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ABSTRACT

Polyadenylated mature mRNAs are the focus of standard transcriptome analyses. However, the profiling of nascent transcripts,
which often include nonpolyadenylated RNAs, can unveil novel insights into transcriptional regulation. Here, we separately se-
quenced total RNAs (Total RNAseq) and mRNAs (mRNAseq) from the same HIV-1-infected human CD4� T cells. We found that
many nonpolyadenylated RNAs were differentially expressed upon HIV-1 infection, and we identified 8 times more differentially
expressed genes at 12 h postinfection by Total RNAseq than by mRNAseq. These expression changes were also evident by con-
current changes in introns and were recapitulated by later mRNA changes, revealing an unexpectedly significant delay between
transcriptional initiation and mature mRNA production early after HIV-1 infection. We computationally derived and validated
the underlying regulatory programs, and we predicted drugs capable of reversing these HIV-1-induced expression changes fol-
lowed by experimental confirmation. Our results show that combined total and mRNA transcriptome analysis is essential for
fully capturing the early host response to virus infection and provide a framework for identifying candidate drugs for host-di-
rected therapy against HIV/AIDS.

IMPORTANCE

In this study, we used mass sequencing to identify genes differentially expressed in CD4� T cells during HIV-1 infection. To our
surprise, we found many differentially expressed genes early after infection by analyzing both newly transcribed unprocessed
pre-mRNAs and fully processed mRNAs, but not by analyzing mRNAs alone, indicating a significant delay between transcription
initiation and mRNA production early after HIV-1 infection. These results also show that important findings could be missed by
the standard practice of analyzing mRNAs alone. We then derived the regulatory mechanisms driving the observed expression
changes using integrative computational analyses. Further, we predicted drugs that could reverse the observed expression
changes induced by HIV-1 infection and showed that one of the predicted drugs indeed potently inhibited HIV-1 infection. This
shows that it is possible to identify candidate drugs for host-directed therapy against HIV/AIDS using our genomics-based ap-
proach.

Recently, we reported the first transcriptome deep sequencing
(RNAseq) analysis of a CD4� T cell line infected with HIV-1

(1). We observed both the dramatic expansion of viral mRNA
expression and the widespread differential expression of host
genes. Particularly, we observed a striking discordance between a
small set (�1% of detected genes) of differentially expressed (DE)
host genes and the large amount of viral RNAs (�20% of total
mappable reads) present at 12 h postinfection (hpi), the earliest
time point studied. Given the large quantity of viral RNA detected,
this apparent silencing of the host transcriptional response at 12
hpi is intriguing, considering that the expression of multiple host
transcription factors is already significantly altered at 12 hpi (1).

In that study, we adopted mRNAseq, the typical application of
RNAseq focusing on polyadenylated [poly(A)�] mature mRNAs
through the use of poly(T) priming (1), which is also standard for
microarray analysis. By its design, mRNAseq leaves out the non-
polyadenylated [poly(A)�] fraction of the mammalian transcrip-
tome, which includes many noncoding RNAs (ncRNAs) and tran-
scripts known to encode proteins such as histones (2, 3). A more
recent report from the ENCODE project shows that poly(A)�
transcripts can be found in most protein-coding genes (4). Also,
studies sequencing total RNAs or subcellular fractions of total
RNAs have shown the capture of nascent pre-mRNAs in the

poly(A)� fraction of the mammalian transcriptome (5, 6). Fur-
ther, recent studies show that a clearly detectable lag exists be-
tween pre-mRNA and mRNA production in response to stimuli
such as macrophage activation by lipopolysaccharide (LPS) (6) or
tumor necrosis factor (TNF) (7) and epithelial cell stimulation by
epidermal growth factor (8). Also, splicing is indicated as a con-
tributing factor to the delay between pre-mRNA and mRNA pro-
duction (6, 7), and HIV-1 infection can modulate host RNA splic-
ing machineries (9). Together, we reasoned that early host
transcriptional changes may be more evident by measuring nas-
cent pre-mRNAs than mature mRNAs.

Total RNAseq, an alternative application of RNAseq, directly
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sequences total RNA (depleted of rRNA), therefore covering both
the poly(A)� and poly(A)� fractions of the transcriptome. Com-
pared to mRNAseq, Total RNAseq generates many more short
sequencing reads originating from regions outside known exons,
i.e., introns or intergenic regions (3, 5, 10). Normally, the large
amount of reads mapped to introns significantly complicates im-
portant RNAseq applications such as mature mRNA assembly and
isoform quantification. However, these intronic reads offer a dis-
tinct benefit of detecting nascent transcription, i.e., incompletely
spliced and nonpolyadenylated immature transcripts (5, 6). De-
spite the complementarities between mRNAseq and Total
RNAseq, existing studies still use either of two RNAseq ap-
proaches, due to factors such as high cost and analytical needs.
Since the real impact of choosing a single RNAseq approach for
specific biological questions is unknown, it is valuable to contrast
mRNAseq and Total RNAseq to see if broader early host transcrip-
tion changes could be detected at the pre-mRNA than at the
mRNA level.

To further investigate the early host response to HIV-1 infec-
tion, including poly(A)� ncRNAs and nascent pre-mRNAs, in
this study we performed Total RNAseq analysis of the same HIV-
1-infected CD4� T cell samples as those that we previously used
for mRNAseq analysis (1). Here we show that many poly(A)�
transcripts were differentially expressed during HIV-1 infection,
which were accurately detected by Total RNAseq but not
mRNAseq. Surprisingly, we identified much broader (about
8-fold-greater) host transcriptional changes at 12 hpi by Total
RNAseq than mRNAseq. We found that the initiation of the early
response to HIV-1 infection was largely independent of viral rep-
lication, as treatment of cells with nonreplicating HIV-1 virions
induced transcriptional changes of similar trends. We also identi-
fied over 1,000 long ncRNAs differentially expressed during
HIV-1 infection. The systematic characterization of early tran-
scriptional changes, by integrating large-scale transcription factor
chromatin immunoprecipitation (CHiP)-seq data and a human
tissue mRNAseq expression compendium, enabled predictions of
underlying regulators such as transcription factors and long
ncRNAs. We then identified drugs capable of reversing the early
transcriptional changes induced by HIV-1 infection and utilized
the reversed drug expression profiles to refine regulator predictions.
With these predicted regulators, we computationally derived regula-
tory programs for the induction of early transcriptional changes from
a compendium of published expression data and validated their pre-
dictability. Finally, we showed experimentally that lycorine, one of
the drugs predicted by our computational analyses, potently inhib-
ited HIV-1 infection of CD4� T cells.

