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Recently, iso-diabolic acid (13,16-dimethyl octacosanedioic acid) has been identified as a major membrane-spanning lipid of
subdivisions 1 and 3 of the Acidobacteria, a highly diverse phylum within the Bacteria. This finding pointed to the Acidobacteria
as a potential source for the bacterial glycerol dialkyl glycerol tetraethers that occur ubiquitously in peat, soil, lakes, and hot
springs. Here, we examined the lipid composition of seven phylogenetically divergent strains of subdivision 4 of the Acidobacte-
ria, a bacterial group that is commonly encountered in soil. Acid hydrolysis of total cell material released iso-diabolic acid deriv-
atives in substantial quantities (11 to 48% of all fatty acids). In contrast to subdivisions 1 and 3 of the Acidobacteria, 6 out of the
7 species of subdivision 4 (excepting “Candidatus Chloracidobacterium thermophilum”) contained iso-diabolic acid ether
bound to a glycerol in larger fractional abundance than iso-diabolic acid itself. This is in agreement with the analysis of intact
polar lipids (IPLs) by high-performance liquid chromatography-mass spectrometry (HPLC-MS), which showed the dominance
of mixed ether-ester glycerides. iso-Diabolic acid-containing IPLs were not identified, because these IPLs are not released with a
Bligh-Dyer extraction, as observed before when studying lipid compositions of subdivisions 1 and 3 of the Acidobacteria. The
presence of ether bonds in the membrane lipids does not seem to be an adaptation to temperature, because the five mesophilic
isolates contained a larger amount of ether lipids than the thermophile “Ca. Chloracidobacterium thermophilum.” Further-
more, experiments with Pyrinomonas methylaliphatogenes did not reveal a major influence of growth temperature over the 50 to
69°C range.

Isoprenoidal ether lipids ubiquitously occur in the membrane
lipids of Archaea (1), but occasionally ether lipids also are de-

tected in the bacterial domain, albeit with nonisoprenoidal chains
(2, 3). Unusual glycerol dialkyl glycerol tetraethers (GDGTs) with
n-alkyl chains containing 2-3 methyl groups instead of isoprenoi-
dal chains (so-called branched GDGTs [brGDGTs]; e.g., struc-
tures 1 and 2 in Fig. 1) were identified for the first time in peat
more than a decade ago (4) and subsequently turned out to occur
ubiquitously in soil, peat, lake water and sediments, river water
and sediments, and coastal marine sediments (5). brGDGTs also
have been observed in thermophilic environments, such as terres-
trial hot springs (6), where they are believed to be produced in situ
by thermophilic bacteria (7, 8). Despite their widespread occur-
rence and potential applications in geochemistry and paleoclima-
tology (5), their microbial source still is unclear. The assessment of
the stereochemistry of the glycerol units in brGDGTs revealed that
it is the opposite of that of archaeal isoprenoidal GDGTs, suggest-
ing that they must derive from Bacteria (9). A heterotrophic life-
style of the source organism(s) of brGDGTs was suggested based
on their natural stable carbon isotopic composition in peat (10)
and soil (11) and natural labeling experiments (11, 12). The envi-
ronmental abundance of Acidobacteria has led to the suggestion
that these bacteria are the biological source of the brGDGTs (13).
This hypothesis was recently supported by membrane lipid anal-
ysis of 13 species of subdivisions (SD) 1 and 3 of the Acidobacteria,
which showed that the uncommon membrane-spanning lipid,
13,16-dimethyl octacosanedioic acid (iso-diabolic acid), is a major
lipid in all species studied (14). This lipid can be considered a
building block of the brGDGTs but occurs in predominantly es-

ter- and not ether-bound form in SD 1 and 3 Acidobacteria. In 3 of
the 13 analyzed strains, small amounts of ether-bound iso-dia-
bolic acid, including brGDGT 1, were detected after hydrolysis of
the cells. However, the brGDGT distribution in soils is much more
complex, and the presence of additional (acido)bacteria might
explain the presence of the full complement of brGDGTs in the
environment.

