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Valley fever (VF) is difficult to diagnose, partly because the symptoms of VF are confounded with those of other community-
acquired pneumonias. Confirmatory diagnostics detect IgM and IgG antibodies against coccidioidal antigens via immunodiffu-
sion (ID). The false-negative rate can be as high as 50% to 70%, with 5% of symptomatic patients never showing detectable anti-
body levels. In this study, we tested whether the immunosignature diagnostic can resolve VF false negatives. An
immunosignature is the pattern of antibody binding to random-sequence peptides on a peptide microarray. A 10,000-peptide
microarray was first used to determine whether valley fever patients can be distinguished from 3 other cohorts with similar in-
fections. After determining the VF-specific peptides, a small 96-peptide diagnostic array was created and tested. The perfor-
mances of the 10,000-peptide array and the 96-peptide diagnostic array were compared to that of the ID diagnostic standard. The
10,000-peptide microarray classified the VF samples from the other 3 infections with 98% accuracy. It also classified VF false-
negative patients with 100% sensitivity in a blinded test set versus 28% sensitivity for ID. The immunosignature microarray has
potential for simultaneously distinguishing valley fever patients from those with other fungal or bacterial infections. The same
10,000-peptide array can diagnose VF false-negative patients with 100% sensitivity. The smaller 96-peptide diagnostic array was
less specific for diagnosing false negatives. We conclude that the performance of the immunosignature diagnostic exceeds that of

the existing standard, and the immunosignature can distinguish related infections and might be used in lieu of existing

diagnostics.

C occidioidomycosis, commonly known as valley fever (VF), is
caused by the fungi Coccidioides immitis (California strain) or
Coccidioides posadasii and is found in the arid soil of the south-
western desert regions of United States and South America. Hu-
man disease is caused by inhalation of the arthroconidia (spores)
of the fungus and presents primarily with flu-like symptoms or,
progressively, pneumonia. VF affects an estimated 150,000 (1)
people in the United States every year, primarily in the states of
Arizona (2), California (3), Nevada, New Mexico, and Utah. A
major problem in the management of the disease is the failure to
detect (sensitivity) 30% of the infected individuals. We have tested
whether a new diagnostic technology, immunosignatures, can ad-
dress this problem.

Sixty percent (4) of VF-exposed individuals are either asymp-
tomatic or have mild symptoms, with the infection usually being
self-limiting. The remaining 40% (5) of exposed individuals dem-
onstrate symptoms, such as skin rashes and respiratory ailment,
lasting from months to years. In 5 to 10% (4, 6) of these, infection
disseminates, affecting other organs, the skin, bones, and nervous
system. Individuals from non-Caucasian ethnicities (1), such as
African Americans, Filipinos, and Asians, as well as those who are
=65 years, pregnant women, and patients with immunocompro-
mised immune systems, are more susceptible to VF, particularly
the disseminated form of the disease. As per the Arizona Depart-
ment of Health Services (ADHS), VF patients visit physicians
three times on average before they are tested for VF, and more so
if patients visiting AZ from regions nonendemic for the disease are
diagnosed by physicians unacquainted with diseases of the Amer-
ican Southwest (7). VF alone is known to account for $86 million
in hospital charges in Arizona in the year 2007 (7), but the burden
is difficult to estimate outside AZ and CA.

The confirmatory diagnostic test for VF is an immunodiffu-
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sion (ID) assay, which detects antibodies against antigens within
fungal coccidioidin causing complement fixation (CF) and tube
precipitation (TP). Coccidioidin is a culture filtrate of the mycelial
form of C. immitis, the heat-treated portion of which is used to
detect IgM antibodies, and the untreated portion of which is used
to detect IgG antibodies (8). The sensitivity of IDCF is 77%, and
the sensitivity of IDTP is between 75 and 91% (9). An alternative is
to culture the organism from body fluids or tissue, but a concern is
infection risk for technicians (10). Although culture is a prelimi-
nary diagnostic for pneumonia, the sensitivity of this approach for
VF ranges from a low of 23% to a high of 100%, depending on
clinical status (11). The recovery rate of this pathogen through
culture ranges from 0.4% from blood to 8.3% from respiratory
tract specimens (12). As noted, the most clinically pressing issue is
the low sensitivities of these diagnostics as primary tests.