MATERIALS AND METHODS
Cell culture, viral infection, and drug treatment. Infection of the human
CD4� T cell line SUP-T1 with HIV-1 strain LAI, cell and virus propaga-
tion, and sample collection for RNAseq were described in reference 1.
Briefly, SUP-T1 cells were obtained from the American Type Culture
Collection (CRL-1942) and propagated in RPMI 1640 medium (Gibco)
supplemented with 10% fetal bovine serum (HyClone), penicillin (100
U/ml), streptomycin (100 g/ml), and GlutaMAX-I. HIV-1 strain LAI (cat-
alog no. 2522) was obtained from the NIH AIDS Research and Reference
Reagent Program (Germantown, MD) and propagated in SUP-T1 cells.
U373-MAGI-CXCR4CEM cells were obtained from M. Emerman
through the AIDS Research and Reference Reagent Program to test virus
stock titers (11). Typical titers reached 107 infectious units per ml. Infec-
tions were carried out at a multiplicity of infection (MOI) of 5 and per-

formed in triplicate. Mock-infected samples received SUP-T1 cell condi-
tioned medium and were also performed in triplicate. Inactivation of
HIV-1 by UV irradiation was described in reference 12. Briefly, UV-inac-
tivated HIV-1 was generated by irradiating HIV preparations for 5 min, a
dose we found sufficient to abrogate viral replication in U373-MAGI-
CXCR4 cells and in SUP-T1 cells as detected by viral mRNA load Taq-
Man quantitative reverse transcription-PCR (qPCR) (13), with GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) transcript serving as an in-
ternal control (forward primer, 5=GGCCTCCAAGGAGTAAGACC3=; re-
verse primer, 5=AGGGGTCTACATGGCAACTG3=). For qPCR assays of
long noncoding RNAs (lncRNAs), an independent time course of infec-
tions of SUP-T1 with HIV-1 LAI was carried out as described in reference
14. The infectious doses in both infections were optimized to achieve
100% infected cells at 24 hpi with �50% cell viability as measured by
trypan blue exclusion assay. Infected cells were visualized by immunoflu-
orescence assay with rabbit HIV-1SF2 p24 antiserum kindly provided by
BioMolecular Technologies through the AIDS Research and Reference
Reagent Program.

To test the effect of the drugs predicted to reverse HIV-1-induced
expression changes, we first infected 1 � 106 SUP-T1 cells with HIV-1 LAI
at an MOI of 0.1 for 1 h. After washing away the virus inoculum, cells were
suspended in medium containing dimethyl sulfoxide (DMSO) or lycorine
and cultured for 24 h. Cells were pelleted, and total RNA was isolated and
reversely transcribed into cDNA (using the QuantiTect kit; Qiagen), and
intracellular viral RNA was quantified as described previously (13), with
GAPDH transcript serving as an internal control (forward primer, 5=GG
CCTCCAAGGAGTAAGACC3=; reverse primer, 5=AGGGGTCTACATG
GCAACTG3=). Cells were also deposited on a microscopic slide, and im-
munofluorescent Gag staining was carried out as described previously (1).

For influenza virus infections of a polarized human bronchial epithe-
lial cell line (Calu-3), three avian-origin influenza A viruses (IAVs) iso-
lated from fatal human cases, i.e., strains A/Anhui/01/2013 (H7N9) (here
Anhui01), A/Netherland/219/2003 (H7N7) (here NL219), and A/Viet-
nam/1203/2004 (H5N1) (here VN1203), and a seasonal human virus,
A/Panama/2007/1999 (H3N2) (here Pan99), were grown in the allantoic
cavities of 10-day-old embryonated hen’s eggs for 24 to 28 h at 37°C for
avian-origin viruses or for 48 h at 34°C for the H3N2 virus. Allantoic fluids
from multiple eggs were pooled, clarified by centrifugation, aliquoted,
and stored at �70°C. The propagation, polarization, and infection of
Calu-3 cells were carried out as described in references 15 and 16. Calu-3
cell sample collection and RNA isolation were described in reference 16.
All research with avian viruses was conducted under biosafety level 3
containment, including enhancements required by the U.S. Department
of Agriculture and the Select Agent Program (http://www.cdc.gov/od/ohs
/biosfty/bmbl5/bmbl5toc.htm).

Transcriptome sequencing analysis. For Total RNAseq analysis, ap-
proximately 20 �g of total RNA from each sample was submitted to the
Beijing Genomics Institute (BGI) for sequencing. In brief, rRNAs were
depleted using the RiboMinus human/mouse transcriptome isolation kit
(Invitrogen, CA). rRNA-depleted RNAs were fragmented, and cDNA syn-
thesis was primed using random hexamers. Short fragments were purified
for an average insert size of 200 nucleotides (nt) and then ligated with
proprietary adapters. The (2 � 90)-nt paired-end sequencing was done
using an Illumina HiSeq 2000. The mRNAseq data were acquired using
the exact same samples as reported in reference 1.

Read mapping and differential expression analysis. The read map-
ping was carried out essentially as described in reference 1. Briefly, we
mapped short reads to human ribosomal sequences to remove potential
rRNA sequences using the short-read aligner software Bowtie (17). We
then mapped the remaining unmapped reads to the HIV genome (Gen-
Bank accession no. K02013) using the gapped aligner software TopHat
(18), which predicts HIV splicing junctions and maps intron-spanning
reads to known splicing junctions. To quantify transcript expression, we
mapped all reads that remained unmapped to the human reference ge-
nome (hg19, build GRCh37, downloaded from the UCSC genome
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browser [http://genome.ucsc.edu]) using TopHat. RefSeq transcript an-
notations were supplied to facilitate the mapping of reads spanning
known splicing junctions. Gene level quantification was obtained using
HT-seq (http://www-huber.embl.de/users/anders/HTSeq/doc/overview
.html). The differential expression analysis was performed using edgeR
(19) separately for Total RNAseq and mRNAseq data sets. For each data
set, for the downstream analyses, we kept only those genes with at least 10
raw read counts in at least three biological samples and which were con-
sidered detected in this study. Clustering and other statistical analyses
were performed using R (http://www.r-project.org/). For visualization,
BAM files were generated using TopHat and SAMtools (20) and displayed
using the UCSC Genome Browser.

Compilation of custom human genome annotation. We created a
custom human genome annotation using a hybrid approach. First, we
combined a published catalog of human long noncoding RNAs (21) with
a reference human annotation recently released by the ENCODE project
(Gencode v17). Independent of these known annotations, we recon-
structed transcripts in each sample, using Cufflinks (22) based on reads
mapped to the human genome, separately for mRNAseq and Total-
RNAseq data sets. Only uniquely mapped reads were used, as this was
meant to complement existing annotation. Transcripts assembled from
individual samples were merged together using Cuffmerge. All newly as-
sembled transcripts were checked against the known annotations as de-
scribed above using the tool Cuffcompare from Cufflinks, and only those
assembled transcripts with the class code “u” (unknown, intergenic tran-
script) were added into the combined known annotations as predicted
novel transcripts.

