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Animal and human data from various viral infections and vaccine studies suggest that nonneutralizing antibodies (nNAb) without
neutralizing activity in vitro may play an important role in protection against viral infection in vivo. This was illustrated by the recent
human immunodeficiency virus (HIV) RV144 vaccine efficacy trial, which demonstrated that HIV-specific IgG-mediated nNAb di-
rected against the V2 loop of HIV type 1 envelope (Env) were inversely correlated with risk for HIV acquisition, while Env-specific
plasma IgA-mediated antibodies were directly correlated with risk. However, tier 1 NAb in the subset of responders with a low level of
plasma Env-specific IgA correlated with decreased risk. Nonhuman primate simian immunodeficiency virus (SIV) and simian-human
immunodeficiency virus (SHIV) challenge studies suggest that Env-mediated antibodies are essential and sufficient for protection. A
comparison of immune responses generated in human efficacy trials reveals subtle differences in the fine specificities of the antibody
responses, in particular in HIV-specific IgG subclasses. The underlying mechanisms that may have contributed to protection against
HIV acquisition in humans, although not fully understood, are possibly mediated by antibody-dependent cell-mediated cytotoxicity
(ADCC) and/or other nonneutralizing humoral effector functions, such as antibody-mediated phagocytosis. The presence of such
functional nNAb in mucosal tissues and cervico-vaginal and rectal secretions challenges the paradigm that NAb are the predominant
immune response conferring protection, although this does not negate the desirability of evoking neutralizing antibodies through vac-
cination. Instead, NAb and nNAb should be looked upon as complementary or synergistic humoral effector functions. Several HIV
vaccine clinical trials to study these antibody responses in various prime-boost modalities in the systemic and mucosal compartments
are ongoing. The induction of high-frequency HIV-specific functional nNAD at high titers may represent an attractive hypothesis-test-

ing strategy in future HIV vaccine efficacy trials.

he identification of immune markers that correlate with pro-

tection against infection or disease after vaccination (or natu-
ral infection) remains the “holy grail” for vaccine scientists, as
these immune markers have the potential to expedite vaccine de-
velopment and provide unique insights into the pathogenesis of
infection. For most of the vaccines available today, a functional
antibody response is the identified correlate of protection (1). In
the cases of candidate preventive human immunodeficiency virus
(HIV) vaccines and experimental vaccines against the closely re-
lated retrovirus simian immunodeficiency virus (SIV), recent
studies have suggested an antibody correlate of risk or protection.
However, these studies suggested an association with antibodies
that did not mediate broad or potent neutralization (2-5).

Transmission of HIV type 1 (HIV-1) occurs through homo-
sexual or heterosexual intercourse, through injection of blood or
blood-derived products, and from mother to child during preg-
nancy, at delivery, or through breastfeeding. Although several
nonexclusive mechanisms may contribute to protection from
HIV-1 acquisition (6), given the confounding variables of risk,
route, and intensity of exposure, thinking about the HIV-1 im-
mune correlates of protection has been dominated by the para-
digm that the induction of neutralizing antibodies (NAb), in par-
ticular broadly neutralizing antibodies (bNAb) covering 50 to
90% of transmitted viruses, should be the goal of vaccine devel-
opment efforts (7, 8). With regard to HIV-1, the Thai RV144 trial
showed that vaccine-induced IgG antibody against the first and
second variable domains (V1V2) of the surface glycoprotein en-
velope (Env) was associated with lower risk of HIV infection but
that IgA against Env was directly associated with risk of infection
(2,9, 10). While these V1V2 antibodies are not broadly neutraliz-
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ing, they do appear to mediate antibody-dependent cell-mediated
cytotoxicity (ADCC) and limited, tier 1 NAb (11-14), and in the
setting of a low level of Env-specific IgA, they are inversely corre-
lated with the risk of infection. In addition, several groups have
described correlates of protection against the acquisition of SIV
(4, 5, 15, 16) exclusive of bNAD. These findings prompted this
review of the potential functions of vaccine-induced antibody re-
sponses, aside from in vitro neutralization, that may contribute to
protection against HIV-1 acquisition (17).

We review the vaccine-induced immune mechanisms of pro-
tection that are antibody mediated for viral diseases, along with
the latest findings of the RV144 correlate-of-risk analysis suggest-
ing that nonneutralizing antibodies (nNAb) can be functional and
indeed neutralize pathogens in vivo, including HIV-1.