We propose utilizing the immunosignature diagnostic tech-
nology (13) to address some or all of the limitations of current
diagnostics for VF, particularly as a diagnosis for patients misclas-
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sified at the first test. The immunosignature technology utilizes a
high-density array of non-life-space peptides to provide mimics of
epitopes, even those that are discontinuous or nonproteins. We
present data using microarrays of 10,000 unique random-se-
quence peptides. The peptides are 20 amino acids long, with 17
variable positions and a 3-residue linker at the attachment end. As
opposed to single-antigen enzyme-linked immunosorbent assay
(ELISA)-based methods, the disease-specific signature signal in an
immunosignature comes from multiple peptides that form a dis-
tinct disease-specific pattern of antibody binding. Most antibody-
based immunological tests examine the presence of new antibod-
ies in infected individuals. An immunosignature can display both
the presence of new antibodies relative to infection or chronic
disease and any suppression of preexisting antibodies (measured
as the loss of signal) that were commonly present in healthy con-
trols. These signals may reflect memory responses to vaccinations
and common pathogen exposures, but with standard immuno-
logic tests, this loss would be difficult to detect. An immunosigna-
ture, unlike many genetic or immunological tests, is both sample
sparing and robust to sample handling (14). Because the sensitiv-
ity of an immunosignature is higher than that of ELISA-based
serological tests (13, 15), and discrimination across multiple dis-
eases is possible, we asked whether the platform was suited to be
used as a valley fever diagnostic method both for diagnosing VF
and differentiating between other common respiratory infections.
Current VF diagnostic methods may produce false-negative re-
sults, resulting in late recognition of the disease (16—18), which
adversely affects patient outcomes. We proposed a series of tests to
determine whether an immunosignature assay performs better
than existing VF diagnostics. We postulated that this assay would
detect VF earlier, with a greater sensitivity and at a lower cost than
conventional methods. The ability of immunosignatures to dis-
tinguish VF from 3 other infections was tested. The same array was
used to test whether VF-negative patients could be correctly clas-
sified as having VF. The effect of rescaling the platform by reduc-
ing the total number of peptides from 10,000 to <100 disease-
specific ones was also evaluated.

MATERIALS AND METHODS

Serum samples used in this study. All patient serum samples used in this
study are listed in Table 1. Patient serology was determined by the tests
shown in Table S1 in the supplemental material.

Confounding infection samples. In order to test whether different
infections were discernible, patient samples representing 19 Aspergillus
fumigatus, 19 Mycoplasma pneumoniae, and 19 Chlamydia pneumoniae
isolates were processed alongside 18 VF and 31 healthy sera on the 10,000-
peptide microarray. The A. fumigatus, M. pneumoniae, and C. pneumoniae
samples were acquired from SeraCare Life Sciences (Milford, MD) and
were tested by commercial ELISAs for the presence of antibodies to the
respective infections by SeraCare (See Table S1 in the supplemental ma-
terial). The valley fever samples were obtained from John Galgiani (Uni-
versity of Arizona, Tucson, AZ; institutional review board [IRB] no.
FWA00004218), and the healthy controls were obtained locally (IRB no.
0905004024 ). The results are shown in Fig. 1.

Valley fever and normal donor serum samples used in this study. A
training cohort of 55 VF samples and a blinded test set of 67 samples were
obtained as deidentified human patient sera from John Galgiani. The
nondisease serum samples included 7 influenza vaccine (2006 to 2007)
recipient samples prevaccine and postvaccine plus 41 locally obtained
healthy donor samples. Immunosignatures were obtained on the 100-
peptide diagnostic subarray. Following the submission of our classifica-
tion results to John Galgiani, the test set was unblinded and revealed to
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TABLE 1 Patient sample cohorts utilized in this study

No.of  No.of
Source and cohort no.  Infection” patients samples
Confounding infection
pilot study®
1 Aspergillus 20 20
2 Chlamydia 20 20
3 Mycoplasma 19 19
4 Normal 31 31
VF training set 18 18
Valley fever patient
sera with non-VF
controls®
1 VF training set (U of A) 35 55
2 VF test set (U of A) 25 67
3 Normal individuals (ASU) 41 41
4 Influenza vaccinees (2006-2007 7 7

seasonal vaccine) (ASU)

“U of A, University of Arizona; ASU, Arizona State University.

b The samples for the confounding infection pilot study were obtained from SeraCare
Life Sciences (Milford, MA).