Identification of genes preferably detected by Total RNAseq relative
to mRNAseq. To investigate if we captured nonpolyadenylated tran-
scripts through Total RNAseq analysis, we compared for the same gene in
the same sample the read counts from Total RNAseq analysis to that from
mRNAseq analysis. We reasoned that if nonpolyadenylated transcripts
were transcribed from a gene, Total RNAseq analysis would consistently
collect more short reads than mRNAseq analysis. To facilitate the com-
parison, first, for each sample by each RNAseq analysis, the raw gene read
counts were scaled by the total gene read counts. Next, for each gene, we
counted the number of samples in which the scaled read count from Total
RNAseq analysis was 1.5-fold greater or more than that from the corre-
sponding mRNAseq analysis. A gene was considered enriched in Total
RNAseq data if it had more (1.5-fold or higher) reads in more than one-
half of the total samples.

qPCR. RNA was reverse transcribed using the QuantiTect reverse
transcription kit (Qiagen, Valencia, CA), and the resulting cDNA was
diluted 50 times. Primers for gene targets of interest were designed using
the Primer 3 program (http://frodo.wi.mit.edu/primer3). PCR was run
on an ABI Prism 7900HT sequence detection system in triplicate per each
sample and target. The relative change in transcript abundance was cal-
culated using the ��CT method (where CT is the threshold cycle) with
GAPDH as an internal gene reference. We inspected the expression
change of GAPDH in our RNAseq data, and the expression change was
negligible. We also checked against a second calibrator (IRF-3) that did
not change expression upon HIV-1 infection based on both the RNAseq
data collected here and an unpublished microarray data set, and the re-
sults were identical to those derived from the GAPDH-controlled exper-
iment. Intracellular viral RNA load was quantified as previously described
(13). The expression changes of a set of 46 host genes were quantified
using qPCR. These genes were previously selected spanning a range of
values for the validation of the results from mRNAseq analysis, but only
the results from 34 of 46 genes were reported (1).

Transcription factor binding site enrichment analysis with ChIP-
seq data. ChIP-seq identified transcription factor (TF) binding sites from
the ENCODE project (23) were downloaded from the UCSC genome
browser (http://genome.ucsc.edu). A TF was considered found in the pro-
moter region of a gene if one of its binding sites was located within the
window from 1,000 bp upstream to 100 bp downstream of its annotated

transcriptional start site. Considering that the ENCODE ChIP-seq data
were a pool of data from different cell types, we limited our analysis to
those genes that had at least one Pol II binding site located in their pro-
moter regions, indicating that they were actually transcribed in the as-
sayed cells. This requirement also ensured that the annotations of tran-
scriptional start sites were less likely incorrect. A hypergeometric test was
used to test if the binding sites of a TF were enriched in the promoters of
a list of differentially expressed genes. For the list of genes differentially
expressed at 12 hpi, we limited our analysis to protein-coding genes, as
they were mostly (over 85%) protein-coding genes and the differences in
the frequencies of gene biotypes between this set and the rest could bias
the analysis. For lncRNAs, the enrichment analysis was performed for all
differentially expressed lncRNAs (12 and 24 hpi results combined), as the
list for 12 hpi was too small. Also, a similar analysis was done for the list of
lncRNAs that were not differentially expressed during HIV-1 infection, in
order to filter out TFs for which the enrichment might be due to differ-
ences in gene biotypes. Three lncRNA categories were excluded from the
analysis, i.e., 3prime_overlapping_ncrna, antisense, sense_intronic, and
sense_overlapping, because their genomic overlapping with other anno-
tated genes introduced ambiguities in assigning binding sites.

Functional enrichment analysis. Functional analysis was performed
using Ingenuity Pathways Analysis (IPA; Ingenuity Systems, Inc.). The
Ensembl gene identifier was used to map each gene to its corresponding
molecule in the Ingenuity Pathways Knowledge Base, a curated repository
of biological interactions and functional annotations. The P value associ-
ated with a function or a pathway was calculated using the right-tailed
Fisher exact test. For all analyses, IPA-generated P values were adjusted
using the Benjamini-Hochberg multiple testing correction. Enriched
functions from IPA analysis were custom processed to summarize redun-
dant entries, i.e., different functions containing the same or similar sets of
genes, or a subset of genes in other functions. Specifically, a similarity
measurement between two functions was defined as the ratio between the
number of overlapping genes and the total number of genes in one of two
functions with a smaller number of genes. The corresponding distance
was defined as 1 minus the calculated similarity measure. Hierarchical
clustering analysis was performed on the all-against-all distance matrix
using the single-linkage clustering method to group IPA functional cate-
gories into function groups. The most significant P value among all func-
tions within each function group was defined as the P value for the func-
tion group. These function groups were further filtered if the genes in a
function group were mostly covered by more-significant (smaller P value)
function groups. A similar summarization and filtering process was done
for enriched canonical pathways.

Association of long ncRNA with functions enriched in genes differ-
entially expressed at 12 hpi. We downloaded the alignment files of the
mRNAseq read alignment of 24 human tissues and cell types from the
Human lincRNA Catalog website (http://www.broadinstitute.org/genome
_bio/human_lincrnas/?q�home) and then quantified gene expression in
each tissue in the same way as we did for the RNAseq data collected here. We
added mRNAseq read counts collected from our control samples (the
average of 3 mock-infected replicates from12 hpi as a single data column)
representing T cells to the human tissue collection. Only those genes with
at least 10 raw read counts in at least 3 tissues were kept for the down-
stream analysis. The normalized read count, in counts per million (cpm),
for each tissue was obtained using edgeR (19). After normalization, we
further limited the following correlation analysis to those genes with non-
zero entries across at least 60% of tissues. The normalized read cpms were
log2 transformed before the calculation of correlations, which was done
using the bicor function provided by the WGCNA package (24). For each
lncRNA differentially expressed at 12 hpi, we ranked all other genes by
their correlation coefficients with the lncRNA. The ranked list was ana-
lyzed using the GseaPreranked tool provided by gene set enrichment anal-
ysis (GSEA) (25) to obtain the functions that were highly correlated with
the lncRNA of interest. For GSEA analysis, the human gene symbol was
used to map each gene to the corresponding genes in the reference func-
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tion annotation database, here the function groups enriched in 12 hpi DE
genes, which were derived from the IPA analysis as described above and
the gene modules as described below.

