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Reduced Plasmodium falciparum sensitivity to short-course artemisinin (ART) monotherapy manifests as a long parasite clear-
ance half-life. We recently defined three parasite founder populations with long half-lives in Pursat, western Cambodia, where
reduced ART sensitivity is prevalent. Using the ring-stage survival assay, we show that these founder populations have reduced
ART sensitivity in vitro at the early ring stage of parasite development and that a genetically admixed population contains sub-
sets of parasites with normal or reduced ART sensitivity.

Plasmodium falciparum resistance to frontline antimalarial
drugs has repeatedly emerged in Southeast Asia and spread to

Africa (1), prompting the World Health Organization in 2005 to
recommend the worldwide use of artemisinin (ART)-based com-
bination therapies (ACTs) for uncomplicated falciparum malaria
(2). Parasites with reduced ART sensitivity have since become
entrenched in western Cambodia (3–7), have emerged elsewhere
in Southeast Asia (8–11), and are threatening the efficacy of all
ACTs (12). Reduced ART sensitivity manifests as a long parasite
clearance half-life in patients treated with an ART derivative or an
ACT (13, 14). Based on a population structure analysis of ge-
nome-wide single-nucleotide polymorphism (SNP) data from
293 Cambodian parasites, we previously identified three highly
differentiated founder populations (KH2, KH3, and KH4) of
slow-clearing parasites in Pursat Province in western Cambodia
and a subpopulation (KH1) of fast-clearing parasites in Ratanakiri
Province in eastern Cambodia (15).

While the half-life distributions of KH2, KH3, and KH4 were
similar (15), these data may be confounded by host factors (e.g.,
hemoglobin E [5], acquired immunity [16], and pharmacokinet-
ics) or parasite stage at the time of ART treatment (17, 18), all of
which may influence parasite clearance kinetics in vivo. To inves-
tigate the intrinsic ART sensitivity of founder populations in the
absence of potential confounders, we sought to characterize them
in vitro using the ring-stage survival assay (RSA0 –3 h) (17). This
assay measures the percentage of early (0- to 3-h) ring forms that
survive a pharmacologically relevant dose (700 nM for 6 h) of
dihydroartemisinin, the active metabolite of all ARTs. We selected
51 parasite isolates from Pursat and Ratanakiri (5, 15), adapted
them to in vitro culture for several weeks, and genotyped them at
12 SNPs, as described previously (17). Four parasites that did not
adapt to culture and three that differed genetically from the initial
isolates were discarded.

The remaining 44 parasites (39 from Pursat, 5 from Ratana-
kiri) were genotyped from deep-sequencing read data at 681,546
high-quality exonic SNPs as part of the MalariaGEN Plasmodium
falciparum community project (version 3.1 data release) (19).
Based on an updated population structure analysis of genome-
wide SNP data from 515 Cambodian parasites (O. Miotto et al.,

submitted for publication), we reassigned all 44 isolates to a core
subpopulation (KH-C, n � 6), one of three western Cambodian
founder populations (WKH-F01, n � 5; WKH-F02, n � 3; WKH-
F04, n � 11), or an unclassified subpopulation (KH-U, n � 19).
Using parasite clearance half-lives as phenotypes, KH-C was cat-
egorized as fast clearing, and WKH-F01, WKH-F02, and WKH-
F04 were categorized as slow clearing (O. Miotto et al., submitted
for publication). KH-U, which appears genetically admixed,
shows a wide range of half-life values and cannot be reliably clas-
sified as fast clearing or slow clearing.

The median (range) half-life for parasites in KH-C was 2.68 h
(1.58 to 4.84 h) and was significantly longer for parasites in WKH-
F01 (7.18 h [4.67 to 8.21 h]; P � 0.009, Mann-Whitney test) (Graph-
Pad Prism 6, GraphPad Software, La Jolla, CA), WKH-F02 (6.72 h
[6.00 to 6.87 h]; P � 0.024), and WKH-F04 (6.32 h [4.49 to 8.54
h]; P � 0.0006) (Fig. 1A). Half-life values did not differ between
the founder populations (P � 0.556, Kruskal-Wallis test). The
distribution of half-lives in KH-U (median, 6.44 h [range, 3.31 to
10.1 h]) suggested that this group contains a mixture of fast-clear-
ing and slow-clearing parasites (Fig. 1A). To investigate whether
founder populations differ in their level of reduced ART sensitiv-
ity in vitro and whether KH-U parasites could be separated into
parasites with normal or reduced ART sensitivity, we performed
the RSA0 –3 h on all of the isolates.

