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In the last decade, peanut allergy has increased substantially. Significant differences in the prevalence among different countries
are attributed to the type of thermal processing. In spite of the high prevalence and the severe reaction induced by peanuts, there
is no immunotherapy available. The aim of this work was to evaluate the potential application of poly(anhydride) nanoparticles
(NPs) as immunoadjuvants for peanut oral immunotherapy. NPs loaded with raw or roasted peanut proteins were prepared by a
solvent displacement method and dried by either lyophilization or spray-drying. After physicochemical characterization, their
adjuvant capacity was evaluated after oral immunization of C57BL/6 mice. All nanoparticle formulations induced a balanced
TH1 and TH2 antibody response, accompanied by low specific IgE induction. In addition, oral immunization with spray-dried
NPs loaded with peanut proteins was associated with a significant decrease in splenic TH2 cytokines (interleukin 4 [IL-4], IL-5,
and IL-6) and enhancement of both TH1 (gamma interferon [IFN-�]) and regulatory (IL-10) cytokines. In conclusion, oral im-
munization with poly(anhydride) NPs, particularly spray-dried formulations, led to a pro-TH1 immune response.

Among food allergies, peanut allergy represents a major health
issue for many reasons. Peanuts and nuts are responsible for

the majority of anaphylactic reactions among children and, unlike
allergies to cow milk, very few children outgrow this allergy (1). In
addition, there has been an alarming increase in peanut sensitiza-
tion in countries where it used to be a rarity. The geographical
differences in peanut allergy prevalences are attributed to the types
of processing which might affect the peanut allergenicity (2).
Thermal processing may affect food in a manner that may induce
allergen expression and/or the contrary, with the loss of epitopes
altering both the immunogenicity and the allergenicity of the food
proteins. Peanuts are consumed after roasting or boiling, as pea-
nut butter, and as ingredients in a wide range of food products.
Although the protein composition seems to be very consistent
among different peanut species, there are geographical differences
in peanut allergy prevalence. Furthermore, it is known that roast-
ing increases the allergenicity of peanut proteins due to the Mail-
lard reaction, which leads to the formation of advanced glycation
end (AGE) products. Further studies have demonstrated a corre-
lation between these products and increased IgE binding. Also,
in vitro studies have demonstrated higher IgE binding of aller-
gens in roasted peanut extract than of those in boiled or fried
peanuts (3, 4).

Until recent years, the only treatment option for peanut allergy
was strict avoidance and an emergency plan in case of accidental
exposures (5). In this context, oral induced immunotherapy is
emerging as one of the most promising approaches to treat this
disease. However, in spite of its efficacy, it produces side effects
and systemic reactions. At the same time, when available, it should
be offered to the community through standardized doses and pro-
tocols (6–8). Thus, research on increasing the efficacy and safety of
immunotherapy is clearly needed. Several strategies are currently
under study to decrease these problems (9). Among these, partic-
ular attention has been focused on nanoparticle-based allergen-
delivery systems (10–12). The synergistic value of the polymeric
nanoparticles includes the protection of allergenic proteins from
degradation in the gastrointestinal tract (13, 14) and the efficient

antigen uptake by M cells, improving vaccine efficacy after oral
administration.

Poly(anhydride) nanoparticles have been successfully associ-
ated with several proteins, including allergens (15–17) and bacte-
rial antigens (18, 19), increasing their ability to induce protective
immune responses after mucosal immunization. Likewise, previ-
ous studies had described the bioadhesive properties of poly(an-
hydride) nanoparticles (20). Thus, these polymeric systems pres-
ent an enhanced interaction with the gut mucosa, a key factor for
the induction of strong mucosal immune responses (20–22).
Moreover, it has been demonstrated that the decoration of the
surface of poly(anhydride) nanoparticles with specific ligands
(i.e., mannosamine or thiamine) increased their recognition
and/or their capture by antigen-presenting cells (APCs) (18, 19,
23), allowing an effective immune response associated with an
increased TH1 profile (24). Accordingly, previous studies of our
research group demonstrated that the incorporation of raw pea-
nut proteins into poly(anhydride) nanoparticles enhances their
immunogenic properties after intradermal immunization (12).
However, oral delivery offers an alternative means of treatment to
the subcutaneous or intradermic (i.d.) routes. Thus, the aim of the
present work was to evaluate the potential application of these
nanoparticles for oral immunotherapy. For this purpose, poly(an-
hydride) nanoparticles loaded with either raw or roasted peanut
proteins were developed in order to study the immunologic and
allergenic profiles induced after oral immunization in a murine
animal model (C57BL/6 mice). Results indicated that oral immu-
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nization with poly(anhydride) nanoparticles, particularly spray-
dried formulations, led to a pro-TH1 immune response.