cmap database. To search for drugs that reversed the early expression
changes induced by HIV-1 infection, we used the publicly available Con-
nectivity Map (cmap) database (build 02) (26). cmap is a collection of
genome-wide transcriptional data from cultured human cells treated with
1,309 different compounds. In cmap, the basic unit of data is defined as an
instance, which is a pair of a single treatment of a compound and the
corresponding control and the list of genes ordered by their extent of
differential expression between the treatment and control. The same com-
pound can be tested multiple times (under the same or different condi-
tions), each of which is considered an instance. Given a query signature,
i.e., a list of up- and downregulated genes, a value between �1 and �1
(called the connectivity score) is calculated for each of the instances in
cmap. A high positive connectivity score indicates that the corresponding
compound induced the expression of the query signature. A high negative
connectivity score indicates that the corresponding compound reversed
the expression of the query signature. Instances are rank ordered by de-
scending connectivity score. The top-ranked instance (i.e., a score of �1)
is said to be the most positively connected with the query signature. The
bottom-ranked instance (i.e., a score of �1) is the most negatively con-
nected with the query signature. For each compound, cmap calculates a
measure of the enrichment of its instances in either end of the order list of
all instances in cmap and a permutation P value for that enrichment score.
By default, cmap returns a list of the top 20 compounds best connected
(positively and negatively) with the query signature, ordered in ascending
order of P values and then ascending order of (absolute) enrichment. We
used the 500 most upregulated and 500 most downregulated genes at 12
hpi for a query signature. Genes were mapped to Affymetrix HG-U133A
probe sets using the Affymetrix NetAffy batch query tool to query the
cmap database.

Gene module construction, regulatory model learning, and valida-
tion. We manually queried NCBI GEO for human microarray data sets
related to HIV infection and/or CD4� T cells. To minimize potential
technical complications, we kept only data sets using the same microarray
platform, Affymetrix Human Genome U133 Plus 2.0 array (accession
number GPL570 in GEO). For each data set, we downloaded the raw cel
files and reprocessed the data in the same way using the “rma” function in
R/affy package (27). Probe set to gene mapping was obtained using the
Affymetrix NetAffy batch query tool, and probe sets mapped to the same
gene were averaged. Within each data set, we identified one control con-
dition (untreated, uninfected, time point zero, etc.) and converted the
expression measures to log2 ratios between each sample and the mean of
the control samples to focus on the effects of perturbations and to mini-
mize potential technical differences across different data sets. This also
facilitated the downstream interpretation. We also averaged technical
replicates and replicates of cell line samples to maximally retain biological
variations.

To find gene modules, we combined the obtained log2 ratios from each
data set and performed weighted coexpression network analysis using the
R package WGCNA (24). We used the “signed” network with the value of
6 for power and biweight midcorrelation “bicor” for correlation calcula-
tion. For each gene model, we then learned predictive models from the
compiled expression data. To derive predictive models, we used a ma-
chine learning procedure called “elastic net,” which is implemented by the
R package “glmnet” (28). For each gene module, the predictor variables
were a set of candidate predicators/regulators, and the response variable
was the median expression changes of genes for each condition. In the case
of 10 identified TFs as candidate regulators, we fitted a linear regression
model (family “gaussian”) with the lasso penalty (alpha � 1), as there
were no strong correlations among predictor variables. The fitting proce-
dure generates a set of selected regulators and the corresponding regres-
sion coefficients for the linear regression model. In the case of the ex-
panded set of 115 TFs and lncRNAs as candidate regulators, we fitted a

linear regression model with the elastic net penalty. We compiled the
expanded list of candidate regulators based on the Gene Ontology (TF,
GO:0003700) and Gencode (lncRNA) annotation, and we excluded the
ones that were not differentially expressed at 12 hpi during HIV infection.
For each gene module, we searched a series of values between 0 and 1 for
alpha and chose the one that gave the minimum mean cross-validation
error. Here we used 10-fold cross-validation, i.e., the samples were ran-
domly partitioned into 10 sets, of which 9 sets were used to learn a pre-
dictive model, which was subsequently used to blindly predict the out-
come in the 10th set. This process was repeated iteratively 10 times, and
the model with the minimum mean cross-validation error was identified
and subjected to the predictability assessment. To ensure that the learning
and evaluation were robust, we first randomly divided the 173 conditions/
samples into 10 subsets and learned 10 predictive models by leaving out
one of the subsets each time. Then we used the learned model to predict
the overall expression changes of the gene module during HIV-1 infec-
tion.

Nucleotide sequence accession numbers. The RNAseq data from this
publication have been submitted to NCBI’s GEO database (http://www
.ncbi.nlm.nih.gov/geo) and assigned the identifier GSE53993.

RESULTS
Total RNAseq uncovers nonpolyadenylated transcripts differ-
entially expressed in HIV-1-infected CD4� T cells. Previously,
we infected SUP-T1 cells, a human CD4� T lymphoblast cell line,
with HIV-1 LAI under conditions that gave a synchronous infec-
tion in �100% of the cells, and we collected samples at 12 and 24
h postinfection (hpi) (1). To extend our prior mRNAseq analysis
of poly(A)� transcripts into less-studied poly(A)� transcripts,
we sequenced total RNAs (Total RNAseq) from the same set of
samples plus additional samples from cells treated with UV-inac-
tivated virions (see Table S1 in the supplemental material). Ac-
cordingly, we expanded human gene annotation by combining
the recent annotation provided by ENCODE (29), a published
catalog of human large intergenic noncoding RNAs (lincRNAs,
one category of long ncRNAs) (21), and unannotated intergenic
transcripts reconstructed from this RNAseq data using Cufflinks
(22). As shown in Table 1, over 40% of genes in the expanded
annotation encode ncRNAs and intergenic transcripts, allowing
us to better cover less-studied ncRNAs along with well-annotated
protein-coding genes.

We then quantified host gene expression changes during
HIV-1 infection, separately using mRNAseq and Total RNAseq
(see Materials and Methods). In total, 11,094 genes were differen-
tially expressed (false-discovery rate [FDR] adjusted P value,
	0.05) at one or more time points following HIV infection, by
either or both of the RNAseq methods (Table 1). Due to the much
deeper (2.2-fold-higher, on average) sequencing coverage of host
nonribosomal transcripts by mRNAseq, the expression of 2,159
DE genes was detected only by mRNAseq. Yet, there were still 165
DE genes detected only by Total RNAseq, indicating that these
genes produced exclusively poly(A)� transcripts. Not surpris-
ingly, these genes were enriched with ncRNAs and intergenic tran-
scripts while the majority of DE genes detected only by mRNAseq
were protein-coding genes (Fig. 1A).

