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The identification of host or pathogen factors linked to clinical outcome is a common goal in many animal studies of infectious
diseases. When the disease is fatal, statistical analysis of such factors may be biased from missing observations due to deaths. For
example, when observations of a subject are censored before completing the intended study period, the complete trajectory will
not be observed. Even if the factor is not associated with outcome, comparisons of data from survivors with those from nonsur-
vivors may lead to the wrong conclusions regarding associations with survival. Comparisons between subjects must account for
differing observation lengths for those who survive relative to those who do not. Analyzing data over an interval common to all
subjects provides one solution but requires eliminating data, some of which may be informative about the differences between
groups. Here, we present a novel approach, matched longitudinal analysis (MLA), for analyzing such data based on matching
biomarker intervals for survivors and nonsurvivors. We describe the results from simulation studies and from a study of mon-
keypox virus infection in nonhuman primates. In our application, MLA identified low monocyte chemoattractant protein-1
(MCP-1) levels as having a statistically significant association with survival, whereas the alternative methods did not identify an
association. The method has general application to longitudinal studies that seek to find associations of biomarker changes with
survival.

In studies of high-consequence pathogens, human studies of in-
fection are typically not possible, making animal models the

primary basis for evaluating both the immunological processes
related to infection and therapeutic efficacy. The U.S. FDA code of
regulations allows for the approval of drugs or products for hu-
man use when human studies are not feasible; these regulations
are commonly and collectively referred to as the Animal Rule (1).
Animal studies allow for more extensive characterization of the
host response to infection than might typically be possible in hu-
mans; more variables may be controlled and evaluated, including
the timing and route of infection. A goal of such studies may be to
identify host or pathogen factors associated with disease outcome
(such as survival) in order to characterize pathophysiologic mech-
anisms and to suggest novel therapeutic targets. The identification
of factors associated with survival is an objective that differs from
a comparison of preidentified groups (e.g., treatment versus pla-
cebo control) and may require nonstandard statistical methods.

When subjects succumb to infection, observations are cen-
sored at the time of death, resulting in shorter observation times
relative to those subjects surviving infection. Subjects observed for
shorter periods may not have attained their potential maximum
value (for biomarkers that tend to increase) or their potential
minimum value (for biomarkers that tend to decrease), which can
bias group comparisons in favor of falsely identifying an effect. As
an example, assume a biomarker of interest increases up until day
10 and then gradually declines to preinfection levels by day 30 in
survivors. Further, assume the biomarker is not associated with
survival, so the true trajectories of survivors and nonsurvivors are
identical. As an extreme hypothetical example, consider the case
that all subjects who succumb do so on the second day after inoc-
ulation. It follows that subjects who survive infection are more
likely to have higher biomarker levels than subjects who succumb,
simply as a result of the longer observation times and not due to
any true differences between survivors and nonsurvivors. As a
result, comparisons of summaries between survivors and nonsur-
vivors over the entire observation periods may lead to incorrect

conclusions about the association of survival with biomarker lev-
els. We refer to this approach as the naive approach.

An alternative to the naive approach is the standard derived
variable approach, which summarizes trajectories over a common
interval length; this is a common statistical approach for variable
observation lengths. One might, for example, summarize the bio-
marker up until the time of the first death or up until a preselected
time point before any deaths. This requires ignoring potentially
informative data, which might reduce power. Further, unless a
specific time point after infection is known a priori to be critical,
one consequence of this approach might be the elimination of the
meaningful differences that occur after selected time points.

In this paper, we develop an approach, called matched longi-
tudinal analysis (MLA), to overcome these limitations. The per-
formance of MLA is compared to those of the naive and standard
derived variable approaches using computer simulation studies
and data from a monkeypox virus (MPXV) experiment. The ap-
plication of our approach to the MPXV nonhuman primate study
indicates that monocyte chemoattractant protein-1 (MCP-1) is
associated with outcome.

MATERIALS AND METHODS
The statistical methods developed in this study are motivated from a study
of MPXV infection of nonhuman primates (NHPs) (2). One goal of this
study was to identify cytokines associated with improved survival that
might lead to candidate therapeutic targets. Briefly, cytokines in 21 cyno-
molgus macaques (Macaca fascicularis) from a recent study comparing 2
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routes of MPXV inoculation were measured at regular intervals up until
death or the end of the study period (36 days postinoculation). In this
study, 12 NHPs survived infection, while 9 succumbed to disease. The
challenge (i.e., pathogen) dose and route were divided as follows: 5 � 107

PFU intravenous (i.v.) (n � 6), 5 � 106 PFU i.v. (n � 6), 5 � 106 PFU
intrabronchial (i.b.) (n � 3), and 5 � 105 PFU i.b. (n � 6). All animal
handling procedures were approved by the National Institute of Allergy
and Infectious Diseases Animal Care and Use Committee and adhered to
National Institutes of Health (NIH) policies. More details about the ani-
mal care, assays, and data collection can be found in Johnson et al. (3).