Acidobacteria are a highly abundant and diverse phylum of the
domain Bacteria (15–20). For example, a recent study of bacterial
abundance of peat layers of a Siberian wetland using pyrosequenc-
ing of 16S rRNA genes revealed that 35 to 40% of the reads were
from Acidobacteria (21). Using similar methods, the abundance of
Acidobacteria in organic matter-rich, low-pH soils was reported to
be over 60% (22). Because known whole genomes of Acidobacteria
contain only one copy of the 16S rRNA gene, in contrast to many
other bacteria, their abundance may even be underestimated by
these methods (23). The Acidobacteria have been divided into 26
SD, based mainly on environmental sequences (24), but only six
of these contain taxonomically characterized representatives. For
SD 1, eight genera have been defined, Acidobacterium (25), Acidi-
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capsa (26), “Acidipila” (27), Bryocella (28), Edaphobacter (29),
Granulicella (30, 31), Telmatobacter (32), and Terriglobus (33, 34),
while only 1 to 3 genera have been characterized for SD 3 (Bryo-
bacter [35]), 8 (Holophaga [36], Geothrix [37] and Acanthopleu-
ribacter [38]), 10 (Thermotomaculum [39]), and 23 (Thermoan-
aerobaculum [40]). For SD 4, the number of known genera
recently has been expanded. Four genera now have been defined.
The thermophilic “Ca. Chloracidobacterium thermophilum” was
enriched from a hot spring and represents the first phototrophic
acidobacterium (41). Blastocatella fastidosa, an aerobic chemoor-
ganoheterotroph (42), and two Aridibacter species (43) were iso-
lated from semiarid savannah soils. The thermophile Pyrinomonas
methylaliphatogenes was isolated from a geothermally heated soil
and possesses a chemoheterotrophic and obligately aerobic me-
tabolism (44). Molecular ecological studies based on 16S rRNA
genes have indicated that, in wetlands, the most abundant Acido-
bacteria members fall in SD 1 and 3 (21), whereas in lakes SD 1, 6,
and 7 thrive (45). In soils, SD 1 to 4 and 6 are the most dominant,
with SD 4 contributing, on average, 20 to 30% of total Acidobac-
teria depending on the method used (i.e., clone libraries or pyro-
sequencing) (19). In contrast to most other SDs, the relative abun-
dance of SD 4 increased with increasing soil pH, and at pHs above
7, 16S rRNA sequences derived from members of this SD typically
represent more than half of all acidobacterial sequences (19).
Thus, the lipids produced by Acidobacteria of SD 4 may form a
major source of the unusual ether lipids in soil. Here, we describe
in detail the lipid composition of five previously classified bacteria
and two newly isolated strains, all belonging to the Acidobacteria
SD 4, and discuss their distributions.

MATERIALS AND METHODS
Cultures. The acidobacterial strains used in this study are listed in Table 1.
Blastocatella fastidiosa A2_16T, Aridibacter famidurans A22_HD_4HT,
Aridibacter kavangonensis Ac_23_E3T, and two other acidobacterial
strains from semiarid soils from Namibia were grown at the DSMZ at
28°C by moderate shaking for 9 to 14 days, depending on the strain. All
strains were grown in liquid SSE-HD (1:10) medium that was based on a
soil solution equivalent (SSE) (46) with an increased iron content and
supplemented with 0.25 g liter�1 yeast extract (Difco Laboratories Inc.,
Detroit, MI), 0.5 g liter�1 of peptone (Difco), 0.1 g liter�1 glucose (Sigma-
Aldrich, Steinheim, Germany), 0.1 ml liter�1 10 vitamin solution (47),
and 1 ml liter�1 trace element solution SL 10 (48). Ten mM 2-(4-mor-
pholino)ethanesulfonic acid (MES; Sigma) or 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES; Sigma) was used to buffer the
medium at pH 5.5 (B. fastidiosa strain Ac_28_D10T) or 6.5 (Aridibacter
famidurans and A. kavangonensis strain Ac_23_E3T), respectively. Bio-
mass was harvested by centrifugation (9,000 � g, 30 min; Avanti-J26 XPI;
Beckman Coulter), frozen (�20°C overnight), and lyophilized (0.05 mbar
at �30°C).

Pyrinomonas methylaliphatogenes K22T was isolated from a geother-
mally heated soil (68°C, pH 6.9) collected from Mt. Ngauruhoe, an active
strato-volcano located in the Tongariro volcano complex on the North
Island of New Zealand. Cells were grown at 60°C as described previously
(44) using basal liquid FS1V medium with the addition of 0.1 g liter�1

Casamino Acids (Difco) and 0.5 g liter�1 glucose in an oxic headspace (1:1
ratio of headspace to medium) (49). Subsequently, this bacterium also
was grown at three different temperatures (50, 60, and 69°C). The cells
then were centrifuged at 5,000 rpm for 30 min and the supernatant de-
canted off. The subsequent pellet was lyophilized overnight.

“Ca. Chloracidobacterium thermophilum” was isolated from micro-
bial mats in alkaline siliceous hot springs in Yellowstone National Park,
WY, USA (41). The enrichment culture was grown at 53°C as described
previously (50). However, carbon and nitrogen sources were changed to
50 mg liter�1 peptone and yeast extract of each 365 mg liter�1 2-oxoglu-
tarate and 625 mg liter�1 bicarbonate. Thioglycolate (125 mg liter�1) was
added as a reduced sulfur source. Cells of “Ca. Chloracidobacterium ther-
mophilum” were separated from the other members of the enrichment
(predominantly Anoxybacillus sp.; ca. 20%) by Percoll density centrifuga-
tion (50).