Since many human genes, including protein-coding ones, are
found in both poly(A)� and poly(A)� RNA fractions (4), we
investigated for which genes the measuring of both RNA fractions (by
Total RNAseq) would improve the detection of differentially ex-
pressed genes. To this end, we first identified genes for which Total
RNAseq tended to generate consistently higher expression abun-
dances than the parallel mRNAseq analysis across the same samples,
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an indication of the existence of poly(A)� transcripts. We found a set
of 3,264 genes (of 17,316 genes detected overall) that had expression
abundances 1.5-fold greater or higher in Total RNAseq than the cor-
responding mRNAseq across more than 50% (6/11) of available sam-
ples, hence considered enriched by Total RNAseq. Compared to the

rest of detected genes, it contained relatively fewer (62% versus 75%)
protein-coding genes, and more (23% versus 12%) ncRNAs or inter-
genic genes, including known poly(A)� transcribed genes such as
TERC and RMRP genes (see Fig. S1 in the supplemental material).
Next, we examined the differential expression P values of DE genes in

TABLE 1 Summary of the expanded human gene annotation and the numbers of differentially expressed genes identified

Gene biotypea Annotation

No. of differentially expressed genes identified in cells infected with:

Intact HIV UV-inactivated HIV

Total 12 hpi 24 hpi Total 12 hpi 24 hpi

Coding 20,317 8,570 1,660 8,189 1,118 826 425
Intergenic 359 248 64 234 51 44 17
lncRNA 16,927 1,098 98 1,074 45 29 18
sncRNA 8,527 29 4 26 6 0 6
Pseudogene 14,138 1,144 107 1,115 96 27 74
Other 841 5 0 5 1 1 0

Total 61,109 11,094 1,933 10,643 1,317 927 540
a Gene biotype was based on the GENCODE classification. For lncRNA, processed_transcript, lincRNA,3prime_overlapping_ncrna, antisense, sense_intronic, sense_overlapping.
For sncRNA, snRNA, snoRNA, misc_RNA, miRNA. For pseudogene, polymorphic_pseudogene, pseudogene, IG_V_pseudogene, TR_V_pseudogene. For “other,” IG_V_gene,
TR_C_gene, TR_J_gene, TR_V_gene, rRNA.
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this Total RNAseq enriched set. Interestingly, these DE genes still
tended to have better P values in Total RNAseq than mRNAseq data,
even though their expression was detected by both RNAseq methods
(Fig. 1B). For some genes, such as NEAT1 and MALAT1 genes, that
are known to be transcribed as poly(A)� transcripts, we observed
clear discrepancies in expression changes between Total RNAseq and
mRNAseq measurements, and independent analyses by qPCR agreed
with Total RNAseq (Fig. 1C and D). In summary, these results con-
vincingly demonstrated for the first time that many poly(A)� host
transcripts were differentially expressed during HIV-1 infection in
CD4� T cells. The first application of combined Total RNAseq and
mRNAseq enabled the discovery of those genes that were differen-
tially expressed during HIV-1 infection but not adequately addressed
by mRNAseq due to poly(A)� transcripts.

Total RNAseq reveals broad early host transcriptional
changes not detected by mRNAseq. Similar to our previous re-
port (1), even with this expanded annotation we still identified
only a small set (220) of DE genes at 12 hpi by mRNAseq. Unex-
pectedly, we found many more (1,801) DE genes at 12 hpi by Total
RNAseq. Several comparisons showed that this difference was not
a technical artifact. First, at 12 and 24 hpi, Total RNAseq measure-
ments agreed well (Pearson correlation coefficient, r, 0.90 to 0.98)
with separate qPCR measurements over a large set of genes (46
genes) that were selected independent of Total RNAseq data (see
Fig. S2A in the supplemental material). Second, at 24 hpi, the
overall expression changes of DE genes agreed between mRNAseq
and Total RNAseq (see Fig. S2B in the supplemental material).
These findings indicate that the 12 hpi expression changes de-
tected by Total RNAseq are accurate.

We categorized the 1,933 DE genes identified at 12 hpi sequen-
tially into four exclusive subgroups: subgroup a, genes with an
adjusted P value of 	0.05 by mRNAseq; subgroup b, genes with a
raw P value of 	0.2 by mRNAseq; subgroup c, genes enriched in
Total RNAseq as described above; and subgroup d, the rest (Fig.
2A). Subgroups a and b were intended to cover DE genes found by
mRNAseq (a) or likely found by mRNAseq (b), and subgroup c
was for genes inherently not well detected by mRNAseq, e.g.,
poly(A)� transcripts. Interestingly, for both subgroups a and b,
the expression changes at 12 hpi measured by mRNAseq versus by
Total RNAseq were highly consistent (Fig. 2B). Again, this agree-
ment verifies the significant expression changes at 12 hpi detected
by Total RNAseq.

To investigate the reasons for the apparent discrepancies be-
tween mRNAseq and Total RNAseq for subgroup d (Fig. 2B), we
counted reads mapped to introns for each gene and performed
differential expression analysis in the same way as we did for reads
mapped to exons. We reasoned that the additional immature tran-
scripts captured by Total RNAseq could drive the observed differ-
ences (5, 6). Intriguingly, for subgroup d, the expression changes
measured by reads mapped to introns were positively correlated
(r � 0.6) with the expression changes measured by reads mapped to
exons (Fig. 2C). In addition, 12 hpi expression changes were posi-
tively correlated (r � 0.7) with expression changes at 24 hpi. This
indicates that for subgroup d, transcriptional changes that occurred
at 12 hpi did not affect the amount of mature mRNAs until a later
time point such as 24 hpi (Fig. 2D). A similar trend was also evident
for subgroup b, suggesting that mature mRNAs in this subgroup were
affected by transcriptional changes observed at 12 hpi by Total
RNAseq, but not as significantly as for genes in subgroup a (Fig. 2C).

To investigate if these subgroups represent distinct biological

functions, we identified biological functions significantly enriched
in all 12 hpi DE genes. For each enriched function, we then tabu-
lated the number of genes from each subgroup. In total, we found
14 major biological functions enriched in 12 hpi DE genes (see
Table S2 in the supplemental material). For most of these 14 en-
riched functions, genes spread across multiple subgroups, but
with different degrees of relative contributions from each sub-
group. For example, subgroup a had relatively more genes related
to T-cell differentiation, while genes associated with mitochon-
drial dysfunction or CTLA4 signaling tended to be from subgroup
d (see Fig. S4 in the supplemental material). This suggests that
genes across different subgroups were part of the same biological
processes but regulated distinctly as illustrated by different pat-
terns of expression changes. In summary, by contrasting Total
RNAseq and mRNAseq measurements, we show that thousands of
host genes in CD4� T cells had undergone significant transcrip-
tional changes as early as 12 hpi, but for most of these genes,
changes in the abundance of mature mRNAs were not detected
until 24 hpi.

