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Sterile alpha motif- and histidine/aspartic acid domain-containing protein 1 (SAMHD1) limits HIV-1 replication by hydrolyzing
deoxynucleoside triphosphates (dNTPs) necessary for reverse transcription. Nucleoside reverse transcriptase inhibitors (NRTIs)
are components of anti-HIV therapies. We report here that SAMHD1 cleaves NRTI triphosphates (TPs) at significantly lower
rates than dNTPs and that SAMHD1 depletion from monocytic cells affects the susceptibility of HIV-1 infections to NRTIs in
complex ways that depend not only on the relative changes in dNTP and NRTI-TP concentrations but also on the NRTI activa-
tion pathways.

Human immunodeficiency virus type 1 (HIV-1) replicates pri-
marily in activated CD4� T cells, while showing poor repro-

ductive capacity in monocytes, macrophages, dendritic cells, and
resting CD4� T cells (1–10). Sterile alpha motif- and histidine/
aspartic acid domain-containing protein 1 (SAMHD1) is respon-
sible for blocking HIV-1 replication in such cells (5, 11–13),
reportedly by acting as a dGTP-stimulated deoxynucleotide
triphosphohydrolase that hydrolyzes deoxynucleoside triphos-
phates (dNTPs), thus decreasing the amounts of dNTPs available
for reverse transcription (3, 4, 14–19).

Nucleoside reverse transcriptase inhibitors (NRTIs) are nucle-
oside analogs and key components of antiretroviral therapies
(20–26). They generally lack a 3=-OH group and thus act as chain
terminators upon incorporation into viral DNA by reverse
transcriptase (RT) (26–29). However, 4=-ethynyl-2-fluoro-2=-de-
oxyadenosine (EFdA) retains a 3=-OH group, acts primarily by
blocking RT translocation following incorporation of EFdA
monophosphate (MP) into the template-primer, and has picomo-
lar antiviral potency (30–37). NRTIs are administered as nucleo-
sides and are phosphorylated to their active forms by cellular ki-
nases (38). Hence, they compete with dNTPs for activation by
cellular kinases, and their incorporation by RT is influenced by the
cellular concentrations of dNTPs, which compete with NRTI
triphosphates (TPs) at the RT active site (39, 40).

Amie et al. (19) recently reported that SAMHD1 does not sig-
nificantly hydrolyze dideoxynucleoside triphosphates (ddNTPs)
or zidovudine (AZT)-TP and that depletion of SAMHD1 in
monocytic THP-1 cells decreased the potency of these NRTIs in a
pseudotype-based assay. Strong evidence that the decreased po-
tency of these NRTIs was due to increased amounts of competing
dNTPs was presented. Our parallel independent study confirmed
their data, extended the number of NRTIs studied, validated the
results with fully infectious HIV-1, and found an unexpected dis-
parity in the effects of SAMHD1 on the deoxyribosylthymine (dT)
analogs AZT and stavudine (d4T). We demonstrate that this is due
to differences in the activation of AZT and d4T, highlighting the
importance of distinct metabolic pathways in NRTI activation, in
addition to competition with dNTPs.

We tested purified Escherichia coli-produced recombinant

SAMHD1 for dGTP-regulated NRTI-TP hydrolysis (using dNTPs
as a reference) and separated the reaction products by anion-ex-
change high-performance liquid chromatography (HPLC) (14). A
representative chromatogram for dATP hydrolysis by SAMHD1 is
shown in Fig. 1A. Notably, NRTI-TP hydrolysis was significantly
slower than that of dNTPs, with little hydrolysis after hours of
incubation, rather than the minutes required for complete dNTP
hydrolysis (Fig. 1B and C). The observed activity was not due to a
contaminating phosphatase, as hydrolase activity was ablated by
mutating the SAMHD1 active-site residue Asp207 to alanine (Fig.
1D) (14, 18, 41).