LESSONS LEARNED FROM NON-HIV VACCINES

Neutralization of viruses has long been considered the main
mechanism of protection, and this may well be true, but it also
must be admitted that neutralization is usually measured by pre-
vention of infection of cultured cells (18). Thus, these in vitro
measurements may or may not relate to the protection afforded by
prior infection or vaccination.
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A recent and comprehensive review on nNAb defines nNAb as
functional antibodies with low or no neutralization activity in
vitro (19). Functional nNAb have long been recognized as contrib-
uting to protection against non-HIV infections, such as, for exam-
ple, alphaviruses (20-22), flaviviruses (23-27), influenza virus
(28-32), respiratory syncytial virus (33, 34), vesicular stomatitis
virus (35), Ebola virus (36, 37), mouse hepatitis virus (38), cyto-
megalovirus (39—41), lymphocytic choriomeningitis virus (42),
and vaccinia virus (43). Vaccines against feline leukemia virus
protect by a mechanism that is not neutralization and may be
either nonneutralizing antibody or cytotoxic T lymphocytes (44).
nNADb function in multiple different ways, including ADCC, com-
plement-mediated cytotoxicity, steric inhibition of proteins im-
portant in viral replication, and antibody-dependent cell-medi-
ated phagocytosis (ADCP) (19, 45, 46). Plasma samples obtained
from convalescent HIN1-infected human subjects showed high
ADCC activity against pandemic HIN1 influenza virus. E1 and E2
ADCC epitopes overlapped immunodominant epitopes of hem-
agglutinin (47). Although high titers and the avidity of nNAD for
influenza vaccine antigen have also been associated with severe
influenza (48), nNAb induced by influenza vaccines that fail to
prevent influenza infection may nevertheless have collateral ben-
efit, protecting against secondary bacterial diseases like Streptococ-
cus pneumoniae and Klebsiella pneumoniae when a neutralizing-
antibody-inducing vaccine is not available (49). Moreover, nNAb
act together with CD8™ T cells to confer heterosubtypic immunity
(31). Although nNAb may not prevent infection, they may modify
disease. nNADb to Sindbis virus in mice lyse virus-infected cells and
prevent encephalitis (20). nNAD also can reduce the neuroviru-
lence of flavivirus infection (23) and play an alternative role either
in protection or in enhancement of disease (26, 27). Although
protection against rotavirus is usually mediated by neutralizing
antibodies directed against the vp4 or vp7 attachment protein,
nonneutralizing IgA antibodies directed against the vp6 capsid
protein also protect by inducing a conformational change in the
trimer (50). In the case of lymphocytic choriomeningitis virus,
chronic infection can be prevented in mice if nonneutralizing,
binding antibody that interacts with T cells is present at the time of
challenge (40, 42). The ubiquity of these phenomena argue that
functional nNAD are important in protection against viral infec-
tion without negating in any way the desirability of evoking neu-
tralizing antibodies through vaccination (51).

NONNEUTRALIZING ANTIBODIES AND CANCER THERAPY

HIV and cancer share interesting similarities; in both, it is pre-
sumed that in order to be effective, all affected cells (productively
infected and neoplastic, respectively) must be eliminated. Like
cancer cells, HIV has evolved mechanisms to evade or suborn
immune surveillance. Monoclonal antibody (MAb) treatment of
solid-tumor malignancies is associated with the development of
resistance due to a broad array of potential genetic alterations
(52). In cancer, numerous proteins are expressed at the surfaces of
tumor cells, representing potential targets for therapeutic and, by
definition, nonneutralizing MAb. The killing of tumor cells is ac-
complished via several mechanisms, including direct action of the
antibody through receptor blockade or agonist activity, induction
of apoptosis, delivery of a drug or cytotoxic agent, complement-
dependent cytotoxicity, ADCC, regulation of T-cell function, and
specific effects of an antibody on tumor vasculature and stroma
(reviewed in references 53 and 54). Several MAD, such as ritux-
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imab, an anti-CD20 antibody with good activity in patients with
chronic lymphocytic leukemia (CLL), have now been licensed for
clinical use. During clinical CLL, there are millions of transformed
cells per milliliter of blood. In contrast, the target of an HIV-
specific nNAb are the few cells infected (with a single transmitted/
founder virus [9]) during inchoate HIV infection.

HIV-1 VACCINE EFFICACY TRIALS USING RECOMBINANT
ENVELOPE PROTEINS

Data from three studies of nonhuman primate (NHPs) (4, 5, 55)
have suggested that Env is a necessary component for successful
protection from SIV acquisition. The failure of the Merck recom-
binant adenovirus type 5 (rAd5) Gag-Pol-Nef vaccine seems to
support this finding (56, 57). Monomeric gp120 HIV-1 envelope
proteins alone failed to protect high-risk volunteers in two efficacy
trials, Vax003 (58) and Vax004 (59-61), while the RV144 prime-
boost regimen using a recombinant canarypox vector prime and
the same alum-adjuvanted envelope protein boost used in Vax003
conferred modest protection against HIV acquisition (62). An-
other efficacy trial (HVTN 505) tested a regimen with a DNA
vaccine prime composed of DNA plasmids encoding Gag, Pol,
and Nef from HIV-1 subtype B and Env from subtypes A, B, and C
and a replication-defective-rAd5-HIV-1 vaccine boost contain-
ing a mixture of four rAd5 vectors encoding the HIV-1 subtype B
Gag-Pol and Env matching the DNA Env components. The phase
1IB trial was recently stopped for futility, showing no efficacy and
no statistically significant effect on viral load and a nonsignificant
excess of HIV infection in the vaccinated group (63). These find-
ings allowed for a comparison of the vaccine-induced immune
antibody responses between these three trials, which may shed
some light on our still-limited understanding of the potential
mechanisms of protection.