Tree calculation. Almost-full-length 16S rRNA gene fragments of two
strains (Ac_11_E3a and Ac_28_D10a) isolated at the DSMZ were ampli-
fied by colony PCR with primers 8f and 1492r (51). Sequences of purified
PCR products (ExoSAP-IT; USB, Cleveland, OH) were determined by
Sanger sequencing on an AB 3730 DNA analyzer (Applied Biosystems,
Foster City, CA) using the AmpliTaq FS BigDye Terminator cycle se-
quencing kit (Applied Biosystems). The 16S rRNA gene sequences of
strains Ac_11_E3 and Ac_28_D10, together with those published for the
other strains, were added to the small-subunit rRNA nonredundant ref-
erence database SILVA, version 108 (www.arb-silva.de) (52), in the ARB
software environment (53). After automated alignment with the Fast
aligner tool, the alignment was manually refined based on secondary
structure information. A phylogenetic tree was calculated using the neigh-
bor-joining algorithm (termini filter; 41,484 valid positions between po-
sitions 60 and 1438 of the Escherichia coli 16S rRNA reference gene; 1,000
bootstrap resamplings).

Lipid analysis. For all studied strains, lyophilized cells were hydro-
lyzed with 1 N HCl in methanol by refluxing for 3 h by following the
procedure described previously (14). The extracts obtained were methyl-
ated with diazomethane to transform fatty acids into methyl esters, and an
aliquot was silylated with N,O-bis(trimethylsilyl)-trifluoroacetamide
(BSTFA) in pyridine at 60°C for 20 min and analyzed by gas chromatog-
raphy (GC) and GC-mass spectrometry (GC-MS) using conditions pre-
viously described (14). Another aliquot of the methylated extract was
separated over an activated Al2O3 column using dichloromethane (DCM)
and DCM-methanol (1:1, vol/vol/) to give an apolar and polar fraction,

FIG 1 Structures of lipids mentioned in the text. Structures 1 and 2 are
brGDGTs ubiquitously occurring in the environment. Structures 3 and 4 are
iso-diabolic acids. Structures 5 and 6 are iso-diabolic acids ether bound to a
glycerol moiety at the sn1 position. Structure 7 is a C15 iso fatty acid ether
bound to a glycerol moiety at the sn1 position. Structures 8 and 9 are deriva-
tives of iso-diabolic acids 3 and 4 where one of the carboxylic groups is reduced.
Structures 10 and 11 represent hypothetical structures showing the core of the
membrane-spanning lipids of the SD 4 Acidobacteria based on the results re-
ported in this paper.
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respectively. The apolar fraction was used to determine the double-bond
positions of the monounsaturated fatty acid methyl esters (FAMEs) using
the mass spectra of their dimethyl disulfide derivatives as described by
Nichols et al. (54). The polar fraction was dissolved in hexane-propanol
(99:1, vol/vol), filtered over a 0.45-�m-pore-size polytetrafluoroethylene
filter, and analyzed by high-performance liquid chromatography/atmo-
spheric pressure chemical ionization mass spectrometry (HPLC–APCI-
MS) for brGDGTs.

For all strains, intact polar lipids were extracted from the lyophilized
cells using a modified Bligh-Dyer technique (55) as described by Pitcher et
al. (56). An aliquot of the obtained extract was dissolved in hexane–2-
propanol–water (72:27:1), filtered through a 0.45-�m-pore-size regener-
ated cellulose filter, and analyzed by HPLC– electrospray ionization-MSn

using conditions previously described (14).
Nucleotide sequence accession numbers. The GenBank/EMBL/

DDBJ accession numbers for the 16S rRNA gene sequences of the acido-
bacterial strains Ac_11_E3 and Ac_28_D10 are KF840370 and KF840371,
respectively.

RESULTS

Seven strains of bacteria belonging to Acidobacteria SD 4 were
analyzed for their lipid compositions; five are species that have
previously been characterized (Blastocatella fastidiosa [42], Pyri-
nomonas methylaliphatogenes [44], “Ca. Chloracidobacterium
thermophilum” [41], Aridibacter famidurans, and Aridibacter
kavangonensis [43]), and two are novel strains isolated from soils
in Namibia (Table 1). Figure 2 depicts their phylogenetic relation-
ship based on the 16S rRNA gene and the position of SD 4 relative
to other characterized phylogenetic branches within the phylum
Acidobacteria. The maximum phylogenetic diversity within the
cited SD 4 strains is quite large, with up to �20% sequence dis-
similarity, which is substantially larger than that observed for SD 1
and 3 Acidobacteria (Fig. 2).