MATERIALS AND METHODS
Preparation of poly(anhydride) nanoparticles. Poly(methyl vinyl ether-
co-maleic anhydride) (PVM/MA) or poly(anhydride) nanoparticles
(NPs) were prepared by a solvent displacement method. After purification
of nanoparticle suspensions, the formulations were dried by freeze-drying
(12) or spray-drying (25). These polymeric nanoparticles were loaded
with the peanut extracts (either raw or roasted [Ro]) (Diater Laboratories,
Madrid, Spain).

(i) Lyophilized nanoparticles. Briefly, in order to prepare the lyoph-
ilized nanoparticles (NP-L), peanut extract (3 mg of raw or Ro) was dis-
persed in purified water (pH 3.0). After ultrasonication (Microson), the
peanut extract was resuspended in acetone. The resulting dispersion was
incorporated in PVM/MA-acetone. After incubation (magnetic stirring
for 45 min at room temperature [RT]), the nanoparticles were obtained
by the addition of 20 ml of a mixture of ethanol and water (1:1 by volume).
The organic solvents were eliminated under reduced pressure (Büchi
R-144; Switzerland). Finally, the nanoparticle suspensions were purified
twice by centrifugal filtration (3,000 � g for 20 min) and freeze-drying
using an aqueous solution containing sucrose (5%, wt/vol) as a cryopro-
tector (Genesis 12EL; Virtis, USA). The lyophilized formulations used in
this study were named NP-Raw-L (lyophilized nanoparticles loaded with
raw peanut proteins [PE]) and NP-Ro-L (lyophilized nanoparticles
loaded with roasted peanut proteins). Empty lyophilized nanoparticles
(NP-L) were prepared in the same way, in the absence of peanut extract
proteins (PE), and included as negative controls.

(ii) Spray-dried nanoparticles. Spray-dried PE-loaded nanoparticles
were prepared as previously described (12) and dried in a mini spray-

dryer (Büchi B191; Büchi Labortechnik AG, Switzerland). Control spray-
dried nanoparticles (NP-SD) were prepared in the same way, in the ab-
sence of PE. Spray-dried nanoparticle formulations were identified as NP-
Raw-SD (spray-dried nanoparticles loaded with raw peanut proteins) and
NP-Ro-SD (spray-dried nanoparticles loaded with roasted peanut pro-
teins).

Characterization of nanoparticles. (i) Size, zeta potential, and mor-
phology. The size and zeta potential of nanoparticles were determined by
photon correlation spectroscopy (PCS) and electrophoretic laser Doppler
anemometry, respectively, using a Zetamaster analyzer system (Malvern
Instruments, United Kingdom). The average particle size is expressed as
the volume mean diameter (Vmd) in nanometers (nm), and the average
surface charge as mV. The morphological characteristics of nanoparticles
were assessed by scanning electron microscopy (SEM) (Emitech K550
equipment; United Kingdom).

(ii) Yield. The amount of polymer transformed into nanoparticles was
determined by gravimetry, as previously described (12, 26). The yield was
calculated from the difference between the initial amount of the polymer
used to prepare the nanoparticles and the weight of the either lyophilized
or spray-dried samples.