Next, we assessed whether SAMHD1 affected NRTI potency in
the context of HIV-1 infection. We infected parental THP-1 cells
and THP-1 cells stably expressing a SAMHD1-targeting short
hairpin RNA (shRNA) (THP-1KD-SAMHD1 cells) (42) with infec-
tious HIV-1 carrying a luciferase reporter, in the presence or ab-
sence of the previously tested AZT and tenofovir disoproxil fuma-
rate (TDF) (19), as well as d4T, lamivudine (3TC), dideoxyinosine
(ddI), and EFdA. The knockdown efficiency of SAMHD1 in the
THP-1KD-SAMHD1 cells was �50-fold (see Fig. S1 in the supple-
mental material) (42). Table 1 lists NRTI 50% effective concen-
trations (EC50s) determined in four independent experiments. As
reported previously, the EC50s of AZT and TDF (dT and deoxyri-
bosyladenine [dA] analogs, respectively) were significantly in-
creased (23- and 18-fold, respectively) in THP-1KD-SAMHD1 cells.
Notably, we observed smaller or no increases for other dT, dA, and
deoxyribosylcytosine [dC] analogs (�3.5-fold increase for d4T,
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3-fold increase for EFdA, and no increases for 3TC and ddI) (Ta-
ble 1). The unexpectedly decreased potency of AZT versus d4T in
THP-1KD-SAMHD1 cells was not due to a higher rate of hydrolysis of
d4T-TP by SAMHD1 (Fig. 1C) (19). It also was not caused by

differences in dTTP competition with AZT-TP and d4T-TP at the
RT active site, as RT incorporates AZT-TP and d4T-TP with sim-
ilar efficiencies (43). Thus, we hypothesized that the different ef-
fects of SAMHD1 on the potencies of AZT and d4T involved dif-
ferences in the activation pathways of the two inhibitors.

To study the activation of AZT and d4T, we treated phorbol my-
ristate acetate (PMA)-differentiated THP-1 and THP-1KD-SAMHD1

cells with radiolabeled [14C]AZT or [14C]d4T, incubated the cells for
24 h at 37°C, lysed the cells, separated the NRTI metabolites by HPLC,
and analyzed the metabolites with a liquid scintillation counter. We
found an �10-fold decrease in the amount of AZT-TP recovered
from THP-1KD-SAMHD1 cells, in comparison with THP-1 cells, but no
significant difference in the amounts of d4T-TP recovered from the
two cell lines (Fig. 2). These results are consistent with the observation
that AZT experiences a larger EC50 increase than does d4T upon
SAMHD1 knockdown, suggesting that AZT does not compete as well
as d4T for phosphorylation by cellular kinases when there are in-
creased levels of dNTPs and therefore it experiences a larger change in
EC50.

FIG 1 SAMHD1 does not efficiently hydrolyze NRTI-TPs. SAMHD1 (5 �M) was incubated at 37°C with NRTI-TP or dNTP (500 �M), in the presence of dGTP
(100 �M) and MgCl2 (10 mM). Reactions proceeded for 3, 6, or 20 h for NRTI-TPs and for 5, 15, or 30 min for dNTPs. Reactions were terminated by 10-fold
dilution into 25 mM Tris (pH 8.0)-12.5% acetonitrile, and mixtures were analyzed by anion-exchange HPLC (DNAPac PA100 column). (A) Representative
chromatograms for dATP hydrolysis. dG, deoxyribosylguanine. (B and C) Data from at least duplicate experiments for dNTP (B) or NRTI-TP (C) hydrolysis,
plotted as percent hydrolysis over time (with GraphPad Prism 5). ddATP, dideoxyadenosine triphosphate; ddGTP, dideoxyguanosine triphosphate. (D)
Chromatogram for dATP hydrolysis after 30 min of incubation with the SAMHD1 hydrolase active-site D207A mutant, dGTP, and MgCl2.

TABLE 1 EC50 values for NRTIs in parental THP-1 cells versus
THP-1KD-SAMHD1 cells

Drug

EC50 (nM) fora:

Fold increase
in EC50

Parental
THP-1 cells

THP-1KD-SAMHD1

cells

AZT 1.1 � 0.5 25.3 � 14.9 23
TDF 0.08 � 0.01 1.44 � 0.04 18
d4T 47 � 10 166 � 13 3.5
ddI 44 � 8 42 � 7 1
3TC 11 � 2 11 � 4 1
EFdA 0.04 � 0.02 0.13 � 0.02 3.3
a Values are the mean � standard deviation (SD) from four independent experiments
and were determined using the one-site competition equation in GraphPad Prism 5.

Huber et al.