Vax003 AND Vax004 MONOMERIC HIV-1 ENVELOPE
PROTEIN EFFICACY TRIALS

Vax004 tested AIDSVAX B/B, a bivalent recombinant HIV-1 sub-
type B (GNE8 and MN) gp120 envelope glycoprotein subunit vac-
cine in U.S. men who have sex with men (MSM) and women at
high risk for heterosexual transmission of HIV-1 (59). The vaccine
did not prevent HIV-1 acquisition, nor did it affect HIV-1 disease
progression (61). High NAD levels against the easy-to-neutralize
MN strain were, however, significantly inversely correlated with
HIV-1 incidence, while low levels against more-difficult-to-neu-
tralize viruses did not, suggesting that the level and breadth of
elicited NAb were not sufficient for protection (60). Interestingly,
the level of vaccine-induced antibody-dependent cellular virus in-
hibition (ADCVI) activity correlated inversely with the rate of
acquiring HIV-1 infection following vaccination. Moreover,
ADCVTI activity correlated poorly with NAb or CD4-gp120-block-
ing antibody activity measured against laboratory strains and was
modulated by Fc receptor (FcR) polymorphisms (64).

Vax003 tested AIDSVAX B/E, a bivalent recombinant HIV-1
subtype B/E (A244 CRF01_AE and MN subtype B) gp120 enve-
lope glycoprotein subunit vaccine in injection drug users in Bang-
kok, Thailand. The vaccine did not prevent HIV-1 acquisition,
nor did it affect HIV-1 disease progression. Prior to infection, the
levels of (i) antibodies to gp120, A244 V2, and A244 V3, (ii) block-
ing of A244 binding to CD4, and (iii) MN neutralization were not
significantly different between the HIV-infected and uninfected
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vaccine recipients and did not correlate with the rate of HIV in-
fection (58).

RV144 PRIME-BOOST EFFICACY TRIAL

Vaccine efficacy. RV144, consisting of an ALVAC HIV vaccine
(vCP1521) prime and an AIDSVAX gp120 B/E boost, provided
the first evidence that an HIV-1 vaccine can provide protective
efficacy against HIV-1 acquisition. A modified intent-to-treat
analysis showed estimated efficacies of 31.2% after 42 months (62,
65), 60% at 12 months, and 44% at 18 months after the first vac-
cination, suggesting an early, but nondurable, vaccine effect (66).
Vaccination did not affect the clinical course of HIV-1 disease
after infection, though there was evidence of reduction in seminal
fluid viral load (67).

Vaccine-induced immune responses. Gamma interferon
(IFN-vy) enzyme-linked immunosorbent spot assay (ELISPOT)-
positive responses were detected in 41% of the vaccinees and were
predominantly CD4" T-cell mediated. Responses were targeted
within the HIV-1 Env region, with 60% of vaccinees recognizing
peptides derived from the Env V2 region, which includes the a 47
integrin binding site (68, 69). Intracellular cytokine staining con-
firmed that Env responses predominated and were mediated by
polyfunctional effector memory CD4™ T cells. All Env-specific
CD4™" T-cell lines displayed a cytolytic activity despite the absence
of CD8™ T cells (70).

Binding antibody against the MN and A244 Env vaccine anti-
gens was nearly uniformly present but dropped 15-fold after 6
months; p24 responses were less frequent. Antibody-dependent
cell-mediated cytotoxicity (ADCC) in vaccine recipients and MAb
from vaccine recipients mediating ADCC were described previ-
ously (13,71). Whereas NAD to tier 1 viruses were detected in both
RV144 and Vax003, the tier 1 NAb titers were higher after the
RV144 regimen (ALVAC HIV vaccine prime and two-protein
boosts) than after two gp120 protein administrations alone, con-
firming a priming effect for the ALVAC HIV vaccine (11). Further
analysis suggested that the lack of a clade-specific HIV-1 NAb
response was associated with the presence of certain HLA class II
alleles and heterodimers in Southeast Asians (72).

Correlates of protection. The RV144 trial provided a unique
opportunity to perform a case-control study of correlates of risk
for HIV acquisition. Plasma IgG binding antibody to scaffolded
gp70 V1V2 CaseA2 envelope protein (HIV-1 subtype B) corre-
lated inversely with risk, while Env plasma IgA correlated directly
with risk, raising the hypotheses that IgA responses directed
against Env and IgG responses directed against V1V2 may be
mechanistically associated with protection but in opposite direc-
tions. Neither low levels of V1V2 antibodies nor high levels of
Env-specific IgA antibodies were associated with higher rates of
infection than in the placebo group. In vaccinees with low levels of
Env-specific IgA antibodies, levels of 1gG avidity, ADCC, NAb,
and Env-specific CD4™" T cells were inversely correlated with risk
of infection (2, 3, 73). A subsequent analysis showed that RV144
antibodies to subtype A, C, and CRFO1_AE gp70 V1V2 scaffolded
proteins also correlated inversely with risk (74), suggesting that
the RV144 regimen might protect against heterosexual transmis-
sion of HIV strains heterologous (A and C) to the vaccine compo-
nents. Two weeks after the last vaccination, 97% of RV144-studied
plasma samples from vaccine recipients contained antibodies to
V2 region synthetic peptides, falling to 19% at 48 weeks, suggest-
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ing that waning vaccine efficacy may be correlated to waning V2
antibody response.