Our goals were to determine the disease pathogenesis of MPXV in
NHPs in order to discover potential therapeutic targets. Historically,
studies perform comparisons of infected and uninfected groups to iden-
tify what is elevated during the disease process. Comparisons of unin-
fected and infected NHPs provide data pertaining to changes during the
disease process but not factors associated with lethal disease. For example,
previous orthopoxvirus studies have listed the “cytokine storm” or tox-
emia as the cause of death (3). However, these comparisons were made to
the preinfection state, when one would expect that cytokines or other
immunological factors would not be elevated. Therefore, identifying fac-
tors that are associated with lethal disease by comparing subjects who
succumbed to those who survived may provide enhanced insight into
pathogenesis and identify potential therapeutics.

Evaluations using standard methodology do not account for varia-
tions in the time until death, and there are no guidelines for which features
of the trajectory to analyze. For example, should comparisons occur at a
study midpoint, at the endpoint only, or at the peak measurement? To
illustrate such problems, consider Fig. 1. Figure 1 displays profiles from
two cytokines, monocyte chemoattractant protein-1 (MCP-1) and inter-
leukin 2 (IL-2), evaluated over time from challenge until the end of the
study or death. The analysis of these profiles is complicated by many
factors, including the nonlinear trajectory after infection, appropriate
treatment of the repeated measurements for each subject, and missing
observations that occur after an animal succumbs to infection.

The repeated measurements of a biomarker over time for a given sub-
ject can be analyzed using a derived variables approach, in which the

profile is described by a single summary measure. Various summaries of
the curves in Fig. 1 can be considered, including the area under the curve
(AUC), maximum, average, and slope from a linear regression. The ap-
propriate summary measure will depend on the underlying process. Prior
knowledge about the mechanism can guide the selection of the preferred
approach prior to performing data analysis. For example, if exposure to a
cytokine concentration of some threshold is most important, the maxi-
mum value may be appropriate. On the other hand, if the total exposure is
important, the AUC may be preferred. For linear trajectories, change over
time as described by the slope may be appropriate. When little is known
about the mechanism, multiple summaries may be considered, but this
requires accounting for multiple testing (4).

After the derived variable has been computed, standard statistical tests
(e.g., a t test or a Wilcoxon signed-rank test) can be performed on the
derived variables among survivors and nonsurvivors to test for an associ-
ation. When observation lengths between subjects vary, a straightforward
statistical test is not appropriate. The standard derived variable approach
computes the variable over a common interval, which may limit the ability
to detect true differences.

Matched longitudinal analysis (MLA) allows for comparisons between
subjects with differing lengths of observations using derived variables.
With this method, observations from survivors and nonsurvivors are
paired (at random), and the derived variable is computed over the time
interval shared by the pairs. In other words, the longitudinal profile for a
survivor is matched to the same interval as that for its (randomly
matched) nonsurvivor, and then the data are summarized backwards in
time over the common interval. Figure 2 displays one such match for two
examples from the MCP-1 and IL-2 results. The difference between the
derived variables for each pair is computed, and then a paired t test (or
Wilcoxon signed-rank test) is applied to the two groups to obtain a P
value. This is unappealing, however, because the P value depends on the
particular randomly paired set, for which there are many possible combi-
nations. Therefore, this process is repeated many times to obtain a set of
different P values. This method is akin to the bootstrap, a resampling
based method frequently employed when parametric inference is intrac-
table, although here the sampling requires pairing (or sampling without

FIG 1 MCP-1 and IL-2 trajectories for 21 NHPs from day of challenge (day 0) until clinical moribund endpoint or end of study (35 days). Red trajectories are
from NHPs that succumbed to infection, while green represents those that survived infection. Note that for MCP-1, the survivors (green) have consistently lower
values than nonsurvivors (red), while for IL-2, there are not large differences between the survivors and nonsurvivors.
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replacement) (5). In such methods, resampling is frequently undertaken a
minimum of 200 times, depending on computational burden. In our
analyses, 1,000 repeated samples were taken to ensure reasonable preci-
sion in estimating the P value. To summarize the results across these
different pairings, an overall P value is computed using the inverse normal
method of combining P values, as described in the Appendix. Figure 3
provides a graphic detailing the steps of the algorithm. An average of the
derived variable across the repeated replicates by group (and the differ-
ence between the groups) provides point estimates. Note that the averages
require thoughtful interpretation, as they represent averages taken over
different time intervals, corresponding to the death times among the non-
survivors. A confidence interval on the difference can be obtained by
taking the average difference and standard deviation across the random
pairings, using a t distribution, as described in the Appendix.