(iii) Protein loading and encapsulation efficiency. The amount of
peanut protein associated with the nanoparticles was measured using the
bicinchoninic acid method (MicroBCA), as previously described (27).
Each sample was assayed in triplicate and results of PE loading were ex-
pressed as the amount of protein (in �g) per mg NP. Similarly, the encap-
sulation efficiency (EE) was calculated as previously described (12):
EE(%) � (Q associated/Q initial) � 100, where Qinitial was the initial
amount of PE added per mg of polymer that forms the nanoparticles and
Qassociated was the amount of loaded PE per mg of nanoparticles, which
was calculated by MicroBCA.

(iv) Structural integrity and antigenicity of the loaded peanut pro-
teins. To evaluate the effects of the manufacturing process on the integrity
and antigenicity of peanut proteins, SDS-PAGE and immunoblotting
were performed, as previously described (12). The apparent molecular
masses of peanut proteins were determined by comparison with standard
molecular weight markers. Pooled sera from four patients allergic to pea-
nut were used as quality controls of immunoblotting. Patients included
had a history of anaphylaxis upon peanut ingestion, positive skin prick
test against peanut extract (Bial-Aristegui, Bilbao, Spain), and specific IgE
against peanut (Thermo Fisher Scientific, Uppsala, Sweden).

In vivo studies. (i) Animals. Experiments were performed in compli-
ance with the regulations of the Ethics Committee of the University of
Navarra in line with the European legislation on animal experiments (ap-
proved protocol 048/09).

(ii) Oral immunization. Female C57BL/6 mice (Harlan Interfauna
Ibérica, Spain), 8 weeks old (weight, 20 � 1 g), were randomly divided
into nine experimental groups (n � 6 per each experimental group). Oral
immunization was performed by oral gavage of animals with a single dose
of free peanut proteins (1 mg) or incorporated into one of the nanopar-

TABLE 1 Physicochemical characterization of poly(anhydride)
nanoparticles prepared by lyophilization or spray-drying

Nanoparticle
formulation

Result (mean � SD) (n � 6) for:

Size
(nm)

Zeta potential
(mV)

PE content
(�g/mg NP)

Encapsulation
efficiency (%)

Yield
(%)

NP-La 201 � 3 �49 � 2 80 � 2
NP-SDb 172 � 4 �42 � 4 63 � 1
NP-Raw-Lc 161 � 3 �46 � 2 31 � 2 75 � 5 73 � 5
NP-Ro-Ld 155 � 2 �45 � 5 30 � 3 72 � 6 76 � 4
NP-Raw-SDe 150 � 5 �47 � 2 35 � 5 62 � 3 60 � 4
NP-Ro-SDf 143 � 6 �48 � 3 32 � 3 60 � 4 61 � 3
a NP-L, unloaded lyophilized nanoparticles.
b NP-SD, unloaded spray-dried nanoparticles.
c NP-Raw-L, lyophilized nanoparticles loaded with raw peanut proteins.
d NP-Ro-L, lyophilized nanoparticles loaded with roasted peanut proteins.
e NP-Raw-SD, spray-dried nanoparticles loaded with raw peanut proteins.
f NP-Ro-SD, spray-dried nanoparticles loaded with roasted peanut proteins.

FIG 1 Scanning electron microscopy of lyophilized (A) and spray-dried (B) nanoparticles.
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ticle formulations. Thus, animals were immunized with 200 �l (125 mg/
ml) of different nanoparticle suspensions: (i) lyophilized nanoparticles
loaded with raw peanut proteins (NP-Raw-L); (ii) spray-dried nanopar-
ticles loaded with raw peanut proteins (NP-Raw-SD); (iii) lyophilized
nanoparticles loaded with roasted peanut proteins (NP-Ro-L); or (iv)
spray-dried nanoparticles loaded with roasted peanut proteins (NP-Ro-
SD). Empty nanoparticles (NP-L and NP-SD) which were free of peanut
extract proteins (PE) were administered as controls. A group of nonim-
munized mice (control [C]) were also included in the study.

Quantification of anti-PE antibodies by indirect ELISA. The pres-
ence of PE-specific antibodies was determined in sera (IgG1, IgG2a, IgA,
and IgE) by indirect enzyme-linked immunosorbent assay (ELISA), as
previously described (12). Measurements were taken in triplicate and in-
cluded negative controls (no mouse serum sample background and no
antigen coating control).