¢ The samples from the VF training set were obtained from John Galgiani, MD, Valley
Fever Center for Excellence (Tucson, AZ).

contain 25 patients with two or more serum samples collected longitudi-
nally per patient during subsequent clinic visits. For each patient in the
test cohort, the initial sample had an IDCEF titer of zero but seroconverted
at a later date as the infection progressed. All samples were serologically
characterized by John Galgiani’s laboratory for IDCF and IDTP titers.
Tables 2 and 3 describe the CF titer distribution for the patients in the
training and test cohorts, respectively.

Blinded test patient sample set. The test sample set included 25 pa-
tients with two or more serum samples per individual, for a total of 67
samples. Twenty-four of these symptomatic patients had an IDCEF titer of
zero and were given a negative diagnosis for VF after their first clinic visit.
All 24 patients returned to the clinic for a follow-up appointment between
7 and 27 days after the first visit; blood samples were drawn for the second
time, at which point 12 were still seronegative by the IDCF test. Of the 12
IDCF-negative patients, only 6 returned for the third follow-up visit due
to continued symptoms, and 6 others returned either for monitoring of
increasing CF titers or retesting due to a positive IDTP result. The time
interval for the third visit ranged between 4 and 159 days after the second
visit. Four of these patient samples were drawn again between 96 and 147
days, at which time a verified IDCF titer was observed in 2 patients who
were given a positive VF diagnosis. One symptomatic patient returned for
a fifth visit and remained seronegative on both the IDCF and IDTP tests
113 days later, despite being symptomatic for valley fever and IDTP pos-
itive in the fourth visit.

Microarray production and processing. The 10,000-nonnatural se-
quence peptide immunosignature array and the 96-peptide VF diagnostic
arrays were produced and processed as described in Legutki et al. (13, 19).
Briefly, the peptides were spotted onto standard slides using a noncontact
Piezo printer. The average spot diameter was ~140 pwm; 10,000 peptides
were printed in 2-up format, enabling 2 separate arrays per slide. The
slides were exposed to sera diluted 500-fold in sample buffer for 1 h and
were washed in sample buffer, and the primary antibodies were detected
with a fluorescent anti-human secondary antibody. The 16-bit 10-pum
tagged image file format (TIFF) images from the Agilent C scanner were
aligned using the GenePix 6.0 software (Axon Instruments, Union City,
CA), and the data files were imported into GeneSpring 7.3.1 (Agilent,
Santa Clara, CA) and R (20) for further analysis. Each training patient
sample was processed in triplicate on the 10,000-peptide array. The
10,000-peptide array data were median normalized per chip and per fea-
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FIG 1 Hierarchical clustering of informative peptides across five diseases. Peptides (y axis) are colored by intensity, with blue corresponding to low intensity and
red to high intensity. Patients (x axis) are grouped by their corresponding peptide values with Aspergillus (black), Mycoplasma (red), Chlamydia (green), normal
(blue), and valley fever (brown) grouping by cohort, as computed by GeneSpring 7.3.1 (Agilent, Santa Clara, CA). The peptides were selected by Fisher’s exact

test.

ture. Any array with a Pearson’s correlation coefficient of <0.80 across
technical replicates was reprocessed. Patient samples were excluded from
further analyses if they consistently produced extremely high background
and/or consistently failed to provide reproducible results across technical
replicates.

Statistical classification of disease groups. The statistical classifica-
tion of disease groups was done using naive Bayes from the R klaR package
(21) combined with the leave-one-out cross-validation (LOOCV) and
hold-out algorithm as implemented in the R package DMwR (22). Testing

TABLE 2 Diagnosis (via IDCF) of 55 unique patient samples from the
VF training cohort

CF titer No. of samples
0 6
1 4
2 8
4 5
8 3
16 8
32 11
64 5
128 3
256 2

the classifier was done using a data-holdout experiment in which the
training and test data sets were combined, and 70% of the randomly
chosen data were used to train and predict the remaining 30% of the data
set. This procedure was repeated 20 times to ensure every sample was
predicted more than once by training on multiple combinations of other
samples. The evaluation of immunosignaturing was compared to the
IDCF test using sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), and accuracy parameters.