Note that the case above assumes there are more survivors than non-
survivors, which is not always the case. When there are more nonsurvivors
than survivors, a matching nonsurvivor is selected at random, without
replacement, for each survivor. Adequate numbers of nonsurvivors and
survivors are needed. Indeed, equal numbers of survivors and nonsurvi-
vors is the most efficient allocation, which suggests the use of the 50%
lethal dose (LD50) as the challenge dose for such studies. The recom-
mended total sample size will depend on the effect size of interest and the
variability in the measured markers, but 5 survivors and 5 nonsurvivors
seem to be reasonable minimum numbers for undertaking this analysis.
Additionally, we recommend collecting data at the same times postinfec-
tion for all subjects in order to match the time points. Interpolation of the
values between the time points will be necessary if the times do not match
up exactly.

We conducted computer simulation studies to evaluate the perfor-
mance of the MLA method relative to the naive and standard derived
variable approaches. Specifically, we evaluated whether the proposed
methodology produces appropriate rejection rates when there is no dif-
ference between the groups. In other words, we evaluated whether the
type I error rate was at the nominal level, which is commonly set to 0.05.
Additionally, because we simulate under scenarios with true differences,
we evaluated the proportion of times the method concluded statistical

significance to better understand the power of the test under specific mod-
els with true differences.

Simulation studies require mathematical models describing the longi-
tudinal trajectories and the variability associated with subject-specific dif-
ferences and measurement. To generate reasonable models, we fit third-
order polynomial models with random intercepts to the MCP-1 and IL-2
cytokine MPXV data. The parameters estimated from these models were
the basis for the generated data. In the MPXV study, roughly half of the
subjects succumbed. To simulate who lived or succumbed, we used the
statistical equivalent of flipping a fair coin (i.e., a binomial distribution
with probability ½). For those who “lost the coin toss,” the times of death
were generated, assuming a uniform distribution on the interval from 5 to
20 days.

Two null models were derived, one based on MCP-1 and another on
IL-2. The null models were derived by fitting a single polynomial model
for both survivors and nonsurvivors. The models were fit separately for
MCP-1 and IL-2. The models under alternative hypotheses (i.e., when
true differences between survivors and nonsurvivors exist) were derived
by fitting such models separately for survivors and nonsurvivors. This
gave a total of four models: two with no true differences and two with true
differences. Figure 4 displays the observed data from the MPXV experi-
ment, along with the models used to generate the data and example real-
izations of the trajectories that were simulated accordingly. For each
model, we considered sample sizes of 10, 15, 20, and 40. We generated
100,000 data sets for each of the four sample sizes considered under each
of the four models, requiring a minimum of 5 survivors and 5 nonsurvi-
vors for estimation and inference. For each data set generated, we com-
puted P values based on the following approaches: (i) the naive approach,
which ignores the censoring and computes the derived variable on all
observed data, (ii) the standard derived variable approach, which summa-
rizes data over a common interval (in our case, we computed derived
variables up to the time of the first death for all subjects), and (iii) the MLA
method. We computed derived variables based on a slope from a linear
regression model, the maximum value, and the AUC. Simulations were
run on the NIH Biowulf cluster using the package R.

Finally, we applied the standard and MLA approaches to the MCP-1

FIG 2 One representative matched pair of a nonsurvivor (red) and survivor (green) for MCP-1 and IL-2. The black vertical line indicates the period from
baseline over which cytokine profiles are compared back to the day of challenge (day 0). To obtain a P value, nonsurvivors are matched to each survivor. As
described in Materials and Methods, this analysis is repeated 1,000 times, and an overall P value is obtained according to the method described in the Appendix.

