environmental
variables (e.g., flux through exchange reactions) are varied, while
a third parameter (e.g., biomass production) is optimized. The
analysis may reveal different regions, or “phases,” in the resulting
phenotypic phase plane representing qualitatively different path-
way utilizations. These phases are computed based on shadow
prices. A metabolite’s shadow price represents the extent to which
increasing the flux through the metabolite would increase flux
through the particular objective function. By definition, a positive
shadow price indicates that increasing the flux through this me-
tabolite would increase the objective function flux, while a nega-
tive shadow price represents an associated decrease in objective
function flux (35). Using PhPP analysis, we computed the effect of
varying carbon source uptake and acetate exchange on growth rate
(Fig. 5). Furthermore, the shadow prices for all metabolites, ex-
cluding dead-end metabolites, were calculated.

Glucose and galacturonic acid uptake were varied against ace-

TABLE 4 Previously undescribed carbon source utilization predicted
for iFpraus_v1.0 (F. prausnitzii A2-165) and experimental validation

Carbon source

Relative in silico
growth rate
(h�1) In vivo growth

Arbutin No growth No growth
Citrate No growth No growth
Fumarate No growth No growth
Inosine 0.66 Weak acid production
Lactose 0.78 Growth
Malate 0.07 No growth
Mannose No growth No growth
N-Acetylneuraminic acid 0.98 Growth
Salicin No growth No growth
Succinate No growth No growth
a Relative in silico growth was calculated with the predicted growth rate on glucose as a
reference. A pH decrease of �0.2 was considered indicative of growth in vitro.
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tate exchange. The analysis revealed different phenotypic phases.
As expected, increasing carbon source uptake flux increased
growth rate (Fig. 5). When comparing the point of minimal car-
bon source uptake rate that still allowed optimal growth (indi-
cated by a star in Fig. 5a and b), it was observed that for glucose,
acetate had to be consumed, while for galacturonic acid, acetate
had to be produced. The maximally achievable growth rate was
equal for both carbon sources. Forcing acetate production thus
limited growth on glucose, while on galacturonic acid, the growth
yield decreased with increasing acetate consumption. This differ-
ence can be explained by their distinct metabolisms. Glucose is
fully metabolized via glycolysis, yielding 2 mol of pyruvate per
mol. Uronic acids are utilized via pentose and glucuronate inter-
conversions, resulting in 1 mol of glyceraldehyde-3-phosphate
and 1 mol of pyruvate per mol (Fig. 3). The reduced flux through
glycolysis during growth on uronic acids results in a lower NADH
yield per mol of carbon source. Thus, ATP gain via acetate kinase
becomes preferable to the NADH-consuming butyrate pathway.

We then examined the shadow prices for the entire phase plane
while varying glucose against acetate uptake (see Fig. S4 in the
supplemental material). We found that at low glucose uptake
rates, the model was carbon limited, as indicated by positive

shadow prices for glucose and other usable carbon sources. At
optimal growth, however, growth was limited by NAD�, NADP�,
ATP, acetyl coenzyme A (acetyl-CoA), amino acids, and cell en-
velope biosynthesis building blocks. Thus, reducing equivalent
availability and energy levels rather than carbon skeleton avail-
ability, as well as cost-intensive biomass precursors, is growth lim-
iting in this phase. Furthermore, cost-intensive biomass precur-
sors involved in fatty acid metabolism, e.g., hexadecanoic acid,
switched from a positive shadow price at suboptimal growth to a
negative shadow price at optimal growth. Increasing the availabil-
ity of hexadecanoic acid at suboptimal growth would thus save
biosynthesis costs, while at optimal growth, the metabolite would
be in excess and costly to remove. Shadow price analysis thus
predicts how the limited resources need to be distributed in F.
prausnitzii to achieve optimal growth.