Statistical classification of confounding infections. To assess whether
the random peptide microarray could specifically distinguish multiple
confounding infections, serum samples were processed on the 10,000 ran-

TABLE 3 Diagnosis (via IDCF) of 67 blinded samples from the VF test
cohort

No. of samples

CF titer (no. of patients)
0 48 (25)

1 5(4)

2 7(7)

4 3(3)

8 1(1)

16 2(2)

32 1(1)
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TABLE 4 Classification results from samples shown in Fig. 1¢

Infection Sensitivity Specificity PPV NPV Accuracy
type (%) (%) (%) (%) (%)
Aspergillus 92 98 93 98 97
Chlamydia 95 99 97 99 98
Mycoplasma 98 98 87 100 97

VF 88 99 97 98 98

“ Naive Bayes was used to simultaneously classify the 108 patients into their respective
groups using hold-out (70% train, 30% test, 20 iterations) cross-validation to estimate
error.

dom-peptide microarray. The slides were printed in batches of 136 slides
each over a period of 2 days. Six different slide print batches were mixed
together and used to process these serum samples. ComBat normalization
was applied to the median-normalized data to eliminate differences be-

tween the samples due to batch effects (23, 24). A total of 243 random
peptides capable of distinguishing between the five classes (VF, Aspergil-
lus, Mycoplasma, Chlamydia, and normal) were selected using Fisher’s
exact association test, as implemented in GeneSpring GX 7.3.1. Since a
physically separate training and test data set were missing for this analysis,
the stringent holdout cross-validation as implemented in R package
DMwR (22) was used on this data set to assess classification performance.

RESULTS

Valley fever immunosignature is distinct from those of other
infections. Our initial question was whether VF infection would
produce an immunosignature that was distinguishable from those
of other infections. The concern was that a general inflammatory
response to infection may dominate the signature. To test this, we
used serum samples from individuals infected with A. fumigatus,
M. pneumoniae, and C. pneumoniae. Figure 1 and Table 4 show the

FIG 2 Hierarchical clustering of valley fever immunosignature. A total of 1,586 peptides from a 1-way ANOVA between VF-infected and uninfected individuals
are plotted on the y axis. The coloring is based on the signal intensities obtained from relative binding on the 10,000-peptide array, with blue representing low
relative intensity and red representing high signal intensity. Each column represents the immunosignature of one individual, with VF patients (red), uninfected

individuals, and pre- and post-influenza vaccine sera (blue).

1172 cviasm.org

Clinical and Vaccine Immunology


http://cvi.asm.org

Normalized signal intensity (log scale)

Immunosignature Diagnostic Test for Valley Fever

0 1 2 4 8 16
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FIG 3 Signal intensity (y axis) for 96 peptides from the 10,000 peptide microarray that distinguish VF and influenza vaccine recipients. The x axis indicates signal
response averaged across patients for each CF titer. On the far right are signals averaged for the influenza vaccine recipients and normal donors. These data
originated from the full 10,000-peptide array. Forty-eight peptides that captured high antibody binding in VF patients and low signals in normal/influenza
vaccine recipients are colored in red. Forty-eight peptides showing higher signals in normal/influenza vaccine recipients and low signals for VF patients are
colored in blue. Consistency was seen across the valley fever patients, and a reversal in signal was seen for non-VF patients. Inf_Pre, influenza vaccine recipients;

Inf_21, patients 21 days postvaccine.

results from an experiment in which the disease cohorts were clas-
sified and cross-validated using a 70% train/30% hold-out
method, described in Materials and Methods. Figure 1 shows the
relative intensities of 243 peptides found by Fisher’s exact test,
with the grouping of the individual cohorts shown on the x axis,
and with hierarchical clustering applied to the peptides and the
persons with Pearson’s correlation used as the similarity measure.
Each disease cohort groups together in the heat map. A quantita-
tive assessment of the classification using the naive Bayes algo-
rithm is presented in Table 4. The accuracy of simultaneous clas-
sification was 97% for Aspergillus and Mycoplasma and 98% for
Chlamydia and VF. These results support the conclusion that a
VEF-specific signature can be distinguished from those of other
potentially confounding infections.