Matched Longitudinal Analysis of Biomarkers

August 2014 Volume 21 Number 8 cvi.asm.org 1147

http://cvi.asm.org


FIG 3 Algorithm for computing P values using MLA. The x axis shows the number of days from challenge. The y axis shows the concentration in pg/ml.
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FIG 4 Simulated cytokine data from day of challenge (day 0) until end of study (day 30) using MCP-1 MPXV data as the basis for model derivation. (a)
Longitudinal data for MCP-1 from all subjects. The three smooth curves represent the three models that were fit. The dotted black line represents the curve used
to generate data under the null hypothesis. Specifically, the model is cytokineij � 47 � 166d � 9d2 � 0.13d3 � ai � eij, where ai is �N(0, 680) and eij is �N(0,
680) for both survivors and nonsurvivors. The smooth green and red lines describe the data used to generate survivors (green) and nonsurvivors (red) under the
alternative hypothesis. The model is cytokineij � 136.9 � 57.8d � 4.3d2 � 0.07d3 � ai � eij, where ai is �N(0, 190) and eij is �N(0, 200) for survivors, and
cytokineij �188 � 44.2d � 24.5d2 � 1.02d3 � ai � eij, where ai is �N(0, 700) and eij is �N(0, 860) for nonsurvivors. (b) Example data that were generated under
the null model. (c) Generated data under the alternative model. (d to f) Same kinds of figures in the other panels but based on the IL-2 data. The model based on
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and IL-2 cytokines from the MPXV study. Under the standard derived
variable approach, the derived variables were computed in two ways: (i)
summarizing up until the first time of death (day 7), and (ii) summarizing
up until to the time at which all subjects had measurements for all time
points (day 5). Survivors (n � 12) were matched to the nonsurvivors (n �
9) 1,000 times to obtain a final P value.

RESULTS

Table 1 provides a summary of the simulation study results under
the two null hypotheses. The proportions of times statistical sig-
nificance was concluded (out of each of the 10,000 generated data
sets) are provided for each model, sample size, and method. For
the commonly chosen threshold of significance of a P value of
�0.05, a proper type I error rate ensures that if there are no true
associations, a conclusion of “association” will only be made 5 out
of 100 times over repeated experiments. Hence, all values in Table
1 should be �0.05. As expected, the naive approach rejected the
null hypothesis far more than it should for all models, all derived
variables, and all sample sizes. In contrast, the standard derived
variable approach and MLA approach are near the 0.05 level. Note
that the MLA is conservative, and the degree of conservativeness
varies with the choice of the derived variable and sample size.

A high rejection rate under the null hypothesis makes a method
invalid; hence, the naive approach was not considered when eval-
uating power. Table 2 describes the rejection rates for the MLA
method and the standard derived variable approach under the two
models when true differences existed between trajectories for sur-
vivors and nonsurvivors. The MLA (correctly) concluded statisti-
cal significance more frequently than the standard derived vari-
able approach for both models and all sample sizes. This is not
surprising, because the MLA uses more data from each subject.

Note that in some cases, the power of the standard derived variable
method decreases as the sample size increases. This occurs because
as the sample size increases, the time of the last death tends to
occur earlier (e.g., at day 5), which reduces the common time
interval. For the models considered, the differences were smaller
at day 5, resulting in lower power for the standard derived variable
approach with larger sample sizes.

Comparisons of MLA and the standard derived variable ap-
proach applied to the MPXV data are provided in Table 3. The
MLA analysis concluded that lower MCP-1 concentrations are
associated with survival from infection (P � 0.05 for the AUC,
maximum, and slope summary measures). However, the two ap-
proaches based on derived variable analysis, namely, “infection to
day of first death” and “infection to day 5,” failed to identify an
association between MCP-1 concentration and survival. With re-
gard to IL-2, none of the methods found associations between IL-2
concentration and survival. This may be due to a lack of power for
detecting an association, given the limited sample size. Alterna-
tively, a lack of significant change in IL-2 may reflect its role as an
upstream regulator of T-cell differentiation and functional path-
ways that are too far removed from downstream events associated
with outcomes (6). Table 4 provides point estimates and confi-
dence intervals. The values of MCP-1 are higher among the non-
survivors, suggesting further investigation of the potential role of
MCP-1 suppression for improved outcome.