Lipids released by acid hydrolysis. Figure 3 shows two exam-
ples of typical gas chromatograms of total lipid fractions obtained
after acid hydrolysis of cells (i.e., for P. methylaliphatogenes and
Aridibacter famidurans). All strains contained iso-C15 as a dominant
regular fatty acid, with the unsaturated counterpart, iso-C15:1�9c,
present in the mesophilic but not in the thermophilic strains
(Table 2). The fatty acid distribution of P. methylaliphatogenes
(Fig. 3a) and, to a lesser extent, of strain Ac_28_D10 deviates from
the other investigated strains because it also contains relatively
large amounts of longer iso fatty acids, i.e., iso-C17:0, iso-C19:0, and
the uncommon iso-C21:0 fatty acid. The latter fatty acid also was
encountered in low relative abundance (ca. 2%) in three other
investigated strains (Table 2). In the mesophilic strain, n-C16:1�9

also was present as a relatively abundant fatty acid (Fig. 3b and
Table 2). In addition to these regular fatty acids, the more unusual,
later-eluting (Fig. 3a) lipid, 13,16-dimethyloctacosanedioic acid
(or iso-diabolic acid 3), was detected in various amounts (1 to 47%
of total lipids) (Table 2).

Strikingly, acid hydrolysis of cell material released not only
fatty acids and iso-diabolic acid 3 but also substantial amounts of
monoalkyl glycerol ethers (MGE), except for “Ca. Chloracidobac-
terium thermophilum,” in which no ether lipids were detected
(Table 2). The ether lipids were MGE derivatives of the abundant
saturated fatty acids, with iso-C15 MGE (7) and the MGE deriva-
tive (5) of iso-diabolic acid 3 as the most abundant representatives
(Table 2 and Fig. 3). MGE 5 was previously (14) tentatively iden-
tified in two species of SD 1 Acidobacteria by its mass spectrum
(Fig. 4c), which was virtually identical to that of 15,16-dimethyl-
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28-glyceryloxydodecanoic acid (57) but had a deviating retention
time. In the two SD 1 species, MGE 5 represented only ca. 3% of
the lipids (14), whereas in the SD 4 species investigated here, MGE
5 represents 5 to 26% of the lipids (Table 2). To confirm fully its

structural resemblance with iso-diabolic acid 3, a fraction en-
riched in MGE 5 (as the methyl ester) was subjected to reduction
with LiAlH4 to convert the methyl ester to an alcohol. This was
followed by treatment with HI and H2-PtO2, which yielded the
hydrocarbon 13,16-dimethyloctacosane, as confirmed by mass
spectral analysis and relative retention time data (4).

In addition to iso-diabolic acid 3 and its MGE derivative, we
also detected two related components containing one additional
methyl group (i.e., 4 and 6). This was apparent from their mass
spectra (Fig. 4b and d), which revealed a shift of several fragment
ions in the high-m/z region by 14 Th. To elucidate the position of
the methyl group, a fraction containing MGE 6 was subjected to
LiAlH4 followed by HI treatment and hydrogenation (described
above). This yielded 5,13,16-trimethyloctacosane, as confirmed
by mass spectral analysis and relative retention time data (4). This
experiment revealed the position of the methyl group to be at C-5
but still did not elucidate the position of the additional methyl in
the MGE derivative to be at C-5 or C-�5. This was determined by
direct HI treatment followed by hydrogenation, which generated
the C31 monocarboxylic acid 9. Its mass spectrum, compared to
that of the monocarboxylic acid 8 formed from MGE derivative 5,
revealed that the additional methyl group is in the vicinity of the
ether bond, resulting in structure 6. The mass spectral fragmenta-
tion pattern of a methylated iso-diabolic acid detected in “Ca.
Chloracidobacterium thermophilum” (Table 2) also was consis-
tent with a methyl group at position C-5.

The 5-methyl iso-diabolic acid MGE 6 was detected in 4 out of
5 mesophilic species, with strain Ac_11_E3 containing the highest
relative amount of the methylated derivative. Because methyl-
ation at C-5 was detected for iso-diabolic acid from “Ca. Chloraci-
dobacterium thermophilum,” B. fastidiosa and P. methylaliphato-
genes were the only two species out of the seven investigated
strains that did not contain 5-methyl lipids (Table 2).