Valley fever immunosignature is distinct from that of unin-
fected individuals. We then examined the immunosignatures of
45 VF clinical samples, shown in Table 2, on the 10,000-peptide
microarray and identified 1,586 peptides from a 1-way analysis of
variance (ANOVA) (5% family-wise error rate [FWER] correc-
tion), with a threshold of a P value of <1 X 10~'* indicating

August 2014 Volume 21 Number 8

significance between the 45 VF training samples and 34 nondis-
ease controls and 7 influenza vaccine recipients both prevaccine
and 21 days postvaccine. The influenza virus signature was in-
cluded to exclude a common potentially confounding signal. This
signature is presented as a heat map in Fig. 2. Note that the differ-
ences between the non-VF and VF samples include reactivity that
is higher in disease, as expected, but also signals that are lower in
disease. Seventy percent of the samples were used to define a sig-
nature, and the remaining 30% were tested using the classifier.
Repeating this 20 times yielded a perfect separation of infected
from noninfected samples each time.

Creating a 96-peptide VF diagnostic microarray. Under some
circumstances, it may be useful to use the 10,000-peptide array
as a discovery platform for informative peptides and then cre-
ate a smaller diagnostic array from a subset of those peptides.
To test this idea, we selected 96 peptides from the 1,586-peptide
signature described above using pattern-matching algorithms
within GeneSpring GX. We selected 96 peptides, as this number is
easily handled on standard microtiter plates. Forty-eight peptides
were chosen based on the criteria of capturing consistently high
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FIG 4 Heat map showing normalized average signals from the 96 predictor peptides as in Fig. 2 but displaying the cohort separation. The data were averaged per
CF titer and for 45 VF patients (red bars), 34 healthy controls (yellow bar), 7 pre-2006 influenza vaccine recipients (cyan bar) (flu pre), and 21-day postvaccine
patients (dark blue bar) (flu post) (x axis). A t test identified 96 peptides (y axis) as being highly significant for distinguishing VF and healthy donors (ND).

antibody signal across the VF samples and low antibody signal in
the influenza vaccine samples. The other 48 were chosen based on
the criteria of having a consistently low antibody signal in the VF
samples but a high signal in the influenza vaccine samples. The
log,, median-normalized signals for each of the 96 peptides are
depicted in Fig. 3 in a line plot across patients whose signals were
averaged by their CF titer. To test the robustness of these signature
peptides, we performed a permuted ¢ test by randomly reassigning
the patient identifiers to the samples. The best P value obtainable
after confusing the patient identifiers was <2.8 X 10~2,9 orders of
magnitude larger than when patient data were correctly labeled. It
is therefore unlikely that the selected peptides were obtained by
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random chance. Figure 4 shows a heat map representation of these
same 96 peptides, averaged per CF titer or influenza vaccine status.
Hierarchical clustering was used to cluster the patient groups and
peptides, with the colors within the cells representing high
(red) to low (blue) intensities. Table 5 lists the performance of
pairwise comparisons using 70% training/30% test averaged
over 20 reiterations. The best performance was in distinguish-
ing VF infection from noninfection (100% sensitivity, 97%
specificity), and the worst was for VF infection versus influenza
vaccines (100% sensitivity, 82% specificity). Based on this per-
formance in the context of the 10,000-peptide array, these 96
predictor peptides were resynthesized (Sigma-Genosys, St.
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TABLE 5 Naive Bayes classification results from the VF training cohort
on the 10,000-peptide microarray using the 96 predictor peptides”

Data set used, training ~ Sensitivity ~ Specificity PPV NPV  Accuracy

(hold-out expt) (%) (%) (%) (%) (%)

VF, normal 100 97 97 100 98

VF, influenza vaccine 100 91 99 100 99

VF, normal, influenza 100 96 96 100 98
vaccine

0 (CF titer, influenza 100 82 76 100 88
vaccine

LOOCYV, no-hold-out 100 92 92 100 96
(all data)

For comparison

CF titer (IDCF 87 100 100 50 88

results)

“ Hold-out splits all data randomly into 70% train/30% predict. The results are from 20
iterations of random hold-outs.

Louis, MO) and printed on a smaller array to test the perfor-
mance of the VF focused array.