Interestingly, gp70 V1V2 antibodies were lower in HVTN 505
than in RV144 (75). The response to V3 CRF01_AE also inversely
correlated with the risk of HIV infection in vaccine recipients with
lower levels of Env-specific plasma IgA and neutralizing antibod-
ies. In Vax003 and Vax004 (no protection), serum IgG responses
targeted the same epitopes as in RV144, with the exception of an
additional C1 reactivity in Vax003 and infrequent V2 reactivity in
Vax004. These results along with a recent sieve analysis (76) gen-
erate the hypothesis that IgG to linear epitopes in the V2 and V3
regions of gp120 are part of a complex interplay of immune re-
sponses that contributed to protection in RV144 (77).

Approximately 90% of the incident infections in RV144 were
infections with CRFO1_AE, the predominant circulating strain in
much of Southeast Asia (78, 79). A sieve analysis identified two
vaccine-associated genetic signatures in V2 corresponding to sites
169 and 181, further supporting the hypothesis that vaccination-
induced immune responses directed against the V2 loop were as-
sociated with protection (9). Monoclonal antibodies from RV144
vaccine recipients contact the V2 K169 residue, providing addi-
tional evidence that vaccine-induced antibodies correspond to the
observed sieve effect. These V2-specific antibodies can mediate
ADCGC, neutralization, and low-level virus capture (12, 80). These
findings generate the hypothesis that V2 IgG plays a role in pro-
tection against HIV-1 acquisition but do not distinguish between
a mechanistic or nonmechanistic means of protection (81).

In sera from HIV-1 CRF01_AE-infected blood donors, nine
ADCC epitopes have been localized to the C1 and V2 region of
gp120 (82). Sequences in gp70 V1V2 antigens other than V2, such
as Cl and V1, may significantly contribute to the binding re-
sponses. It is suggested that nNAb mediating ADCC that can block
HIV infection are directed against viral entry epitopes, including
the CD4-inducible A32 epitope of a highly conserved region of
gp120 at the gp120-gp41 interface (83), and there is evidence of
cooperativity between the anti-C1 and anti-V2 activities, with in-
creased anti-V1V2 binding in the presence of vaccine-induced
anti-C1 antibody (84). This epitope was a target of ADCC-medi-
ating MADb isolated from RV144 vaccinees (13). Some light has
recently been shed on the role of plasma IgA in RV144. In the
presence of low anti-Env IgA, both ADCC and NAD responses
correlated with decreased risk of infection. ADCC responses were
predominantly directed to the C1 conformational region of gp120
(13, 85, 86). These ADCC antibodies mediated cross-clade target
cell killing. ADCC-mediating antibodies exhibited low levels
(0.5% to 1.5%) of somatic mutations of the V heavy (VH) chain
and disproportionately utilized VH1 family genes (74%) (13),
similar to what occurred with CD4 binding site bNAb; however,
these antibodies clearly differed from bNAb in both degree of
somatic hypermutation and neutralization (87, 88). IgA antibod-
ies elicited by RV144 block C1 region-specific IgG-mediated
ADCC (10). Whether V2 antibodies might block the gp120-a4p37
interaction and contribute at least partially to the protective
effect against HIV-1 sexual transmission remains to be demon-
strated (89-91). In future trials, assessing IgG and IgA to V1V2
binding antibody immune responses in the mucosal compart-
ments will be key.

In previous clinical studies, monomeric gp120 induced high
levels of Env-specific 1gG4 antibodies (92), while an ALVAC
(vCP1452) prime and an MN gp120 in alum boost elicited lower
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levels of 1gG4 than of IgG1 and IgG3 antibodies (93). Antigen-
specific IgG3 antibodies are associated with long-term control of
Plasmodium falciparum (94) and monocyte-mediated cellular in-
hibition of parasite growth in vitro (95). Similarly, an early appear-
ance of chikungunya virus-specific neutralizing 1gG3 antibodies is
associated with clearance of the virus and long-term clinical pro-
tection (96). Conversely, an IgG4 response has been associated
with progression to AIDS (97). IgG3 can fix the complement and
has a high affinity for FcyR (98). In RV144, an Env IgG3 response
was correlated with decreased risk of HIV infection, a response
that declined rapidly compared to overall IgG responses (99). A
recent comparison of RV144 and Vax003 showed that Env-spe-
cific IgG3 and V1/V2 IgG3 response rates were higher in RV144
vaccinees than in Vax003 vaccinees and, conversely, that IgG4
responses were considerably lower in RV144. V1/V2 IgG3 re-
sponses and I1gG3 responses specific for V1/V2 169K correlated
with decreased risk of HIV-1 infection after IgA adjustment (100).
Chung et al. recently showed that the RV144 regimen elicited
highly coordinated Fc-mediated effector responses, with the selec-
tive induction of highly functional IgG3 antibodies. In contrast,
Vax003 elicited monofunctional antibody responses influenced
by IgG4 selection. Moreover, only RV144 induced IgG1 and IgG3
antibodies targeting the crown of the HIV envelope V2 loop, al-
though with low coverage of breakthrough viral sequences (101).
It is speculated that ALVAC priming, due to its unique proinflam-
matory cytokine and chemokine response following vaccination
in rhesus monkeys and infection in human peripheral blood
mononuclear cells (PBMC), may shift the IgG subclass response to
IgG3 in humans after vector priming and envelope protein boost-
ing compared with envelope vaccination alone (102). The contri-
bution of Fc-FcyR interaction-mediated functions through
mechanisms such as ADCC, antibody-dependent cell-mediated
viral inhibition (ADCVI), and ADCP antibodies remains to be
explored (103, 104). A recent post hoc analysis of RV144 showed
an association between the FcyRIIC polymorphism, vaccine effi-
cacy, and correlates of risk, emphasizing the potential role of FcR
genetics in predicting vaccine efficacy (105).