DISCUSSION

Statistical analysis by MLA serves as a starting point for identifying
biomarkers that warrant further study and consideration for disease

TABLE 1 Simulation study results from two models without differences
between survivors and nonsurvivorsa

Sample size
for derived
variablesb

Null model 1 (MCP-1) Null model 2 (IL-2)

Naive Standard MLA Naive Standard MLA

Slope
10 0.156 0.039 0.007 0.552 0.045 0.009
15 0.285 0.047 0.004 0.791 0.050 0.005
20 0.397 0.047 0.006 1.000 0.049 0.005
40 0.703 0.049 0.008 0.994 0.050 0.009

Max
10 0.098 0.043 0.027 0.068 0.046 0.030
15 0.137 0.050 0.020 0.087 0.050 0.021
20 0.172 0.049 0.022 0.331 0.049 0.019
40 0.320 0.050 0.029 0.174 0.050 0.031

AUC
10 0.310 0.036 0.016 0.377 0.042 0.018
15 0.528 0.047 0.012 0.595 0.049 0.013
20 0.692 0.048 0.016 1.000 0.049 0.017
40 0.969 0.049 0.024 0.981 0.049 0.025

a Data are frequencies with which statistical significance is concluded using a nominal
level of 0.05.
b Max, maximum; AUC, area under the curve.

TABLE 2 Simulation study results from two models with true
differences between survivors and nonsurvivorsa

Sample size
for derived
variablesb

Alternative model 1
(MCP-1)

Alternative model 2
(IL-2)

Standard MLA Standard MLA

Slope
10 0.195 0.496 0.274 0.550
15 0.194 0.596 0.301 0.649
20 0.189 0.709 0.327 0.769
40 0.163 0.927 0.418 0.965

Max
10 0.415 0.733 0.129 0.285
15 0.548 0.898 0.130 0.383
20 0.653 0.978 0.131 0.555
40 0.916 1.000 0.135 0.933

AUC
10 0.245 0.342 0.082 0.076
15 0.371 0.548 0.085 0.108
20 0.489 0.813 0.083 0.197
40 0.825 0.999 0.076 0.573

a Data are frequencies with which statistical significance is concluded using a nominal
level of 0.05.
b Max, maximum; AUC, area under the curve.

IL-2 under the null hypothesis can be expressed as cytokineij � 18.4 � 13.3d � 0.837d2 � 0.013d3 � ai � eij, where ai is �N(0, 37) and eij is �N(0, 27). The
alternative models based on IL-2 is cytokineij � 25.6 � 12.25d � 0.87d2 � 0.015d3 � ai � eij, where ai is �N(0, 29.3) and eij is �N(0, 20) for survivors, and
cytokineij � 12.1 � 12.2d � 0.56d2 � 0.015d3 � ai � eij, where ai is �N(0, 45) and eij is �N(0, 28) for nonsurvivors.
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staging and/or therapeutic intervention. When the goal is to evaluate
associations of an immunologic marker or other biomarker with sur-
vival, we propose an analysis for censored longitudinal data based on
derived variables. In such instances, variable interval lengths result
due to censored observations at the time of death. The naive approach
that ignores the various interval lengths and that summarizes the
trajectories over the observed intervals for each animal produces P
values that are not valid. The standard derived variable approach that
summarizes trajectories up to a common time point for all subjects
gave valid type I error rates but had lower power than the MLA, which
uses more data and was expected to have greater power. In the appli-
cation, MLA identified MCP-1 as being significantly associated with
survival, while the standard derived variable approach failed to iden-
tify MCP-1 as significant.

More sophisticated statistical methods can be used to approach
this problem. For example, response trajectories can be modeled
using nonlinear mixed effects models (e.g., see reference 7). This
approach can address the problem of bias in cases where nonsur-
vivors expire before reaching a peak cytokine value, can allow for
a rich class of cytokine trajectories, and may make more efficient
use of limited serial measurements, although stronger model as-
sumptions are necessary for these alternative approaches. The de-
velopment of such methods is an interesting avenue for future
research on the identification of biomarkers associated with sur-
vival in animal challenge studies.

Finally, while we propose the AUC, maximum, and slope as po-
tential summaries of the biomarker trajectory, alternative summary
measures may be considered. For example, if interest resides in iden-
tifying factors immediately preceding death, comparing average val-
ues on the day before death may be the appropriate analysis. How-
ever, summaries immediately proximal to the time of death may be
irrelevant for identifying therapeutic candidates, as such associations
may simply be associated with death, such that related intervention
targets occur too late in the pathway to death to improve the out-
come. On a final note, adjustment for baseline measurements may be
relevant when computing summaries. A simple way to use change
from baseline is to take the difference (or log ratio) from baseline,
rather than from the observed values.

The R code necessary to run these analyses is available upon
request.