Performance of a 96-peptide VF diagnostic microarray. The
performance of the VF diagnostic subarray was tested using a
smaller set of training and non-VF control samples. Upon verifi-
cation, the complete training and blinded test samples (67 blinded
samples and 13 non-VF controls) were processed on the VF diag-
nostic 96-peptide subarray under similar conditions as those for
the 10,000-peptide array. Table 6 shows the resulting classification
performance. Of note is the performance against the samples with
a CF titer of 0. While the VF diagnostic peptide set clearly had
higher sensitivity than that of the ID assay, there was a substantial
drop in the specificity compared to that of the ID assay and the
performance on the 10,000-peptide array. Because there was a
measurable difference in the performances of the different mi-
croarrays, we examined the detection limits for each peptide in the
context of the actual fold change values between the healthy and
VF patients. Figure 5 is a graph combining actual fold change
values for every peptide plotted against the detection limit and the
P value obtained from a ¢ test between the VF versus normal co-
horts. The smaller the delta, the more sensitive the peptide was to
a signal and, consequently, the smaller the fold change needed to

Immunosignature Diagnostic Test for Valley Fever

exceed this limit. Of note are Fig. 5B and C, which compare the
performance differences between 96 VF diagnostic peptides
within the context of the 10,000-peptide arrays and the same pep-
tides that were resynthesized and independently printed on the VF
diagnostic arrays. This comparison demonstrates the higher per-
formance of the 96 peptides in the context of the 10,000-peptide
array.

DISCUSSION

Our objectives in this study were to determine if the immunosig-
nature diagnostic method had the potential to address the clinical
problem of detecting infection in patients with an IDCF titer of 0,
and if so, what was the best array format. We first demonstrated
that VF infection as assayed on the 10,000-peptide array has a
distinct immunosignature relative to those of 2 bacterial and one
other fungal infection. We then showed using a 70% training/30%
test format that the 10,000-peptide array accurately discriminated
samples from patients with VF from non-VF-infected patients
and influenza vaccinees. A total of 1,586 peptides were statistically
significantly different between the classes. A portion of the signa-
ture was from peptides that had less reactivity in the samples from
patients with VF than in those from the noninfected controls.
Ninety-six peptides from the 1,586 that had good signature per-
formances in the context of the 10,000-peptide array were resyn-
thesized and used to create a smaller VF diagnostic subarray.
When tested against the VF infection and control samples, this
array demonstrated increased sensitivity (100%) but poor speci-
ficity compared to that of the conventional IDCF assay. The indi-
vidual statistical analysis of the 96 peptides demonstrated that all
performed better in the context of the 10,000-peptide array than
in the subarray format.

We previously published studies demonstrating that influenza
virus infection in mice (25) and the influenza vaccine in humans
(13) can be distinguished from normal controls by immunosigna-
tures. Here, we extend this list, showing that the immunosigna-
tures of two different species of bacteria and two fungi are distinct.
Only 283 peptides of the 10,000-peptide array were required to
simultaneously distinguish the 4 infections with >97% accuracy.
The development of the immunosignature diagnostic method for
clinical application will require further validation testing against

TABLE 6 Naive Bayes classification results” from 96-peptide VF diagnostic subarray

Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

CF titer by data set used

CF titer (IDCF results) 28 100 100 13 35

CF titer = 0 100 43 92 100 93

All data (0 and other titers) 99 43 94 75 93
Training and test hold-out, 20 iterations”

CF titer (IDCF results) 52 100 100 19 57

CF titer = 0 91 85 96 70 90

All data (0 and other titers) 82 92 99 37 83
Training LOOCV*®

CF titer (IDCEF results) 87 100 100 50 88

CF titer = 0 100 67 75 100 83

All data (0 and other titers) 100 67 96 100 96

“ Ninety-six-peptide diagnostic array data were tested for performance on a blinded cohort of false-negative VF patients.

b Performance using all possible patient samples, including test and training samples.
¢ Performance using the training data set only.
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FIG 5 Limits of detection graphed from a post hoc power calculation. The black curve in each figure represents the *=delta (minimum detectable fold change)
calculated from the statistical precision of each peptide independently. The probes along the x axis are sorted by the calculated power, thus forming a smooth
curve. Delta was calculated using o as 1/number of peptides/microarray, 8 of 0.20, and 7 of number of patients per group. The vertical bars (y axis) represent the
log, ratio between the healthy and VF-infected patients, with red bars indicating a peptide selected to predict VF and blue bars representing peptides selected for
detection of non-VF conditions. The red circles on top of certain bars specify statistically significant fold changes at a P value of <0.01. The peptides used were
10,440 random peptides (training data set) using VF and healthy controls (A), 96 VF predictor peptides (training data set) within the 10,000 microarray
(B), 96 resynthesized VF predictor peptides (training data set) for the VF-diagnostic assay (C), and 96 resynthesized VF predictor peptides (test data set)

for the VF-diagnostic assay (D).

other common agents of community-acquired pneumonias and
infections causing flu-like symptoms.