DISCUSSION

In this work, we manually constructed and validated a metabolic
reconstruction of Faecalibacterium prausnitzii A2-165 starting
from an automated draft reconstruction. A defined medium en-
abling growth of the microbe was developed. Previously proposed
traits of the microbe, such as generation of a proton motive force,

FIG 5 Phenotypic phase plane analysis performed for the F. prausnitzii A2-165 reconstruction iFpraus_v1.0. Growth rates and shadow prices were plotted as heat
maps spanning the feasible solution space. (a) Glucose uptake varied against acetate exchange, plotted in three-dimensional (3D) and 2D format. (b) Galactu-
ronic acid uptake varied against acetate exchange, plotted in 3D and 2D format.
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were captured via metabolic modeling. The model was then suc-
cessfully applied to predict novel carbon source utilization capa-
bilities, which were validated experimentally. Finally, a pheno-
typic phase plane analysis predicted optimal ratios between
acetate exchange and carbon source uptake, as well as growth-
limiting metabolites.

We, and others, have previously shown that automatically
generated GENREs, based solely on genome annotation, do not
adequately capture biochemical characteristics and phenotypic
properties of the target organisms (28, 47, 48). However, as
poorly characterized organisms have a limited amount of pub-
lished biochemical data available, a key ingredient for tradi-
tional reconstruction of high-quality metabolic reconstruc-
tions (23), the genome becomes the main source of metabolic
information. Here, we demonstrated that the draft reconstruc-
tion in conjunction with in vitro experiments and metabolomic
measurements could greatly augment the biochemical knowl-
edge about the target organism. In fact, we propose a compre-
hensive metabolic map for F. prausnitzii (Fig. 3), which sum-
marizes all its measured, annotated, and predicted metabolic
capabilities. While the reconstruction captures qualitative
properties well, the predicted formate production rates relative
to the butyrate production rates were too low (Table 2). This
discrepancy may be due to missing regulatory or kinetic con-
straints. Butyrate and formate production varies drastically be-
tween the different F. prausnitzii strains (11), despite their hav-
ing the same central fermentation pathways encoded in the
genomes. In fact, inclusion of nonmetabolic cellular processes,
such as regulation and macromolecular synthesis, with meta-
bolic models has been shown to increase their predictive po-
tential by reducing the set of feasible solutions significantly
(49–53).

Guided by the refined metabolic reconstruction, we then de-
veloped an initial medium, CDM1, which was further improved
through the analysis of metabolomic data. CDM2 enabled growth
of F. prausnitzii A2-165, in contrast to CDM1, while not being
minimal. The medium should prove useful, as it enables cultiva-
tion of F. prausnitzii A2-165 under defined nutrient concentra-
tions. Growth on CDM2 (0.13 h�1) is poorer than on YCFAG
medium (0.55 h�1) (62). However, F. prausnitzii is generally dif-
ficult to cultivate, and its growth is likely influenced by factors
other than medium composition.

It has been proposed that the conversion of acetate to butyrate
by colonic bacteria leads to further energy gains for the bacteria in
the form of ATP by means of a proton motive force (10). Corre-
spondingly, the model predicted the generation of one additional
molecule of ATP per two consumed molecules of acetate via such
a proton motive force. This ratio may be validated experimentally
in future efforts. Furthermore, it has been shown that extracellular
riboflavin drives an extracellular electron shuttle with oxygen as
the terminal electron acceptor (54). In line with this observation,
we predicted an increase in growth rate in the presence of oxygen
due to a riboflavin-utilizing flavin reductase (FAEPRAA2
165_00362), which may be a valuable target for further analysis.
Moreover, we could not observe significant changes in riboflavin
medium concentration, suggesting that the vitamin is utilized
extracellularly (see Table S2 in the supplemental material). Ri-
boflavin may be an important factor benefitting F. prausnitzii.
It has been proposed that a diet rich in riboflavin may promote

the abundance of the beneficial faecalibacteria in the human
gut (39, 54).