The initiation of many of the HIV-mediated early host tran-
scriptional changes, including the suppression of genes associ-
ated with T cell functionality, is not dependent upon viral rep-
lication. To investigate the mechanisms driving the expression
changes observed at 12 hpi, we evaluated the expression changes
in SUP-T1 cells treated with UV-inactivated, nonreplicating HIV
virions. We performed this experiment because the interaction of
cells with nonreplicating HIV virions (or HIV envelope protein
gp120 alone) can trigger many intracellular molecular events (30,
31). Strikingly, nonreplicating HIV virions induced expression
changes similar to those of intact HIVs at 12 hpi, though the mag-
nitude of expression changes was smaller (Fig. 3A). Functional
enrichment analysis also showed that similar functional categories
(such as T cell functionality) were enriched in the two lists of DE
genes (see Table S3 in the supplemental material). These results
indicate that the initiation of early host responses to HIV-1 infec-
tion in CD4� T cells was largely independent of viral replication.

To investigate if any master regulators were driving the early
host transcriptional changes, we searched for transcription factors
(TFs) with binding sites enriched in the promoters of 12 hpi DE
genes. Using the large-scale TF CHiP-seq data from ENCODE
(23), we found that the binding sites of 58 TFs were enriched
(hypergeometric test P value, 	0.01) in the promoters of the 12
hpi DE genes. Clustering analysis indicated that the binding sites
of some of these TFs tended to co-occur in the promoters of dif-
ferent subsets of 12 hpi DE genes (see Fig. S5 in the supplemental
material), suggesting that some TFs functioned together. Alterna-
tively, the enrichment of binding sites of nonfunctional TFs could
be merely due to the co-occurrence of their binding sites in the
same promoters along with that of some other functional TFs.

Next, we explored if any of these enriched TFs were associated
with the transcriptional changes induced by both the intact HIV-1
and UV-inactivated viruses. We examined 10 enriched TFs from
subgroups a and b of 12 hpi DE genes as described above. Since the
levels of mature mRNAs encoding these transcription factors also
changed at 12 hpi, we reasoned that their regulatory activities were
also more likely to be modulated. Together, these 10 TFs had at
least one binding site in 75% (1,446/1,933) of 12 hpi DE genes,
indicating their broad regulatory impacts on the early transcrip-
tional changes. Among them, MYC was the most downregulated
TF at 12 hpi in samples from HIV-1-infected cells and in samples
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from cells treated with UV-inactivated virions and had binding
sites in the promoters of one-half (1,000/1,933) of the 12 hpi DE
genes (Fig. 3B). MYC binding sites were also enriched in the DE
genes derived from cells treated with UV-inactivated virions at 12
hpi, consistent with HIV-1 gp120 downregulation of MYC pro-
teins in human mesangial cells (32). NFKB1 and FOS are two
other enriched TFs with documented interactions with gp120
(33), and the expression changes of FOS in cells treated with UV-
inactivated virions were in the same direction as in HIV-1-in-
fected cells. The genes encoding two additional TFs, YY1 and
ELK4, were among the genes differentially expressed in primary
peripheral blood mononuclear cells treated with gp120 (31).
However, EGR1 was the most upregulated TF in HIV-1-infected
cells but was downregulated in cells treated with UV-inactivated
virions, even though EGR1 binding sites were enriched in both
cases, indicating that additional regulation likely occurred during

intact HIV-1 virus infection. To the best of our knowledge, this is
the first report that contrasts the host response to intact HIV-1
viruses versus nonreplicating virions by whole-transcriptome
analysis. The results show that the initiation of many of the early
host responses was regulated in a replication-independent man-
ner, involving master transcription factors likely triggered by early
interactions between HIV-1 and host proteins.

Long noncoding RNAs are associated with HIV-mediated
early host transcriptional changes. Long ncRNAs (lncRNAs)
have emerged as a new class of important regulators in various
diseases, including HIV-1 infection (34). Compared to our prior
analysis of mRNAseq data (1), here we identified many more
(1,098) DE lncRNAs (Table 1), due to the expanded lncRNA an-
notation and the added Total RNAseq data. To better evaluate the
kinetics of lncRNA expression changes, we used qPCR to profile
11 annotated lncRNAs along with 8 newly identified intergenic
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loci and 2 annotated pseudogenes across a finer time course of
HIV-1 infection (Fig. 4A). As expected, all examined lncRNAs
were significantly differentially expressed at 24 hpi, confirming
the RNAseq results. Overall, the expression of these lncRNAs
tended to be monotonically up- or downregulated throughout the
course of HIV-1 infection. Interestingly, even with this small set of
lncRNAs, we observed four distinct expression change patterns,
separated by the earliest time point showing significant change (t
test P value, 	0.05) and the direction of expression change (Fig.
4A), indicating that the expression of these lncRNAs was tightly
regulated during HIV-1 infection.

To investigate if the differential expression of these lncRNAs
was exclusive to HIV-1 infection, we profiled a subset of these
same lncRNAs in human airway epithelial cells infected with one
of four strains of influenza virus, including highly pathogenic
H5N1 and recent H7N9 viruses. Surprisingly, almost all of these
lncRNAs were significantly differentially expressed during at least
one of the influenza infections, and the directions of expression
changes induced by influenza viruses were mostly similar to that
in HIV-1 infection (Fig. 4B). These results indicate that many of
the lncRNAs differentially expressed during HIV-1 infection are
likely related to certain host responses triggered during different
virus infections.

Next, we investigated how lncRNAs were involved in the early
host response, given that there were 98 lncRNAs significantly dif-

ferentially expressed at 12 hpi. For this, we performed lncRNA
function prediction by a “guilt-by-association” analysis similar to
that described in reference 35. We first obtained a collection of
human tissue mRNAseq data (21), which allowed us to recalculate
the expression of protein-coding and -noncoding genes consis-
tently, in the same samples, and with the same annotation used
here. Next, for each 12 hpi DE lncRNA, we calculated the correla-
tions of the lncRNA tissue expression levels to protein-coding
genes. We then applied gene set enrichment analysis (GSEA) to
identify functional categories enriched in highly correlated pro-
tein-coding genes to infer the biological functions associated with
the lncRNA. As shown in Fig. S6A in the supplemental material,
individual lncRNAs were strongly associated with the functions
enriched in 12 hpi DE genes such as T cell functionalities and
mitochondrial dysfunction. These results indicate that these less-
studied lncRNAs are actually part of the early host response to
HIV-1 infection.