NONHUMAN PRIMATE CHALLENGE STUDIES

Several nonhuman primate (NHP) challenge studies support the
RV144 findings. Vaccination with ALVAC SIV alone conferred
protection from infection in neonate macaques exposed to re-
peated oral low-dose challenge. However, neither binding anti-
body, NAb, nor cell-mediated immune responses correlated with
protection (106). Recently, an immunization regimen recapitulat-
ing the RV144 regimen protected against mucosal challenge of
SIV ac251 acquisition in 30% of the vaccinated animals. Protected
animals had high-avidity antibodies to gp120 that recognized the
V2 variable envelope region and reduced SIV,, .5, infectivity in
cells expressing a high level of a4p7, suggesting a functional role
for V2 antibodies (16). In another experiment where macaques
were immunized with ALVAC SIV and SIV gp120 formulated
either in alum or MF59, only the alum group showed a signifi-
cantly reduced rate of SIV acquisition compared to that of unvac-
cinated controls. The frequency of plasmablasts expressing a4p7
and CXCR4 (hematopoietic homing marker) was higher in the
alum group, while there was a trend for a higher frequency of
plasmablasts expressing CXCR3 (inflammatory site homing
marker) in the MF59 group (107). The significance of these find-
ings remains unclear.
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An Ad26 prime and modified vaccinia virus Ankara (MVA)
boost regimen using vaccines expressing gag-pol and env from
SIVnesas conferred 80 to 83% reduction in the per-exposure
probability of infection against repeated low-dose intrarectal in-
oculations of heterologous, neutralization-resistant SIV s,
Protection against SIV acquisition correlated with Env- and V2-
specific binding and tier 1-strain-neutralizing antibodies. Mon-
keys vaccinated with an Ad35/Ad26 prime-boost regimen ex-
pressing either Gag-Pol and Env or only Gag-Pol showed
protection only when Env was present, suggesting that Env-spe-
cific responses are critical in preventing virus acquisition. Immu-
nological correlates of protection were consistent with the prior
experiment (4). A recent NHP intrarectal SIV, e challenge
study in which animals were vaccinated with a DNA prime and an
Ad5 boost expressing either mosaic Gag, mosaic heterologous
Env, or heterologous Env based on a natural SIV, .5, sequence
confirmed that Env-elicited immune responses are necessary and
sufficient to provide protection from acquisition (69%). Plasma
IgG binding to gp120 Env at the time of challenge did not correlate
significantly with time to infection, but excluding animals who
were infected with neutralization-resistant viruses resulted in a
strong correlation of protection with IgG binding to gp120. Cor-
relation with a delayed time to infection was also observed for
plasma antibody avidity, CD4 binding site activity, and neutral-
ization of some viral strains. Antibody to SIV V1V2 predicted
protection against infection. However, the sieve analysis showed
that selection against V1V2 sequences by the SIV vaccines was
limited to neutralization-sensitive viruses, suggesting that selec-
tion is vaccine sequence specific and not broad. As in the human
RV144 trial, there was no association between protection from
infection and protection from pathogenesis, suggesting that hu-
moral responses that effectively block acquisition are not neces-
sarily correlated with cellular responses that control pathogenesis.
The authors suggest that the primary mechanism of protection is
by lowering the effective infectious dose, that is, in vivo neutral-
ization (55), and that the moderate RV144 efficacy was due to
antibodies that could neutralize some viruses circulating in that
cohort; these sensitive viruses were susceptible to vaccine-
matched V1V2, leading to sieving being an alternative hypothesis
with regard to the possible role of nNAb in protection against HIV
acquisition in RV144.

An emerging understanding of the early events in mucosal SIV,
simian-human immunodeficiency virus (SHIV), and HIV-1 in-
fections was recently presented (108), justifying the need to de-
velop vaccines inducing mucosal immune responses. A relatively
small number of immune effectors at the mucosal site of entry
might be at the right place at the right time to be “enough and soon
enough” to clear infection. Interestingly, human dimeric IgA1l
MAb-treated rhesus macaques remained free of virus after intrar-
ectal SHIV challenge, while treatment with dimeric IgA2 was
much less effective. Protection was correlated with virus capture
and inhibition of transcytosis of cell-free virus (109). Another
approach using gp41 protein and derived peptide administered by
mixed intramuscular and intranasal modalities was capable of
protectingimmunized monkeys against SHIV challenge (110) and
of eliciting systemic and mucosal antibodies that inhibited HIV
transcytosis in the absence of neutralizing antibodies in humans
(111).