The median (range) percent survival for parasites in KH-C was
0.22% (0.12% to 0.75%) and was significantly higher for parasites
in WKH-F01 (30.0% [2.30% to 90.0%]; P � 0.004, Mann-Whit-
ney test), WKH-F02 (82.6% [43.3% to 108%]; P � 0.024), and
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WKH-F04 (3.04% [0.94% to 9.36%]; P � 0.0002) (Fig. 1B). The
percent-survival distributions differed among the founder popu-
lations (P � 0.002, Kruskal-Wallis test), with significantly higher
values in WKH-F01 and WKH-F02 than in WKH-F04. These data
show that all three founder populations have reduced ART sensi-
tivities in vitro and that the percent-survival phenotype can vary
between and within the founder populations. The median (range)
percent survival for KH-U was 4.50% (0.12% to 40.0%), and the
distribution of percent-survival values clearly shows that KH-U
contains a mixture of parasites with normal or reduced ART sen-
sitivity (Fig. 1B). Using data from all of the isolates, the percent
survival values and half-lives correlated significantly (r � 0.6965,
P � 0.0001, Spearman correlation test).

In Cambodia, mutations in the K13-propeller domain of a
kelch protein (PF3D7_1343700) were recently associated with re-
duced ART sensitivity in vivo and in vitro (7). We investigated
whether K13-propeller mutations are associated with founder
populations and whether they distinguish parasites with normal
or reduced ART sensitivity in KH-U. We found that the WKH-
F01, WKH-F02, and WKH-F04 parasites harbored exclusively the
C580Y, R539T, and Y493H alleles, respectively, while the KH-C
parasites carried the wild-type (WT) allele (Fig. 1B). Within
KH-U, the WT allele clearly identified parasites with normal ART
sensitivity as having a survival rate of �1%, and the C580Y and
Y493H alleles identified parasites with reduced ART sensitivity as
having a survival rate of �1%. These data indicate that K13-pro-
peller mutations are associated with specific founder populations
and clearly segregate parasites with normal or reduced ART sen-
sitivity in KH-U.

To explore whether K13-propeller mutations confer different
levels of reduced ART sensitivity in vivo and in vitro, we stratified
our data by K13-propeller alleles. The median (range) half-life for

WT parasites was 3.67 h (1.58 to 5.58 h, n � 14) and was signifi-
cantly longer for Y493H (6.26 h [4.49 to 8.54 h], n � 14; P �
0.0001, Mann-Whitney test), C580Y (8.01 h [4.67 to 10.1 h], n �
14; P � 0.0001), and R539T (6.72 h [6.00 to 6.87 h], n � 3; P �
0.003) parasites (Fig. 1C). The half-life values differed between the
mutant populations (P � 0.024, Kruskal-Wallis test) and were
significantly higher for C580Y parasites than for Y493H and
R539T parasites. The median (range) percent survival for WT
parasites was 0.41% (0.12% to 0.78%) and was significantly higher
for Y493H (3.48% [0.94% to 9.36%]; P � 0.0001, Mann-Whitney
test), C580Y (20.7% [2.30% to 90.0%]; P � 0.0001), and R539T
(82.6% [43.3% to 108%]; P � 0.003) parasites (Fig. 1D). C580Y
and R539T parasites had significantly higher percent-survival val-
ues than Y493H parasites, and R539T parasites had higher per-
cent-survival values than C580Y parasites. These data indicate
that parasites carrying the same K13-propeller mutation, even
those within the same founder population, can differ substantially
in their half-lives and percent-survival values, suggesting that ge-
netic or other factors modulate the level of reduced ART sensitiv-
ity in vivo and in vitro. The possibility that R539T parasites, which
have the highest percent-survival values, clear faster than C580Y
parasites may indicate additional mutation-specific effects on par-
asite clearance or greater loss of fitness in vivo, but this requires
further investigation.

In summary, the WKH-F01, WKH-F02, and WKH-F04 founder
populations in Pursat have reduced ART sensitivity in vitro and are
associated with the C580Y, R539T, and Y493H K13-propeller alleles,
respectively. These founder populations and K13-propeller muta-
tions may be associated with different levels of reduced ART sensitiv-
ity in vivo and in vitro. Compared to the parasite clearance half-life,
the percent-survival phenotype more clearly discriminates parasites
with normal or reduced ART sensitivity in KH-U. This is likely be-

FIG 1 Half-lives and percent-survival values of Cambodian Plasmodium falciparum isolates stratified by parasite subpopulation (A and B) or K13-propeller allele
(C and D). The color codes for the WT, Y493H, C580Y, and R539T alleles used in panels A and B are indicated in panels C and D. All founder and mutant
populations had significantly longer half-lives and higher percent-survival values than core and WT populations. P values were calculated using the Mann-
Whitney test and are shown for significant differences among the founder or mutant populations.
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cause the in vitro RSA0–3 h measures the intrinsic susceptibility of
stage-synchronized parasites to ART in the absence of host factors.
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