Cytokine production. Five weeks after immunization, mice were sacri-
ficed and spleens were extracted. Spleen cell suspensions were obtained and
stimulated with peanut proteins (150 �g/ml), as previously described (12).
Culture supernatants were analyzed for the presence of cytokines by ELISA,
using recombinant cytokines as standard controls (BD Pharmingen).

Statistical analysis. Analysis of variance (ANOVA) was employed to
analyze the data. When ANOVA indicated a significant difference, the
Tukey post hoc test was used to assess the difference between groups.
Differences were regarded as statistically significant at P values of �0.05.
Data are expressed as the mean � standard deviation (SD) from indepen-
dent experiments.

RESULTS

The main physicochemical characteristics of poly(anhydride) nano-
particles are summarized in Table 1. The PE content was about 30 to

FIG 2 Specific antibody response (IgG1, IgG2a, and IgE) elicited after oral immunization. C57BL/6 mice (n � 6 per experimental group) were immunized with
a single dose (1 mg) of peanut extract proteins (PE) incorporated into one of the following formulations: lyophilized raw PE-loaded nanoparticles (NP-Raw-L),
lyophilized roasted PE-loaded nanoparticles (NP-Ro-L), spray-dried raw PE-loaded nanoparticles (NP-Ra-SD), or spray-dried roasted PE-loaded nanoparticles
(NP-Ro-SD). Control groups received one of the following: empty lyophilized NPs (NP-L), empty spray-dried NPs (NP-SD), or the same dose of raw (Ra) or
roasted (Ro) peanut proteins. Data are expressed as the mean � SD. O.D. [405 nm], optical density at 405 nm.
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40 �g/mg NP, with a high encapsulation efficiency (�60%). More-
over, it is interesting to note that both the yield of the manufacturing
process and the encapsulation efficiency (EE) were higher for lyoph-
ilized NPs than for spray-dried ones. In addition, the analysis of the
morphology by scanning electron microscopy (SEM) (Fig. 1) showed
that all nanoparticle formulations were spherically shaped, with a
homogeneous size, confirming the results of the polydispersity index
(PdI) obtained by laser diffractometry.

All the animals immunized with the peanut proteins encapsu-
lated into nanoparticles (NP-Raw-L, NP-Raw-SD, NP-Ro-L, or
NP-Ro-SD) showed higher levels of IgG1 and IgG2a antibodies
(TH2 and TH1 markers, respectively) than the groups that received
the proteins in their free forms (raw or roasted) (Fig. 2). The
isotopic response profiles elicited by lyophilized or spray-dried
nanoparticles revealed different patterns precluding any conclu-
sion on the correlation of these physical parameters with the
immunogenicity. Overall, lyophilized PE-loaded nanoparticles
(NP-Raw-L and NP-Ro-L) induced higher levels of IgG1 than
spray-dried nanoparticles (NP-Raw-SD and NP-Ro-SD). In con-
trast, spray-dried PE-loaded nanoparticles displayed higher IgG2a
levels than lyophilized formulations (NP-Raw-L and NP-Ro-L).
Concerning IgE, animals immunized with spray-dried nanoparticles
(NP-Raw-SD and NP-Ro-SD) showed lower specific levels of IgE
than the groups that received the proteins in their free forms (raw and
roasted). The potential of the nanoparticle formulations to induce
mucosal response was evaluated by the specific IgA in fecal content
(Fig. 3). All nanoparticle formulations (NP-Raw-L, NP-Raw-SD,
NP-Ro-L, and NP-Ro-SD) elicited higher levels of intestinal IgA than
did free PE, especially for nanoparticles loaded with raw peanut pro-
teins (NP-Raw-L versus raw PE and NP-Raw-SD versus Raw PE).
Specific antibodies were undetectable in the groups immunized with
unloaded NPs (NP-L and NP-SD) and in the nonimmunized control
group.