APPENDIX
Obtaining P values. Let Xij denote the observed cytokine from the
ith nonsurvivor at the jth time point, with i � 1, . . ., n, and j � 1,
. . ., N(i). Let the vector of responses be Xi � Xi1, . . ., XiN(i). Fur-
ther, let Ykl denote the observed cytokine from the kth survivor at
the lth time point, k � 1, . . ., m, and l � 1, . . ., Mk. Let the vector
of responses be Yi � Yi1, . . ., Xim.

Assume for now that n � m. The development for n � m is
analogous. The derived variable is some function over the avail-
able time points for the nonsurvivors, denoted f(Xi, Ni). Let K(i)
be the index for the survivor who is matched to nonsurvivor i. The
associated derived variable is f(YK(i), Ni). For example, this may be
the AUC, the maximum value, or the slope. The paired t test is
performed on [f(Xi, Ni), f(YK(i), Ni)] for i � 1, . . ., n, with n � 1
degrees of freedom, producing a single one-sided P value, denoted
Pr. This process is repeated many times (say r � 1,.., R times) to
obtain a set of R P values. The overall P value from the r � 1,.., R P
values, denoted Pr, for each P value is transformed to the normal
quantile scale using the equation Zr � 	�1 (1 � Pr). The average
of these Zr values, Z� , is computed and then the normal percentile
of Z� provides the overall one-sided P value, say P(Z� ). For an overall
two-sided P value, we take the minimum of [P(Z� ), 1 � P(Z� )] and
double it. This can be shown to be conservative by the following
argument: Zr denotes the normal quantile of the rth P value,
which, by definition, all have variance of 1. It follows that

var(Z� ) � var
1

R��
i�1

R

Zi� �
1

R
var(Zi)

�
1

R2 �
j�1

R

�
i�1

R

corr(Zi) � � 1

R
�

R � 1

R � � 1.

Computing confidence intervals. Consider the parameter
E[f(Xi, Ni), f(YK(i), Ni)], which is the matched mean difference in
derived variables. We can construct a confidence interval for this
parameter. To see this, note that for each random pairing, we can
create a sample mean and sample variance from the n data points
[f(Xi, Ni), f(YK(i), Ni)] for i � 1, . . ., n. For the rth of R random
pairs, denote these by D� r, Sr

2, respectively. We can construct a
two-sided (1 � 
) 100% confidence interval for E[f(Xi, Ni), f(YK(i),

TABLE 3 Comparison of MLA and standard derived variable approach
from MPXV study data comparing MCP-1 and IL-2 trajectories
between survivors and nonsurvivors

Analysis type by trajectorya

P values for the indicated variableb

Slope Maximum AUC

MCP-1
MLA 0.025c 0.002c 0.007c

Infection to day of 1st
death analysis

0.157 0.205 0.231

Infection to day 5 analysis 0.233 0.246 0.260

IL-2
MLA 0.181 0.471 0.464
Infection to day of 1st

death analysis
0.275 0.940 0.600

Infection to day 5 analysis 0.775 0.501 0.422
a The standard derived variable approach considered two common time points: day
from challenge to day of first death and day from challenge to day 5.
b P values were computed using the following derived variables: regression slope,
maximum value and AUC.
c Statistically significant at P � 0.05.

TABLE 4 Point estimates and confidence intervals for MCP-1 and IL-2

Data by derived variablea MCP-1 IL-2

Slope
Survivors 18.0 4.7
Nonsurvivors 208.3 8.7
Difference (95% CI) 190.4 (26.9, 353.9) 4.0 (�2.6, 10.5)

Max
Survivors 559.3 92.2
Nonsurvivors 2,823.2 116.2
Difference (95% CI) 2,163.9 (978.3, 3,349.6) 24.0 (�51.0, 99.0)

AUC
Survivors 3,341.3 696.5
Nonsurvivors 16,446.3 881.8
Difference (95% CI) 13,105.0 (4,545.8, 21,663) 185.3 (�464.5, 835.2)

a CI, confidence interval; Max, maximum; AUC, area under the curve.
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Ni)], by the usual t-based confidence interval D� r � t
/2,n�1

�Sr2⁄n, where t
/2,n�1 is the 
/2 quantile of a t distribution with
n � 1 degrees of freedom. To improve on this interval, we can
replace D� r, Sr

2 with their averages over the R samples, say D� , S�2. We

thus form D� � t
/2,n�1 �S2⁄n� as our two-sided (1 � 
) 100%
confidence interval.
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