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We recently reported that in lung tissue, thioridazine accumulates at high concentrations relative to serum levels, displaying
modest synergy with isoniazid and reducing the emergence of isoniazid-resistant mutants in mouse lungs. In this study, we
sought to investigate the sterilizing activity of human-equivalent doses of thioridazine when given in combination with the
“Denver regimen” against acute murine tuberculosis. We found a trend toward a positive impact of thioridazine on the bacterial
clearance and lowering relapse rates of the combined standard TB chemotherapy.

Active tuberculosis (TB) in humans comprises a mixed popu-
lation of rapidly multiplying bacilli and sporadically replicat-

ing or nonreplicating persisters, which require prolonged treat-
ment to prevent clinical relapse, posing a major obstacle to global
TB eradication. Strategies involving new drugs and shorter regi-
mens, as well as new applications for existing FDA-approved
drugs, are urgently needed to combat the TB epidemic. Efflux
pumps, crucial for Mycobacterium tuberculosis survival and persis-
tence under antimicrobial stress, are now known to contribute to
intrinsic or acquired resistance (1). Therefore, efflux pump inhib-
itors, which are already in clinical practice for other medical indi-
cations, may be useful as novel chemotherapeutics against M. tu-
berculosis (2). The efflux pump inhibitor and antipsychotic drug
thioridazine (TRZ), which is inexpensive, readily available, and
relatively safe, has shown activity against drug-sensitive and drug-
resistant strains in vitro (3, 4), ex vivo (5), and in vivo (6, 7), and in
extensively drug-resistant (XDR)-TB patients when used in com-
bination with antibiotics to which the strains were initially resis-
tant (8). Although we found that TRZ is ineffective as mono-
therapy in the mouse model of TB, the drug exhibited modest
synergy during coadministration with isoniazid (INH), reducing
the emergence of INH-resistant mutants (9). As TRZ accumulates
at high concentrations relative to serum levels in lung tissue (9),
we hypothesized that treatment with TRZ in combination with the
standard first-line anti-TB (Denver) regimen (10–12) may accel-
erate the eradication of bacilli from the lungs of mice acutely in-
fected with M. tuberculosis, reducing the time required to prevent
microbiological relapse.

All animal-related procedures were approved by the Johns
Hopkins University (JHU) School of Medicine Animal Care and
Use Committee. A total of 141 female BALB/c mice aged 4 to 6
weeks (Charles River Labs, Wilmington, MA) were aerosol in-
fected with M. tuberculosis H37Rv (JHU), using the inhalation
exposure system (Glas-Col, Terre Haute, IN) calibrated to deliver
�104 CFU per mouse lung in two consecutive runs. After aerosol
infection, the mice were randomized into treatment groups, as
outlined in Table 1. Two weeks postinfection, the mice were
treated daily (5 days/week) orally with human-equivalent doses of
INH (10 mg/kg), rifampin (RIF) (10 mg/kg), and pyrazinamide
(PZA) (150 mg/kg) with or without TRZ (25 mg/kg) (9, 13) for up
to 6 months. For the first 2 months of treatment, mice were given
RIF, INH, and PZA, and for the remaining 4 months they were

given only RIF and INH to mirror the Denver regimen. The RIF
dose preceded that of the other drugs (INH-PZA/INH-PZA-TRZ)
by at least 1 h to prevent pharmacokinetic antagonism (14, 15).
Mice were scheduled for sacrifice on the day after infection, on the
day of treatment initiation, and at the indicated time points after
treatment to determine the numbers of CFU implanted in the
lungs, pretreatment baseline lung CFU counts, and posttreatment
lung CFU, respectively (Table 1). Treatment was discontinued
for groups of 10 mice after completion of 4, 5, or 6 months of
antibiotic treatment for the assessment of relapse. Relapse was
defined as the presence of mycobacterial colonies upon plating of
entire undiluted lung homogenates.

Animal body weights and lung and spleen weights were re-
corded at the time of sacrifice. The lungs of sacrificed animals were
examined grossly for visible lesions, and small, randomly selected
sections were formalin fixed for histopathology. The remainder of
each lung was homogenized in 2.5 ml phosphate-buffered saline
(PBS). Lung homogenates were plated on selective 7H11 plates
(BD, Baltimore, MD) for CFU enumeration.

CFU data were derived from five mice per group. Log-trans-
formed CFU were used to calculate means and standard devia-
tions (SDs). Comparisons of data among experimental groups
were performed by t test. A difference was considered statistically
significant at a P value of �0.05.

One day postinfection, the mean (�SD) lung CFU counts were
log10 4.37 � 0.06 and 4.37 � 0.09 in aerosol runs 1 and 2, respec-
tively. Thirteen days later, on the day (day 0) of treatment initia-
tion the mean lung CFU count was 8.28 � 0.14 log10. The un-
treated mice became moribund by 3 weeks postinfection and were
euthanized in accordance with animal care regulations. No spon-
taneous mortality was recorded in the treated groups during the
entire study period. In the initial phase, the standard regimen of
RIF-INH-PZA reduced the lung CFU counts to 5.72 � 0.16 and
3.73 � 0.15 log 10 after 1 and 2 months of treatment, respectively,
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whereas TRZ in combination with RIF-INH-PZA showed very
modest synergistic activity, reducing bacterial burden by an addi-
tional 0.439 log10 (P � 0.005) and 0.31 log10 (P � 0.07) relative to
RIF-INH-PZA after combination treatment for 1 month and 2
months, respectively. During the continuation phase, the addition
of TRZ to RIF-INH resulted in slightly greater killing activity at 3
months of treatment compared to RIF-INH (mean lung CFU
counts, 5.28 � 0.19 and 5.72 � 0.16, respectively; P � 0.004). At 4
months after treatment initiation, all lungs of mice receiving the
RIF-INH-TRZ regimen were culture negative, remaining so at
month 5 and month 6. However, the lungs of mice receiving RIF-
INH remained culture positive at month 4 (0.43 � 0.13 log10),
thereafter becoming culture negative at month 5 and month 6. In
mice treated with the Denver regimen, relapse rates of 90%, 20%
(2 CFU isolated in each mouse lung), and 0% were observed after
completion of treatment for 4 months, 5 months, and 6 months,
respectively, whereas mice treated with the Denver regimen plus
TRZ showed relapse rates of 60%, 0%, and 0% after completion of
treatment for 4 months, 5 months, and 6 months, respectively.

To our knowledge this is the first preclinical study to investi-
gate the sterilizing activity of TRZ when used in combination with
the standard first-line regimen against acute murine TB. TRZ
given at human-equivalent doses was safe and well tolerated for
the entire treatment period (9, 16). When TRZ was added to the
Denver regimen, we observed a trend toward enhanced clearance
of bacilli in the lungs of acutely infected mice relative to the con-
trol regimen alone. Our findings might be explained by the previ-
ously reported synergy of TRZ with the cell wall-active agent INH
(9), enhancing the killing of actively multiplying bacilli, and with
the transcriptional inhibitor RIF, accelerating the clearance of per-
sisters (17). Dormant M. tuberculosis in an in vitro hollow fiber
system (18) and in the Wayne model of progressive hypoxia (19)
shows susceptibility to TRZ, which targets M. tuberculosis respira-
tion (12). Furthermore, TRZ appears to induce the killing of in-
tracellular bacilli by macrophages (20). The sterilizing activity of
TRZ given in combination with multidrug-resistant (MDR) and
XDR regimens deserves further study in preclinical animal mod-
els. In addition, the role of TRZ against latent TB infection should
be investigated (13, 21).
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