Recently, it was demonstrated that Ad26-MVA and Ad26-Ad35
vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol
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FIG 1 Possible vaccine-induced immune mechanisms of protection against HIV-1 acquisition in humans. To date, viral capture has been demonstrated in
plasma but not in mucosal secretions, as mucosal secretions were not collected in RV144. Whether this potential mechanism occurs in mucosal secretions
remains to be demonstrated in ongoing clinical trials where mucosal secretions are collected.

delivered in a prime-boost regimen resulted in a significant reduction
in the per-exposure acquisition risk following repetitive, intrarectal
SHIV-SF162P3 challenge, a difficult-to-neutralize virus. Protection
was most strongly correlated with enzyme-linked immunosorbent
assay (ELISA) binding antibody titers against the homologous Mos1
Envimmunogen and to a lesser extent with ELISA binding antibody
titers against other Env immunogens. In addition, protection was
significantly correlated with NADb titers against SF162, which is a neu-
tralization-sensitive virus related to the challenge virus SHIV-
SF162P3. NAD titers against other tier 1 viruses also showed trends
toward correlation with protection. Interestingly, protection was also
correlated with a functional nNADb phagocytic score (ADCP), and a
trend was observed with antibody-dependent complement deposi-
tion (ADCD) involving C3b complement. However, no significant
correlation of protection with surface plasmon resonance binding to
cyclic V2 peptides or with gp70-V1V2 scaffolds nor any measure of
CD8™ T lymphocyte responses was detected. These key findings sug-
gest that multiple antibody functions may contribute to protection
against acquisition of difficult-to-neutralize viruses (5).

A panel of bNAb and nNAb screened for their high ability to
block HIV acquisition and replication in vitro in an independent
or FcyR-dependent manner were formulated for topical vaginal
application in a microbicide gel and tested for their antiviral ac-
tivity against SHIV-SF162P3 vaginal challenge in nonhuman pri-
mates. While a combination of 2G12, 2F5, and 4E10 fully pre-
vented vaginal transmission in 10 of 15 treated monkeys, a
combination of 246-D and 4B3 nNAb monoclonal antibodies
(112) had no impact on HIV acquisition but reduced plasma viral
load. The results of this challenge study did not recapitulate the in
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vitro findings with 246-D and 4B3, which recognize the principal
immuno-dominant (PID) domain of gp41, a relatively conserved
epitope among HIV-1 subtypes and easily accessible on virions
(113), and can efficiently capture a broad range of HIV strains
(114). A similar observation was made with another anti-PID an-
tibody, F240, whose vaginal application was able to protect two
macaques against neutralization-sensitive SHIV-SF162P4 and de-
creased viral load in two of the five animals (115). These results
indicate that antibodies with distinct neutralization and inhibi-
tory functions differentially affect in vivo HIV acquisition and
replication by interfering with early viral replication and dissem-
ination (116).

Two V2-specific MAb, CH58 and CH59, were isolated from B
cells of RV144 vaccine recipients (12). The epitope mapping sug-
gested that CH58 and CH59, although not bNAb, bind at or near the
site in V2 to which the HIV-1 V1V2 bNAD (e.g., PG9 and CHO1) bind
(117, 118). These MAD inhibit the interaction of V2 peptide with
47 and capture infectious CRFO1_AE 92THO023 virions (12). The
availability of pathogenic SHIV constructs with HIV-1 E, C, or B
envelopes are critically needed for assessing the efficacy of the infu-
sion of these two MADb as well as of passive HIV-1-specific immuno-
globulins isolated from vaccine recipients.

PLAUSIBLE NONNEUTRALIZING ANTIBODY MECHANISMS OF
PROTECTION

Figure 1 displays the possible vaccine-induced immune mecha-
nisms mediated by antibodies that might be involved in protec-
tion against HIV acquisition. It remains difficult to attribute a
predominant role to one given mechanism over the others, as it is
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likely that several mechanisms are involved simultaneously, syn-
ergistically, or even perhaps antagonistically. Mechanistic and
nonmechanistic (81) functions involved in protection against ac-
quisition may differ by body compartment and be redundant.