To explore how lncRNA differential expression was regulated,
we performed a similar TF binding site enrichment analysis on all
DE lncRNAs (see Materials and Methods). We found that 12 TF
binding sites were enriched (P 	 0.05) in the promoters of DE
lncRNAs but not in non-DE lncRNAs (see Fig. S6B in the supple-
mental material). Among the TFs identified, BCL11A is involved
in negative regulation of gene expression and T cell differentiation
(Gene Ontology annotation). Interestingly, three of the TFs, JUN,
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FOS, and FOSL1, are related to the AP-1 complex, and the genes
encoding these TFs were upregulated at 24 hpi. AP-1 is composed
of a mixture of homo- and heterodimers formed between Jun and
Fos proteins, and the upregulation of AP-1 during HIV infections
and its interaction with various HIV proteins have been exten-
sively studied (33). The enrichment of AP-1 binding sites in
lncRNAs has also been observed recently (36, 37), and our results
show that AP-1 regulates lncRNAs in a specific context, i.e., HIV-
1-infected CD4� T cells. Overall, this analysis indicates that many
of the DE lncRNAs were likely direct targets of transcription fac-
tors, providing an alternative mechanism to connect these less-
studied lncRNAs with other functions.

Use of Connectivity Map data to refine predicted transcrip-
tion factor regulation of the early host response. Through the
computational analyses above, we predicted specific TFs and
lncRNAs as regulators of early host transcriptional changes. To
assess and refine our predictions, we searched a large collection of
drug transcriptional signatures in cell lines using Connectivity
Map (cmap) (26), to see if any drug could reverse the expression
changes induced by HIV-1 infection at 12 hpi. We reasoned that if
our predicted regulatory relationships were robust, we would
likely observe reversed expression changes in targets when the
direction of expression change in the corresponding regulator was
flipped. With a query signature, here the 500 most upregulated
and 500 most downregulated genes at 12 hpi, cmap returned drugs
that induced similar and opposite transcriptional changes relative
to the query gene signature. We then looked for specific drugs with
high negative connectivity scores, an indication that the drug re-
versed the expression changes induced by HIV-1 infection. Lyco-
rine, the highest-ranked drug with a negative connectivity score,
had an average connectivity score of �0.699 over 5 different tests,
ranging from �0.629 to �0.860 (see Table S4 in the supplemental
material). Within the list of the top 20 ranked drugs, 5 other drugs
also had negative connectivity scores: carbimazole (�0.537),
gabazine (SR-95531) (�0.416), methiazole (Prestwick-1080)
(�0.263), diazoxide (�0.334), and theobromine (�0.385).

Next, we compared the actual gene expression changes in-
duced by lycorine against that by HIV-1 infection at 12 hpi. Of the
1,279 genes differentially expressed at 12 hpi during HIV-1 infec-
tion that had common identifiers mapped across the RNAseq and
microarray platforms, most (68%, 870) had reversed expression
changes (Fig. 5A). This list of genes with reversed expression
changes included 32 TFs (of the 58 identified above) with binding
sites enriched in the promoters of 12 hpi DE genes. For each of
these 32 TFs, we then evaluated if its predicted targets were en-
riched in the genes with reversed expression changes, indicating
that the predicted TF-target relationships were recapitulated here.
In total, 14 (44%) of 32 TFs had their predicted targets enriched
(hypergeometric test P value, 	0.05) in the genes with reversed
expression changes (see Table S5 in the supplemental material).
Interestingly, those TFs which themselves were also differentially
expressed at 12 hpi during HIV-1 infection tended to be more
likely to have targets enriched in genes with reversed expression
changes (Fig. 5B). Specially, all 4 (100%) TFs that had mRNA level
changes at 12 hpi (subgroups a and b shown in Fig. 2) had targets
enriched in the genes with reversed expression changes. There-
fore, the use of both mRNA differential expression and binding
site enrichment at 12 hpi significantly improved the precision of
our TF predictions. We then pruned the initial list of 58 enriched
TFs to those 10 TFs that already covered most (75%) of the 12 hpi
DE genes as noted above.

Derivation of regulatory programs to predict the early host
transcriptional changes upon HIV-1 infection. Next, we investi-
gated how these computationally identified TFs could regulate the
observed early host response. To do so, we first compiled a com-
pendium of human expression data that are related to HIV infec-
tion and/or CD4� T cells (354 microarrays of a single platform
from GEO; see Table S6 in the supplemental material). Using this
compendium of expression data (without the RNAseq data col-
lected in this study), we then constructed a coexpression network
(24) for the genes that were identified above as differentially ex-
pressed at 12 hpi during HIV infection. From the coexpression net-
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work, we identified 9 gene modules, i.e., clusters of highly intercon-
nected genes. In total, 1,614 of 1,933 12 hpi DE genes were covered by
the microarray platform, 1,292 of which were covered by 9 gene mod-
ules together. As shown in Fig. 6A, genes within each module had
highly similar expression profiles across different conditions, and
each module represented a distinct expression profile.

Both the patterns and the specific conditions of expression
changes of gene modules offered additional insights into the reg-
ulation of genes perturbed during HIV-1 infection (Fig. 6A). For
example, across both CD4� T cell activation time courses, the
genes in the module D1 were upregulated, but the genes in the
module D4 were downregulated, suggesting that genes in both
modules are related to CD4� T cell activation but regulated dif-
ferently. Further, both modules tended to be upregulated in CD4�

T cells and lymph nodes isolated from HIV-infected patients,
though more obviously for the module D4, indicating that the
expression of these genes is also perturbed in vivo. Genes in the
module U1 also tended to be upregulated in CD4� T cells and
lymph nodes isolated from HIV-infected patients. However, their
expression changes in two types of activated CD4� T cells were

opposite: downregulated during regulatory T cell activation but
upregulated during T effector cell activation, suggesting that
the upregulation of these genes during HIV-1 infection is likely
driven by regulatory mechanisms similar to those that occur
during T effector cell activation. Interestingly, the genes of this
module also had a tendency to be downregulated in the CD4�

T cells from HIV-resistant patients, hinting that reversing their
upregulation upon HIV infection might confer resistance to
infection.

Next, we explored if the identified TFs could predict the ex-
pression changes of gene modules during HIV infection, a strong
indication of their regulatory roles. To do so, for each gene model
we attempted to learn a predictive model from this compendium
of expression data. Then, we used the learned model to predict the
overall expression changes of the gene module during HIV-1 in-
fection, with identified TFs as predictors. To derive the predictive
model, we used a machine learning procedure called elastic net
(28), which automatically selects relevant features from high-di-
mensional data and generates a predictive model with the lowest
error through cross-validation. Here, we used 10-fold cross-vali-
dation, i.e., the samples were randomly partitioned into 10 sets, of
which 9 sets were used to learn a predictive model, which was
subsequently used to blindly predict the outcome in the 10th set.
This process was repeated iteratively 10 times, and the model with
the minimum mean cross-validation error was identified and sub-
jected to the predictability assessment.