The cytokine secretion profiles were determined after in vitro
restimulation of splenocytes isolated from orally immunized mice
with the nanoparticle formulations (Fig. 4). The levels of pro-TH2
cytokines (interleukin 4 [IL-4], IL-5, and IL-6) detected in the
animals immunized with the nanoparticle formulations were
lower than those in the mice that received free peanut proteins.
In addition, all nanoparticle formulations induced significantly
higher production of gamma interferon [IFN-	] than did free
peanut extract. Likewise, mice immunized with nanoparticle for-
mulations showed significant increases in the secretion of IL-10,
an important regulatory cytokine, compared with the animals that
received the peanut proteins in their free form. As a result, oral
immunization with peanut proteins incorporated into nanopar-
ticles led to a high increase in the TH1/TH2 ratio (Fig. 5), based on
the IFN-	/IL-4 and IFN-	/IL-5 ratios. Taken together, these re-
sults demonstrate that the adjuvant effect of poly(anhydride)
nanoparticles is characterized by a pro-TH1 response.

DISCUSSION

In the last decade, novel therapeutic interventions have been ex-
plored for treatment of food allergy (28). Among them, oral im-
munotherapy (OIT) is increasingly being investigated as a poten-
tial treatment for peanut and other food allergies (6, 29). OIT
results in induction of clinical tolerance to a variety of food pro-
teins. Unfortunately, in spite of its efficacy, OIT shows limitations
in long-term efficacy and safety due to local side effects and risk of
anaphylaxis (30). In a multicenter study with 28 children, three
subjects receiving OIT against their peanut allergy were excluded
from the study because of allergic side effects (8). An additional
major issue concerning OIT is the lack of power-controlled stud-
ies with standardized protocols (9). In general, OIT may offer
some advantages over parenteral routes of desensitization, such as
intravenous, intradermal, and subcutaneous. However, the clini-

FIG 3 Specific fecal IgA levels induced after oral immunization. C57BL/6 mice (n � 6 per experimental group) were immunized on day 0 with a single dose (1
mg) of peanut extract proteins (PE) incorporated in one of the following formulations: lyophilized raw PE-loaded nanoparticles (NP-Ra-L), lyophilized roasted
PE-loaded nanoparticles (NP-Ro-L), spray-dried raw PE-loaded nanoparticles (NP-Ra-SD), or spray-dried roasted PE-loaded nanoparticles (NP-Ro-SD).
Control groups received one of the following: empty lyophilized NPs (NP-L), empty spray-dried NPs (NP-SD), or the same dose of raw (Ra) or roasted (Ro)
peanut extract proteins (PE). Data are expressed as means � SD.
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cal efficacy associated with OIT is achieved with high doses of
allergens, decreasing the safety of the treatment. Nevertheless,
mucosal immunotherapy is hampered by the absence of adequate
adjuvants capable of inducing strong humoral and cellular im-
mune responses. Thus, effective and safe vaccines with reduced
doses of allergen have been developed using adjuvants. In this
context, allergen immunotherapy using polymeric NPs as muco-
sal adjuvants may represent an attractive alternative to the con-
ventional OIT with native whole extracts.

Pharmaceutical technology is rendering numerous particle
systems acceptable for applications to allergen oral delivery to the
host. Specifically, NPs appear to have a sound scientific rationale
based on the protection of the antigen from exposure to extreme
pH conditions, bile, and pancreatic secretions (26, 31). Also, NPs
offer a controlled release platform that provides an adequate sup-

ply of the loaded compound to its site of absorption or action (32).
Simultaneously, advantage is taken of the inherent inclination of
particles to be naturally captured by mucosal antigen-presenting
cells as part of their duty as sentinels in triggering of mucosal
immunity against pathogens (33–35). In particular, nanoparticu-
late systems made by the copolymer of methyl vinyl ether and
maleic anhydride (PVM/MA) have demonstrated their efficacy as
adjuvants to induce TH1 immune responses (15, 16, 24). Actually,
these poly(anhydride) NPs may induce innate immune responses
mediated in a Toll-like receptor 2 (TLR2)- and TLR4-dependent
manner (24, 36). This is an important finding since it has been
recently shown that the use of multiple TLR agonists carried by
NPs influence the induction of long-term memory cells, and the
ultimate goal for any vaccine is the stimulation of long-lasting
protective immunological memory (37, 38). Several studies have