We furthermore predicted and confirmed lactose and
N-acetylneuraminic acid utilization by F. prausnitzii A2-165. N-
Acetylneuraminic acid (sialic acid) is an amino sugar found in
human mucus and thus extensively present in the human intes-
tine. N-Acetylneuraminic acid utilization confers a competitive
advantage to several pathogens and opportunistic pathogens col-
onizing the gut, including Salmonella enterica, Bacteroides fragilis,
and enterohemorrhagic Escherichia coli. F. prausnitzii is one of few
human gut commensals possessing the sialic acid utilization gene
cluster (55). The microbe’s ability to utilize sialic acid may be
beneficial for the host if it can successfully outcompete pathogens
in mucus-rich environments. The reconstruction further captures
the fact that sialic acid can also serve as nitrogen source (55) (see
Table S2 in the supplemental material).

Finally, a phenotypic phase plane analysis identified optimal
ratios between carbon source uptake and acetate exchange, as well
as growth-limiting nutrients that may represent bottlenecks. Max-
imal growth was limited not by the availability of carbon skeletons
but by that of other biomass precursors, such as cost-intensive
amino acids and cell envelope building blocks. The model was
further predicted to be nitrogen source limited at optimal growth
(see the supplemental material). F. prausnitzii might thus benefit
from growth on carbon sources that are also nitrogen sources.
Correspondingly, increasing the availability of N-acetylgluco-
samine but not of glucose was predicted to enhance growth at
optimal carbon source-to-acetate exchange ratios (see Fig. S4 in
the supplemental material). In agreement with this prediction, F.
prausnitzii A2-165 grew better on N-acetylglucosamine than on
glucose (13). The analysis further suggested that resources need to
be distributed optimally to enable optimal growth. Investing re-
sources in metabolites that do not contribute to biomass produc-
tion was predicted to lower the growth rate.

Another metabolic reconstruction of F. prausnitzii A2-165,
iFap484, was recently published (56). However, unlike iFpraus_v1.0,
which was experimentally validated and refined based on exo-
metabolomic data, iFap484 was constructed solely based on the
limited available bibliome for F. prausnitzii A2-165. Furthermore,
iFpraus_v1.0 accounts for 118 genes and 317 reactions more and
thus has a significantly higher pathway coverage than iFap484.

The potential of systems biology to study both host-microbe
and microbe-microbe interactions for microbes relevant to hu-
man health is promising (16, 57). An interesting prospective ap-
plication is the construction of an in silico ex-germfree mouse
model. Germfree animals selectively colonized with representa-
tive gut microbes are well-established model organisms (58). Ex-
perimental data, e.g., in vivo studies on ex-germfree animals col-
onized with a Bacteroidetes and a Firmicutes representative (59),
including a recent study in which germfree rats were colonized
selectively with F. prausnitzii and B. thetaiotaomicron (60), could
thus be put in context. Furthermore, it has been proposed that
increasing the abundance of beneficial faecalibacteria in the gut
might have therapeutic potential and contribute to intestinal
homeostasis (5). Using F. prausnitzii as a probiotic, however,
would require ensuring its survival until its arrival in the colon (5).
Using metabolic modeling, formulations that improve the sur-
vival of F. prausnitzii in the upper intestinal tract, and prebiotics
that increase its abundance in the gut, could be predicted.

Finally, the approach presented here can be readily applied to
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other uncharacterized gut bacteria. This includes yet-undiscov-
ered potential “keystone” species, which specialize in important
functions found only in a selected few microbes (61). The human
gut is populated by an estimated 1,000 species (2), most of which
have not been characterized. Recent technological advances per-
mit isolation and characterization of microbes from natural mi-
crobiota, but their cultivation and phenotypic characterization
may be hampered by a lack of appropriate medium availability.
Our proposed iterative approach using metabolic reconstruction
and metabolomic methods can fill this gap. Performing multiple
iterations of computation and experiments could result in the
identification of a minimal medium for the target organism.
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