Distribution of IPLs. To characterize the intact polar lipids
(IPLs) of all species of Acidobacteria investigated, the Bligh-Dyer

FIG 2 Rooted neighbor-joining phylogenetic tree (Felsenstein correction) based on almost-full-length 16S rRNA gene sequences showing the investigated
strains of Acidobacteria SD 4 (boldface) in relation to other described acidobacterial taxa. Open and closed circles indicate bootstrap values (expressed as
percentages of 1,000 replicates) of �70% and �90%, respectively. The following sequences were used as the outgroup: Planctomyces brasiliensis DSM5305T

(AJ231190), Planctomyces maris DSM8797T (AJ231184), and Planctomyces limnophilus DSM 3776T (CP001744). The bar indicates 10% nucleotide divergence.

FIG 3 Gas chromatograms of lipids released after acid hydrolysis of whole-
cell material of P. methylaliphatogenes K22T (a) and Aridibacter famidurans
A22_HD_4HT (b). Carboxylic groups were derivatized to the corresponding
methyl esters, and alcohol moieties were derivatized to trimethyl silyl ethers prior
to gas chromatographic analysis. Numbers refer to structures shown in Fig. 1.
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solvent extracts were analyzed by HPLC/ESI-MSn. The IPLs were
dominated by mixed ether-ester monoglycerides (Table 3). IPLs
with phosphocholine (PC) head groups dominated, except for
“Ca. Chloracidobacterium thermophilum,” for which the domi-
nant IPLs were diacylglycerylhydroxy-methyl-(N,N,N)-trimethy-
lalanine (DGTA) lipids. The overall number of carbon atoms in
the acyl/alkyl groups of these IPLs is consistent with the dominant
fatty acids and MGEs detected after acid hydrolysis (Table 2).
However, no membrane-spanning IPLs (i.e., IPLs containing es-
ter-bound iso-diabolic acid 3 or 4 or MGE 5 or 6) were detected in
any of these Bligh-Dyer extracts.

Branched GDGTs. The acid-hydrolyzed biomass of some of
the acidobacterial cultures was also analyzed for the presence of
GDGTs by HPLC/APCI-MS using selected ion monitoring. How-
ever, we were unable to identify any of the brGDGTs 1 and 2 or any
other brGDGT in the species investigated.

DISCUSSION

Chemotaxonomic relationships. The fatty acid distributions of
all studied Acidobacteria belonging to SD 4 show a quite consistent
pattern: they all contain iso-C15:0 as an abundant fatty acid (13 to
36% of the total lipids) (Table 2). Five of them also contain iso-
C15:1�9c as an abundant fatty acid (7 to 19%), while four of them
contain C16:1�9 in substantial amounts (6 to 11%) (Table 2). iso-
Diabolic acid 3 was detected in all examined species of SD 4 Aci-
dobacteria in various amounts (1 to 47% of total lipids) (Table 2).
This lipid was identified previously as an abundant lipid in Acido-
bacteria SD 1 and 3 (14) and in thermophilic Thermoanaerobacter
species (58–60), in which they fulfill a role as membrane-spanning
lipids. In these studies, iso-diabolic acid was detected only after
hydrolysis of the cell material. In agreement with this mode of
occurrence, a previous report on the lipids of “Ca. Chloracidobac-

TABLE 2 Relative abundance of fatty acids and ether lipids after acid hydrolysis of cell material and general characteristics of the membrane lipids in
the studied SD 4 Acidobacteria

Component

% of total lipidsa in strainb:

1 2 3 4 5 6 7

Fatty acids
iso-C13 1.7 1.6
C14:1�9 0.8
C14:0 2.9
iso-C15:1�9c 9.6 6.6 19.0 8.7 16.8
iso-C15:1�9tr 0.4 0.7 0.3 0.4
iso-C15:0 13.1 18.9 12.5 23.4 22.8 30.6 35.6
anteiso-C15 1.2
iso-C16 1.6 0.2 1.9 4.6
C16:1�9 10.1 3.1 10.5 10.5 5.8 0.9
C16:0 1.0 1.2 1.8 1.3 4.7 1.1 4.1
iso-C17:1�9 3.4 2.1 0.7 1.8 4.3
iso-C17:0 2.4 0.6 1.1 5.4 16.1 2.5
anteiso-C17:0 1.4 1.1 0.6
C18:1�9 4.1
C18:0 0.8 2.1
iso-C19:1�9 1.1
iso-C19:0 6.8
C20:1�9 1.2
C20:0 0.9 0.5 1.1
iso-C21:1�9 0.8
iso-C21:0 2.1 1.8 1.7 4.4 2.6
iso-Diabolic acid (3)c 1.8 1.8 1.6 1.8 1.0 3.8 46.5
5-Methyl iso-diabolic acid (4) 1.2