As noted, for VF, a clinically important issue is the people who
report symptoms caused by infection with VF and yet do not test
as seropositive by the standard immunological tests, the patients
with a CF titer of 0. Using the 10,000-peptide immunosignature
array, we demonstrated that there were 1,586 peptides that were
reproducibly different between the samples from patients with VF
and those from patients without VF. The non-VF samples in-
cluded ones from patients who had received the influenza vaccine
as part of an effort to exclude influenza infection signatures. Note-
worthy is that a large portion of this signature was composed of
peptides that had lower signal in the VF infection samples than the
noninfection samples. We have noted this phenomenon before
(13, 19, 26). This type of reactivity is not easily detected in stan-
dard ELISA-like methods. We pose that this may be due to the
infection causing suppression or elimination of B cell-producing
antibodies that are normally present in most healthy persons.

A reasonable strategy for developing immunosignatures is to
use the large 10,000-peptide array as a discovery format and then
produce subarrays with smaller numbers of peptides for the clin-
ical diagnostic. The possible advantages of the smaller arrays are
that they may be less expensive to manufacture, since fewer pep-
tides are required, the peptides might be of higher quality, and the

1176 cviasm.org

peptides may be simpler to read. To test this approach, we chose
96 peptides from the 1,586 peptides in the 10,000-peptide signa-
ture and pattern-matching analysis between the disease and non-
disease groups. Forty-eight peptides were chosen that were con-
sistently high in VF infection samples but low in influenza vaccine
samples, and 48 were chosen with the converse signature. From a
practical perspective, 96 is convenient, as it is the basic unit used in
peptide synthesis and is prevalent in fluidics chambers, gaskets,
and robotics. The peptides were selected based on their consistent
signal over all titers, even in the samples with a CF titer of 0 (false
negatives). We did not determine whether signatures that distin-
guish the titers can be selected to monitor VF progression, since
there were too few matched longitudinal patient samples. The
implication, however, is that the antibody reactivity that these
peptides measure is independent of that measured in the ID assay.
This VF diagnostic subarray was tested in a blinded test against
the VF infection and noninfection samples. The infection samples
included the samples with a CF titer of 0. While this subarray was
significantly more sensitive than the IDCF assay, it was less spe-
cific. This increase in sensitivity but loss of specificity was evident
in the samples with a CF titer of 0. The implication is that this
subarray at least needs to be used in combination with the stan-
dard ID assay to obtain maximum specificity and sensitivity.
Interestingly, the performance of the subarray was poorer than
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that of the 10,000-peptide array. This may in part be due to the
selection criteria for the 96 peptides, which were positive for in-
fluenza vaccine recipients only. The peptides selected against a
wider assortment of non-VF infection samples might perform
better. It may also be that the additional peptides on the 10,000-
peptide array distribute the antibody response to infection with a
finer resolution, enabling high sensitivity and specificity. The
10,000-peptide format may have the advantage of being used to
discriminate multiple infections on the same platform, a true test
of specificity for any diagnostic method.

We have demonstrated that the immunosignature platform
has clinical diagnostic potential relative to VF infection. It can
address the clinical problem of the infections producing a CF titer
of 0, either in the 10,000-peptide format or the subarray format in
combination with the standard ID assay. There are ~50 million
people in the regions endemic for VF, with an estimated 30%
being exposed over time to the infectious agent. However, since
most people have little, if any, symptoms, it is unlikely that a
diagnostic would be used generally to screen for VF infection.
There is an existing standard antifungal treatment (fluconazole)
and a new one in development (Nikkomycin Z). An improved
diagnostic can at least identify symptomatic patients more accu-
rately as having VF and may allow more effective use of treatments
rapidly following the onset of symptoms and diagnosis.
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