HIV-infected women with gp120-specific IgG-mediated
ADCC activity in their cervico-vaginal secretions had lower geni-
tal viral loads than did women with serum ADCC activity only
(119). In another study, HIV-infected women had ADCC activity
in their cervico-vaginal secretions without serum ADCC, suggest-
ing that ADCC antibodies were produced locally (120). Breast
milk IgG ADCC responses to gp120 but not to virus neutralization
correlated with reduced perinatal transmission of HIV-1 (121). In
the cervico-vaginal and rectal secretions present in the lumen, one
could speculate that nNAD act by inhibiting transcytosis, mostly
mediated by secretory IgA (sIgA), as suggested by several animal
(109, 110, 122, 123) and human (111, 124) studies. It must be
stressed, however, that IgA may be a two-faced antibody. In
RV144, levels of Env-specific plasma (monomeric) IgA antibodies
were inversely correlated with risk of HIV infection (2) by block-
ing C1 region-specific IgG-mediated ADCC (10). Conversely, se-
cretory IgA antibodies play a crucial role in protection in the mu-
cosal compartment. Whether HIV vaccines can induce plasma
IgG antibodies without IgA antibodies (“excision of the spine on
the rose”) or only sIgA (preferentially IgA1) in mucosal tissues
remains speculative. The specific mechanisms of inhibition of
transcytosis involved have recently been reviewed (104). Whether
IgG can also contribute to this inhibition is not entirely clear.
Other mechanisms evoked include the possible hindrance of HIV
mobility trapping of viruses linked to IgG and IgA within mucin
layers outside the cervico-vaginal epithelium (125, 126) and viral
capture by sIgA and IgG.

It is speculated that the nNAb detected in the lumen are also
present in the mucosal tissues that contain cells capable of effector
functions. ADCC and ADCVI have been less explored in rectal
secretions and gut tissues in both animal and human studies.
These mechanisms may play a critical role for protection against
HIV acquisition in MSM populations, with rectal transmission,
the highest-risk mode of sexual HIV transmission, at 1:20 to 1:300
infections per exposure (127). Two distinct subsets of NK cells
exist in the gut, one localized to intraepithelial spaces (intraepi-
thelial lymphocytes [IEL]) and the other to the lamina propria
(LP). The frequency of both subsets of NK cells is reduced in
chronic infection, whereas IEL NK cells remained stable in spon-
taneous controllers with protective killer immunoglobulin-like
receptor/human leukocyte antigen genotypes (128). The main
mechanism is represented by NK cell-mediated ADCC (reviewed
in references 103 and 104), while monocytes might also play a
significant role (129, 130). Antibody-dependent cell phagocytosis
(ADCP) is generally mediated by the expression of FcyRII on the
surfaces of macrophages, immature dendritic cells, and neutro-
phils, leading to opsonized virus being taken up into endosomes
and degradation (131). Mostly described in HIV-infected sub-
jects, the protective role of vaccine-induced ADCP remains to be
explored in future vaccine studies (103). Antibody-dependent
cell-mediated virus inhibition (ADCVT) is the measure of the net
antiviral activity resulting from ADCC, production of 3 chemo-
kines, and phagocytosis (132). Vaccine-elicited ADCVI-inducing
antibodies correlated with protection in SIV or SHIV challenge
studies (122, 123, 133, 134). In Vax004, ADCVTI activity was asso-
ciated with lower rates of infection (64). The inhibition of virus
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replication in mucosal tissues ex vivo along with HIV-specific
nNAb in mucosal secretions is currently being explored in RV144
follow-up studies (RV305, RV306, RV328) (135-137).

However, ADCC may be modulated by several factors, including
antibody Fc glycosylation, fucosylation of antibody glycans, and IgG
subclasses (138). Similarly, acidity and Env-specific IgG were found
to enhance virus transcytosis across epithelial cells via FcRn and may
facilitate translocation of virus to susceptible target cells following
sexual exposure (139). In HIV-infected individuals, ADCC has been
shown to exert immune pressure on the virus, leading to escape mu-
tants (140). Whether this phenomenon may apply in the context of
vaccine-induced ADCC remains to be shown.

While the main function of HIV-specific NAb is to block viral
entry into host cells, nNAb and NAb functions are not exclusive of
each other and may act as allies (141, 142). ADCC activity has been
described for several bLNAD, including b12 (143-145),2G12 (146),
and 2F5 (147). The ability of bNAD to protect macaques against
SHIV challenge was mediated by the Fc receptor but not by com-
plement binding alone, suggesting that interaction of Fc-receptor-
bearing effector cells with antibody-complexed infected cells is
important in reducing virus yield from infected cells (134).

IMPROVING THE INDUCTION OF HIV-SPECIFIC
NONNEUTRALIZING ANTIBODIES

The RV144 correlates-of-risk analysis suggests that an increase in
the magnitude, affinity, breadth, and, importantly, frequency and
durability of V2- and V3-specific antibodies of IgG3 and IgGl1
subclasses may confer a higher and more durable rate of protec-
tion against HIV-1 infection than other antibodies. Perhaps the
first approach to this end is to improve the antigen design of the
HIV-1 envelope based on the RV144 results.