FIG 4 Specific cytokine secretion after oral immunization with nanoparticle formulations. C57BL/6 mice (n � 6 per experimental group) were immunized on
day 0 with a single dose (1 mg) of peanut extract proteins (PE) incorporated in one of the following formulations: lyophilized raw PE-loaded nanoparticles
(NP-Ra-L), lyophilized roasted PE-loaded nanoparticles (NP-Ro-L), spray-dried raw PE-loaded nanoparticles (NP-Ra-SD), or spray-dried roasted PE-loaded
nanoparticles (NP-Ro-SD). Control groups received one of the following: empty lyophilized NPs (NP-L), empty spray-dried NPs (NP-SD), or the same dose of
raw (Ra) or roasted (Ro) peanut proteins. A group of nonimmunized mice (C) was used to establish the basal levels of cytokine. Spleen cells were obtained from
immunized and nonimmunized mice. After in vitro restimulation with peanut proteins (150 �g/ml), cytokine levels were measured by ELISA. Data are expressed
as means � SD. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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demonstrated that these poly(anhydride) NPs are able to success-
fully encapsulate allergens (10, 15, 16). Thus, these NPs contain-
ing a protein extract from Lolium perenne induced a significant
TH1 response which protected the sensitized mice against severe
anaphylactic symptoms induced by challenge (17). Furthermore,
the encapsulation of peanut proteins into poly(anhydride) NPs
enhanced their immunogenic properties by intradermal immuni-
zation in mice (12).

On the other hand, processing may affect the peanut protein
immunogenicity and allergenicity profile. Thus, it is known that
roasting increases the allergenicity of peanut proteins (39–41).
Therefore, this study was also designed to evaluate the effects of
encapsulation of both thermally treated (roasted) and untreated
peanut proteins (raw) into polymeric NPs. In the current study,
both raw and roasted peanut extracts were successfully encapsu-
lated into poly(anhydride) NPs, and all NP formulations induced
a balanced TH1 and TH2 antibody response after oral immuniza-
tion characterized by a high TH1/TH2 ratio. These results are in
line with previous results obtained by Gómez and coworkers, who
loaded a Lolium perenne extract in a similar NP formulation (17).
The mechanism underlying such pro-TH1 adjuvant potency
might be due to their ability to activate dendritic cells though
TLR2 and TLR4 interaction (24, 36). In addition, the OIT NP-

based formulations used in this study induced high levels of IL-10.
IL-10, a multifunctional modulatory cytokine that plays an im-
portant role in immune homeostasis, downregulates the expres-
sion of the IgE receptor and promotes the generation of IgG-
blocking antibodies (42). In fact, severe food allergy symptoms are
associated with lower serum IL-10 levels (43). Interestingly, spray-
dried NPs simultaneously demonstrated lower IgE and higher IgG1
induction than did lyophilized NPs. With regard to mucosal re-
sponse, peanut proteins encapsulated into poly(anhydride) NPs elic-
ited higher IgA than free proteins. These results are in accordance
with previous studies that have shown specific bioadhesive properties
of these NPs, which enhance mucosal adhesion (20–23).

Finally, the immunogenic properties of the poly(anhydride)
NPs were also influenced by the preparative method, which might
be explained by the stability and kinetic release from these poly-
(anhydride) NPs. Spray-dried NPs showed higher stability over
time, leading to an increase of their adjuvant effects. Furthermore,
this higher stability led to a slower release of the allergens en-
trapped in the polymeric matrix, which might explain the lower
induction of IgE by spray-dried NPs (44).

In summary, results obtained with poly(anhydride) nanopar-
ticles suggest that they may be an alternative for OIT due to their
pro-TH1 adjuvant properties. Nevertheless, studies on immuniza-
tion of sensitized animals are required to determine if the elicited
TH1 response is high enough to dampen a TH2-biased immune
response elicited in the allergic mice. Finally, poly(anhydride)
nanoparticles might facilitate encapsulating exact amounts of
whole-peanut extract or allergens, allowing the standardization of
food oral immunotherapy.
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