Ethers
iso-C15-MGE (7) 21.6 20.7 15.9 15.7 19.5 14.9
iso-C16-MGE 4.3 1.2 2.6 1.2
C16-MGE 2 3.3 4.6 3.6 2.1
iso-C17-MGE 7.3 0.2 2.2 3.3 2.8 1.9
anteiso-C17-MGE 2.9 0.9 2.1 0.7
iso-Diabolic acid-MGE (5) 18.9 25.3 20.2 15.4 5.0 17.2
5-Methyl iso-diabolic acid-MGE (6) 4.6 3.4 1.8 3.8

Monounsaturationd (%) 27 21 36 24 31 0 1
Membrane spanningd (%) 21 31 24 18 9 20 48
Ether moietiesd (%) 40 34 30 29 23 21 0
a Normalized to the sum of the components listed. Values for major components (i.e., �5%) are underlined.
b Strains: 1, Blastocatella fastidiosa A2_16T (DSM 25172T); 2, unclassified Acidobacteria bacterium Ac_11_E3; 3, Aridibacter famidurans A22_HD_4HT; 4, Aridibacter kavangonensis
Ac_23_E3T; 5, unclassified Acidobacteria bacterium Ac_28_D10; 6, Pyrinomonas methylaliphatogenes K22T (DSM 25857T); 7, “Ca. Chloracidobacterium thermophilum.”
c Numbers in parentheses refer to structures shown in Fig. 1.
d Calculated on a molar basis, where membrane-spanning lipids are counted as two molecules.
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terium thermophilum” likewise did not report iso-diabolic acid in
the Bligh-Dyer extract (50), whereas after acid hydrolysis of cell
material, as performed in this study, it comprises the most abun-
dant lipid (Table 2). In contrast to “Ca. Chloracidobacterium

thermophilum” and Acidobacteria SD 1 and 3 (14), the relative
abundance of iso-diabolic acid is relatively low (1 to 4%) (Table 2)
in the other investigated SD 4 species. However, in these other
species iso-diabolic acid occurs relatively abundantly (5 to 25% of

FIG 4 Mass spectra (corrected for background) of the methyl ester and TMS derivatives (where appropriate) of iso-diabolic acid (3) (a), 5-methyl iso-diabolic
acid (4) (b), iso-diabolic acid MGE (5) (c), 5-methyl iso-diabolic acid MGE (6) (d), 13,16-dimethyl octacosanoic acid (e), and 13,16,24-trimethyl octacosanoic
acid (f). The latter two components were formed by HI-LiAlH4 treatment of iso-diabolic acid MGE (5) and 5-methyl iso-diabolic acid MGE (6).
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total lipids) (Table 2) in an ether-bound form as MGE derivative 5.
This component was previously identified as a minor constituent in
Acidobacteria SD 1 and 3 (14). In general, this observation seems to be
characteristic for SD 4 Acidobacteria; all species, except “Ca. Chloraci-
dobacterium thermophilum,” contain substantial amounts (21 to
40%) of ether lipids (Table 2). This is consistent with the analysis of
IPLs in the Bligh-Dyer extract, which shows that the most dominant
IPLs are mixed ether/ester lipids (Table 3).

These chemotaxonomic relationships are confirmed when
cluster analysis is performed on the lipid distributions, including
those of previously reported SD 1 and 3 Acidobacteria (14, 26)
(Fig. 5). The lipid distributions of all SD 4 Acidobacteria form a
clearly distinct cluster. The only exception is “Ca. Chloracidobac-
terium thermophilum”; its lipid distribution is more similar to
that of various members of Acidobacteria SD 1. In the phylogenetic
tree based on the 16S rRNA gene (Fig. 2), “Ca. Chloracidobacte-
rium thermophilum” is also clearly separated from the other SD 4
Acidobacteria members (Fig. 2), although it is also distinct from
SD 1 and 3 species. The distinct taxonomic position of “Ca. Chlo-
racidobacterium thermophilum” is consistent with its physiolog-
ical capabilities; it is the only known phototrophic member of the
Acidobacteria (41), while all other species are heterotrophs.