4916 aac.asm.org Antimicrobial Agents and Chemotherapy

http://aac.asm.org


We directly explored the impact of increased cellular dTTP
levels on the inhibitory potential of AZT and d4T by exogenously
adding thymidine. We treated TZM-bl cells with phosphate-buff-
ered saline (PBS) or 100 �M dT or dC (as a control as a noncom-
peting nucleoside) and infected the cells with HIV-1NL4-3 (multi-
plicity of infection [MOI], 0.02) in the presence of increasing
inhibitor concentrations. At 48 h postinfection, cells were lysed
and luciferase activity was measured. As expected, exogenous dT
increased the EC50s for HIV-1NL4-3 inhibition by AZT and d4T.
Whereas the EC50 for AZT increased �100-fold upon addition of
exogenous dT, the EC50 for d4T appeared to increase significantly
less, although the exact EC50s could not be estimated because we
could not reach extremely high NRTI concentrations (Fig. 3).
These data agree with our observation that SAMHD1 knockdown
has a greater effect on AZT than on d4T. Notably, addition of 100
�M dA did not affect the ddI EC50 (Fig. 3), consistent with re-
ported differences in the ddI and dA activation mechanisms (39,
44–48) and also with the lack of differences in EC50 values for ddI
in THP-1 versus THP-1KD-SAMHD1 cells (Table 1). While addition
of 100 �M dC blocked HIV inhibition by 3TC (Fig. 3), the un-
changed 3TC EC50 values in THP-1 and THP-1KD-SAMHD1 cells
may be partly attributed to the findings that SAMHD1 depletion
had the smallest effect on the concentration of dCTP, compared to
other dNTPs (19), and that 3TC-TP was a poorer substrate for
SAMHD1 (Fig. 1).

We have demonstrated that SAMHD1 downregulation affects
not only dNTP concentrations (3, 4, 14–19) but also the concen-
trations of AZT and d4T metabolites (Fig. 2). Our data are con-
sistent with previous reports noting that the rate-limiting step in
activation is the second phosphorylation step, catalyzed by thymi-
dylate kinase, for AZT but the first phosphorylation step, catalyzed
by thymidine kinase, for d4T (39, 49–54), as shown by the
accumulation of AZT-MP and d4T in treated THP-1 and THP-
1KD-SAMHD1 cells (Fig. 3). d4T diphosphate (DP) is more readily
phosphorylated to the triphosphate form by nucleoside diphos-
phate kinase, the final kinase in the activation pathway for d4T
and AZT, as well as other analogs and deoxynucleoside diphos-
phates (dNDPs) (39, 55–58), than is AZT-DP, addressing why the
potency of AZT is affected more than that of d4T with SAMHD1
depletion and increased dNTP concentrations.

In conclusion, the presence of SAMHD1, or its depletion, as
occurs for lentiviruses that encode the Vpx accessory protein (12,

59–63), can affect NRTI susceptibility in multiple ways that de-
pend not only on the relative changes in the concentrations of
dNTPs and NRTI-TPs but also on the activation pathways of
NRTIs. Our study highlights the importance of the metabolic

FIG 2 Knockdown of SAMHD1 has differential effects on NRTI activation. PMA-differentiated parental and THP-1KD-SAMHD1 cells were treated with 1.5 �M
(0.5 �Ci) [2-14C]AZT or [4-14C]d4T. After 24 h at 37°C, the cells were lysed, the dNTP and NRTI metabolites were separated by anion-exchange HPLC (DNAPac
PA100 column), and the NRTI metabolites in the collected fractions were quantified with a liquid scintillation counter. Data represent the mean � standard
deviation (SD) from 2 independent experiments. �, P � 0.05.

FIG 3 Exogenously added dT, but not dC, affects AZT and d4T potencies.
TZM-bl cells were treated with PBS, 100 �M dT, or 100 �M dC or 100 �M dA
(as controls for noncompeting nucleosides) and infected with HIV-1NL4-3 at
an MOI of 0.02, in the presence of increasing concentrations of inhibitor (AZT
or d4T). At 48 h postinfection, cells were lysed and luciferase activity was
detected. Luciferase activity at various drug concentrations was plotted using
the one-site competition equation in GraphPad Prism 5, and data were nor-
malized to the no-nucleoside control results. Data represent the mean � SD
from at least three independent experiments. Data in the table represent the
mean � SD from at least three independent experiments. Shown also are the
fold changes in the EC50 of NRTI in the presence or absence of cognate nucle-
oside, which indicate change in sensitivity to AZT/d4T, 3TC, or ddI, in the
presence of dT, dC, or dA, respectively. ND, not determined.
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pathways for activation of different NRTIs to NRTI-TPs, espe-
cially in cells in which dNTP concentrations are low and compe-
tition with NRTI-TPs does not mask the effects of differential
NRTI activation.
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