ANTIGEN DESIGN

The analysis of A244 gp120 used in RV144 showed that the anti-
genicity of the gpl120 C1 region and the V2 conformational
epitopes may be enhanced by the deletion of 11 N terminus amino
acids of gp120 (A11). This enhanced antigenicity is specific to the
CRFO1_AE gp120 A244 antigen and may not necessarily apply to
other gp120 proteins from the same strain or from different
HIV-1 strains. Conformational V1/V2 MAbs gave significantly
higher levels of blocking of plasma IgG from A244 A1l gp120-
immunized animals than that of IgG from animals immunized
with unmodified A244 gp120 (148). This improved envelope de-
sign is now proposed for the next generation of CRF01_AE- and
B-based HIV vaccines in Thailand. The priming agent may also
significantly contribute to the shaping of the antibody response to
the envelope protein boost, as suggested earlier (100, 102, 149).
Head-to-head comparisons of different pox vectors and DNA
primings with the same adjuvant-formulated envelope protein
boost might help to elucidate the quality of the antibody response,
in particular the IgG and IgA subclasses and cytokine profiles in-
duced by the protein boost and the early gene activations that lead
to these responses.

MAGNITUDE, FREQUENCY, AND DURABILITY OF
ANTIBODIES

The vaccine-induced HIV-1 Env-specific antibody response was
not durable in vaccinated HIV-uninfected (66) or HIV-infected
(61) humans or NHP (150). Several causes have been evoked,
including poorly elicited Tth responses (151-153), poor Env B-
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cell receptor signaling strength (154), poor B-cell memory (155),
Env-antibody complex killing of FcyRIIb plasma cells before they
reach bone marrow (156), and altered catabolism of Ig in plasma
cells (157).

HIV vaccine developers have included more-potent adjuvants
than the universally used aluminum hydroxide in vaccine candi-
dates to enhance the efficacy of envelope protein antigens, to in-
duce appropriate immune responses not sufficiently generated in
the absence of adjuvant, to enhance and/or to shape antigen-spe-
cificimmune responses, to expand B-cell diversity, and to contrib-
ute to dose sparing of the antigen (158, 159). Several adjuvants
have been tested in mice (149), NHP, and humans (160), showing
a significant benefit of envelope proteins formulated with either
MF59 (161), AS02 (162), ASO1 (163, 164), or virosomes (111). In
AVEG 015, a trial comparing an HIV-1 envelope protein formu-
lated with different adjuvants, the formulation of HIV-1 gp120
with L(MPLA) and alum induced significantly higher levels of
neutralizing antibodies and T-cell lymphoproliferation than
alum, MF59, or MPLA alone (165). A recent post hoc analysis of
the AVEG 015 plasma samples revealed very high titers of cyclic
V2 and gp70 V1V2 CaseA2 (subtype B) antibodies as early as after
the second protein administration. The frequency of the antibody
response to gp70 V1V2 CaseA2 was 100% as early as 2 weeks after
the second vaccination and 10 months after the fourth vaccination
in the LIMPLA) adjuvant-plus-alum group, while the frequencies
were 85% and 100%, respectively, in the alum group. These anti-
body titers were 5- to 10-fold higher than those observed in the
group who received the antigen formulated with alum, were de-
tected at high levels 40 weeks after the fourth vaccination, and
were higher than those observed in RV144. Moreover, antibodies
were cross-reactive with gp70 scaffolds AE and C (166).

Experiments with nanoparticle malaria vaccines suggest that
an increased antigen deposition/retention locally in the tissue
drives B-cell responses, enhancing dendritic cell antigen presen-
tation over that obtained with soluble protein immunizations
(167). Prolonged antigen presentation mediated by nanoparticle
vaccines (168) may also have contributed to the formation of ger-
minal centers (169) with enhanced development of CD4* Tth
cells (170), which provide critical cytokines and signals required
to initiate somatic hypermutation and affinity maturation for ef-
fective B-cell memory (171).

The RV144 regimen administered ALVAC HIV and AIDSVAX
BE in two different arms. Coimmunization of a DNA prime and
an SIV Env protein boost administered in the same muscle was
able to significantly augment the magnitude of the Env-specific
antibody titers in NHP (172, 173) and rabbits (174). One hypoth-
esis might be that the coadministerion in the same muscle targets
antigen-presenting cells (in particular dendritic cells and macro-
phages) that would reach the same draining lymph nodes, acting
synergistically.

CONCLUSIONS

Animal and human data from various viral infections and vaccine
studies suggest that functional nNADb that are not neutralizing in
vitro are important in protection against viral infection in vivo,
without negating in any way the desirability of evoking neutraliz-
ing antibodies through vaccination. This was illustrated by the
recent RV144 HIV vaccine efficacy trial, which demonstrated that
IgG-mediated nNAD were correlated inversely with risk for HIV
acquisition while IgA-mediated antibodies were directly corre-
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lated with risk. The underlying mechanisms that may have con-
tributed to protection, although not fully understood, are likely
mediated by ADCC, tier 1-strain neutralization, viral capture, and
ADCP. Whether ADCVT and inhibition of transcytosis may have
played a role remains to be explored. Taken together, correlated
data from RV 144, sieve analysis of RV144 breakthrough viruses,
and low-dose intrarectal challenge studies of NHP combined with
the presence of these nNAb in mucosal tissues, cervico-vaginal
secretions, and rectal secretions challenges the hypothesis that
bNAD are the only immune response that might confer protec-
tion. The induction of a high frequency and high titers of HIV-
specific functional nNADb may represent an attractive hypothesis-
testing strategy in future HIV vaccine efficacy trials.
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