The IPL compositions of the SD 4 Acidobacteria are also in line
with the cluster analysis of the lipid distribution; “Ca. Chloracidobac-
terium thermophilum” is the only species that contains predomi-
nantly diacyl lipids, whereas the other examined species contain
mixed ether/ester lipids. Furthermore, “Ca. Chloracidobacterium
thermophilum” contains predominantly diacylglycerylhydroxym-
ethyl-N,N,N-trimethyl-�-alanine (DGTA) lipids, whereas all other
species show a dominance of phosphocholine IPLs (Table 3). How-
ever, it should be noted that the reported IPL distribution probably
represents a biased view of the membrane lipid composition, because
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FIG 5 Cluster analysis of the distribution of the lipids released by acid hydro-
lysis of cell material of the Acidobacteria of SD 4 compared to results of Acido-
bacteria SD 1 and 3 reported previously (14, 26) using an identical method of
lipid analysis. The input of the cluster analysis was the Bray-Curtis similarity
matrix of lipid profiles (percentage of total lipids, as in Table 2). A hierarchical
clustering was performed in SYSTAT 13 using Euclidian distance and the av-
erage linking method. A superscript letter “a” indicates that two different
batches of cultures were studied.
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IPLs containing membrane-spanning lipids were not detected,
whereas direct acid hydrolysis of cells generated substantial amounts
of these lipids (9 to 48%) (Table 2). As discussed previously for SD 1
and 3 Acidobacteria species (14), this may be caused by relatively large
and polar head groups, which may render the IPLs containing mem-
brane-spanning lipids nonextractable using the Bligh-Dyer protocol.
Despite this bias, there is generally a good overlap between the re-
ported acyl/alkyl composition of the IPLs (Table 3) and the lipid
composition (Table 2); the IPLs seem to contain mainly C15 and, to a
lesser extent, C17 acyl/alkyl chains, as can be tentatively concluded
from the total number of acyl/alkyl carbons of C30 and C32.

Variation in lipid composition: influence of environmental
variables. The membrane lipids of SD 4 Acidobacteria are quite
distinct from the diacyl glycerol membrane lipids that characterize
most bacteria. First, they contain a substantial amount of mem-
brane-spanning lipids (9 to 48%) (Table 2). Second, they contain
a high percentage of ether linkages (up to 40%) (Table 2). In
contrast to the Archaea, membrane-spanning lipids are uncom-
mon in the bacterial domain, but diabolic or iso-diabolic acid,
acids connecting two glycerol moieties, do occur in Butyrivibrio
species (61), Sarcina ventriculi (62), members of the Thermo-
togales (2, 57, 63–65), Thermoanaerobacter species (58, 59, 62),
Acidobacteria SD 1 and 3 (14), and Acidobacteria SD 4 (this work).
Ether membrane lipids are the hallmark of the Archaea (1, 5), but
an increasing number of bacterial species has been shown to con-
tain diether, tetraether, or mixed ether/ester lipids. These include
(but are not restricted to) Ammonifex degensii (66), Aquifex pyro-
philus (67), Thermotoga species (2, 57), several sulfate-reducing
bacteria (68–70), Mycoplasma fermentans (71), anammox bacteria
(3), Acidobacteria SD 1 and 3 (14), and Acidobacteria SD 4 (this
work).

Classically, the presence of membrane-spanning and ether-
bound lipids is seen as an adaptation to high temperatures or other
extreme conditions, as is the case for isoprenoidal tetraether lipids
of Archaea (72). Consistent with this idea, most bacterial species
that contain membrane-spanning lipids are moderate or extreme
thermophiles, although Butyrivibrio species and most cultured
Acidobacteria are mesophilic. In a study of different species of the
order Thermotogales (57), it was shown that in Thermotoga spp.,
the core membrane lipids were characterized by the presence of
both ester and ether bonds, whereas no ether bonds occurred in
the phylogenetically related Thermosipho and Fervidobacterium
spp. Therefore, both the occurrence of membrane-spanning lipids
and the presence of ether bonds in bacteria do not seem to be an
adaptation to temperature alone.

In this study, we examined two thermophilic species of the
SD 4 Acidobacteria. “Ca. Chloracidobacterium thermophilum,”
grown at 53°C, has the highest percentage of membrane-spanning
lipids (48%) (Table 2), but its membrane lipids do not contain
ether bonds. Compared to the mesophilic species, P. methyla-
liphatogenes, grown at 60°C, has a moderate percentage of mem-
brane-spanning lipids (20%) (Table 2) but a lower total number
of ether bonds (21%) (Table 2). The most distinct difference in the
composition of the thermophilic species compared to the meso-
philes is that they contain very few unsaturated lipids (Table 2). To
examine the influence of growth temperature on the membrane
lipid composition further, P. methylaliphatogenes was grown at
three temperatures in the 50 to 69°C range. Subtle changes in the
membrane lipid composition were detected, but in contrast with
classical ideas on membrane adaptation, a decreasing rather than

an increasing trend in the percentage of membrane-spanning lip-
ids and ether bonds with increasing temperature was observed
(Fig. 6a and b). Only a small increase in the number of n-alkyl
chains (Fig. 6c) and a slight increase in the average chain length
(Fig. 6d), determining the thickness of the membrane, were ap-
parent with increasing temperature. Thus, the lipid data of the SD
4 Acidobacteria not only indicate that the occurrence of mem-
brane-spanning lipids and the presence of ether bonds in bacteria
are adaptations to temperature but suggest that other (including
genetic) factors probably also play a role.

Acidobacteria as a potential source for branched GDGTs.
brGDGTs (e.g., 1 and 2) occur ubiquitously in soil, peat bogs, and
lakes (5). Their distribution is used to reconstruct past pH and
temperature based on a set of empirical relationships (73–75),
which are thought to reflect the ability of bacteria in soil and lake
water to adjust their membrane composition in response to tem-
perature and pH. Acidobacteria have been proposed as candidates
for the production of brGDGTs (13), and this has been supported
by the recent identification of its “building block” iso-diabolic acid
3 in SD 1 and 3 Acidobacteria (14). Although small amounts of
brGDGT 1 were detected in a few species, iso-diabolic acid 3 oc-
curred predominantly in an ester-bound form and not in an
ether-bound form, indicating that other Acidobacteria members
are probably the origin of the brGDGTs. This was one of the rea-
sons to perform this study. It showed that SD 4 Acidobacteria do
not produce brGDGTs, at least not the seven species that we in-
vestigated. However, six of the seven investigated species produce
lipids in which iso-diabolic acid 3 or its methylated counterpart 4
occur ether bound to a glycerol moiety (i.e., MGEs 5 and 6) in
relatively large amounts (i.e., 9 to 30%) (Table 2). Such moieties
reflect important structural units of the brGDGTs 1 and 2. Strik-
ingly, the ether-bound iso-diabolic acid moiety occurs only at the
sn1 but not at the sn2 position of glycerol. Apparently, while most
of the SD 4 Acidobacteria are able to produce the ether bond at the
sn1 position enzymatically, they lack the enzyme(s) able to pro-
duce ether bonds at the sn2 position. Consequently, the diester/
diether lipids 10 and 11, composed of two esterified MGE 5 and 6
units, which are presumed to be important constituents of the
membrane lipids of SD 4 Acidobacteria, have the closest structural
resemblance to brGDGTs 1 and 2.

Another apparent mismatch with the GDGTs occurring in SD
1 Acidobacteria and brGDGTs occurring in the environment is
that only GDGT 1 was detected in the Acidobacteria (14), whereas
brGDGTs with additional methyl substituents (such as 2) occur
widely in the environment (73, 76). This additional methylation
occurs at one (i.e., 2) or both alkyl chains at C-5, although recently
brGDGTs with the methylation at C-6 also have been reported
(77). The detection of the 5-methyl iso-diabolic acid (i.e., 4) and
MGE 6 in five out of seven species of SD 4 Acidobacteria now, for
the first time, reveals that an additionally methylated iso-diabolic
acid or its ether derivative is biosynthesized by Acidobacteria. In-
terestingly, the two thermophilic species produce no (i.e., P.
methylaliphatogenes) or only small amounts (i.e., “Ca. Chloraci-
dobacterium thermophilum”) of additionally methylated iso-dia-
bolic acid or its derivative (i.e., 4 and 6) (Table 2). Four of the five
mesophilic SD 4 Acidobacteria produce these components, with
strain Ac_11_E3 containing them at the highest relative abun-
dance (Table 2). This is in agreement with the distributions of
brGDGTs in the environment, which generally reveals an increase
in the degree of additional branching with decreasing temperature
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(73–75). The mesophilic species B. fastidiosa is, however, an ex-
ception in this respect, since it does not contain structure 4 or 6
(Table 2). This suggests that although there apparently is strong
environmental control of brGDGT composition (73–75), there
also are genetic factors involved. In the species investigated, we did
not identify any additionally methylated iso-C15 fatty acid or iso-
C15 MGE. This suggests that, in the biosynthesis of the membrane
lipids, the methylation of C-5 occurs after the head-to-head con-
densation of two iso-C15 fatty acids to iso-diabolic acid 3, i.e., after
the membrane-spanning lipid has been synthesized.

Our finding of ether-bound iso-diabolic acid and its 5-methyl
derivative as important membrane lipids of SD 4 Acidobacteria
further closes the gap between the presumed origin of brGDGTs
in the environment and the occurrence of related lipids in bacte-
ria. Presently, we still lack known Acidobacteria members that are
able to produce glycerol membrane lipids that are ether linked at
the sn2 position (although some SD 1 species are able to produce
small amounts of GDGT 1) and Acidobacteria that produce mem-
brane-spanning lipids containing cyclopentane moieties formed
by internal cyclization (9). Further studies of the lipids of newly
cultivated Acidobacteria may lead to identification of the bacterial
sources of the ubiquitous brGDGTs in the environment. This will
allow a more fundamental study of the environmental and genetic
controls on the distribution of these lipids that are currently
widely applied in paleoenvironment and paleoclimate studies (5).
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