For each gene module, we built predictive models with those 10
identified TFs as candidate predictors and the median expression
change of genes of the module as the response variable (Fig. 6B,
step 3; see also Fig. S7 in the supplemental material). Very prom-
isingly, we found that for all 6 downregulated gene modules, the
learned models correctly predicted their downregulation (Fig. 6B,
step 4; see also Fig. S8 and S9 in the supplemental material), and 3
of them had predicted values very close to the median expression
change, the metric used to learn the predictive model. For com-
parison, we expanded the set of candidate predictors to all 115
annotated TFs and lncRNAs that were identified as differen-
tially expressed 12 hpi during HIV infection and covered by the
microarray platform. Interestingly, the models learned with
the expanded set of candidate predictors generated similar pre-
dicted values for these 6 gene modules (Fig. 6B, step 4; see also
Fig. S8 and S9 in the supplemental material), indicating that
the small set of identified TFs was sufficient to achieve optimal
predictability. However, for the module U1, the models de-
rived from the expanded set of candidate regulators did cor-
rectly predict its upregulation at 12 hpi (see Fig. S8 in the
supplemental material), indicating that more regulators re-
main to be identified in addition to those 10 TFs that were
selected for this gene module. Across the predictive models of
different gene modules, the common TFs tended to have varied
regression coefficients (see Fig. S7 in the supplemental mate-
rial), representing different configurations of multiple tran-
scription factors for synergistic control of each gene module.
For example, YY1 had the most negative regression coefficients
for the module U1, indicating that it negatively regulates the
module’s expressions. But YY1 had the most positive regres-
sion coefficients for modules D4, D5, and D6, an indication of
strong positive regulatory effects. ELK4 and ETS1 were not
selected for module D4, suggesting no or very little regulatory
effect, but they had relatively large regression coefficients for
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FIG 6 Gene module construction, regulatory model learning, and validation. (A) Identification of gene modules through coexpression network analysis. Top,
computational approach for gene module identification. Bottom, expression profile overview of gene modules. The rows of the heatmap are experimental
conditions with labels for selected conditions on the left. The HIV-1-induced expression changes measured in the present study are shown in the following order
(top to bottom): 12 hpi Total RNAseq, 12 hpi UV-inactivated virions, 12 hpi mRNAseq, and 24 hpi mRNAseq. The columns are genes, and their assignment to
each gene module is highlighted by the top colored band (repeated at bottom). The size and name of each gene module are shown above the colored band. (B)
Learning and validation of regulatory models for gene modules. Top, an example showing the regression coefficients of the predictive models learned for gene
model D1 with 10 identified TFs as candidate regulators (the dotted line indicates a regression coefficient value of zero). To assess if the learning and evaluation
were robust, we randomly divided the 173 conditions/samples into 10 subsets and learned 10 predictive models, but leaving out one of the subsets each time (as
described in the text). The boxplot for each TF shows the distribution of its regression coefficients across the 10 predictive models. For the boxplot, the whiskers
extend to the most extreme data point, which is no more than 1.5 times the interquartile range from the box. Bottom, comparison of the predicted values and the
measured expression changes for gene module D1 during HIV-1 infection, separately at 12 hpi (Total RNAseq) and 24 hpi (mRNAseq). Each of the 10 learned
models generated one predicted expression change for the gene module. The boxplot in purple shows the spread of 10 predicted values from the models using
10 identified TFs as candidate regulators, and the boxplot in blue shows the models with the expanded set of 115 candidate regulators (102 TFs and 13 lncRNAs)
as predictors. The black line shows the distribution of measured expression changes of genes in module D1, with the black dotted line indicating the median
expression change and the red dashed line indicating no change.
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modules D2, D3, and D6, an indication of large effects there. In
summary, these results provide additional evidence that the
computationally identified TFs are likely regulators, and they
provide novel insights into the modular regulation of the early
transcriptional changes induced by HIV infection.

Lycorine, a drug identified using a host transcriptional sig-
nature, potently inhibits HIV-1 replication in CD4� T cells. As
shown above, the enrichment of relevant TFs was based on the
prediction that lycorine could reverse the majority of the host
transcriptional changes in CD4� T cells induced by HIV-1 infec-
tion. The gene module analysis indicated that reversed host ex-
pression changes might be associated with HIV resistance (mod-
ule U1 in Fig. 6). We therefore reasoned that lycorine should
inhibit HIV-1 infection, and we tested this prediction experimen-
tally. As shown in Fig. 7A, a diminishing amount of HIV-1 viral
RNAs was detected in SUP-T1 cells treated with increasing con-
centrations of lycorine, from about 10% loss at 1 �M lycorine to
over a 90% viral load loss in cells treated with 10 �M lycorine.
Striking differences in viral loads were also visible by comparing
the amount of Gag staining in cell smears (Fig. 7B). Strong to
moderate staining of Gag antigen was present in approximately
one-quarter of untreated cells, while less than one percent of cells
treated with 10 �M lycorine showed Gag staining. Further analy-
ses showed that the decrease of HIV-1 viral loads was not the
result of direct killing of host cells by lycorine, while lycorine
had inhibitory effect on cell proliferation (see Fig. S10 in the
supplemental material). A manual search in PubChem (SID
56463667) showed that lycorine can target many host genes,
such as SMAD3 gene, which is annotated as a negative regula-
tor of cell proliferation. Lycorine also inhibits NFKB activation
in T cells (PubChem CID 11972533; AIDs 489035, 489041, and
489033) and NFKB was upregulated here and identified as a
regulator (Fig. 3). More studies are needed to elucidate the
detailed mechanism driving lycorine’s inhibitory effect on
HIV-1 infection, but these results convincingly demonstrate

the relevance of using the combined total and mRNA transcrip-
tome analysis to fully capture the early host response and the
feasibility of developing host-based therapies for HIV-1 infec-
tion through systems analysis of the host response.

DISCUSSION

Due to technical constraints, the relevance of unconventional
transcripts, such as long ncRNAs and poly(A)� transcripts, to
HIV infection has not been systematically investigated. Here, we
used RNAseq to generate an unbiased profiling of host transcrip-
tome changes in response to HIV infection. The uniqueness of our
approach is that we combined mRNAseq and Total RNAseq to
quantify both poly(A)� and poly(A)� transcripts, in contrast to
standard transcriptome analysis focusing on poly(A)� mature
mRNAs using microarray or mRNAseq. Through a side-by-side
comparison, we showed that HIV-1 infection induced the differ-
ential expression of many poly(A)� transcripts, which were accu-
rately detected by Total RNAseq but not by the more frequently
used mRNAseq. Since most annotated human genes transcribe
both poly(A)� and poly(A)� transcripts (4), targeting only the
poly(A)� fraction significantly compromises transcriptome anal-
ysis due to incomplete coverage. As evident here, one big challenge
for Total RNAseq is the need to deplete abundant rRNAs. Fortu-
nately, protocols for more-efficient rRNA depletion have been
developed, which will considerably improve Total RNAseq cover-
age of nonribosomal transcripts.

Combined Total RNAseq and mRNAseq analysis revealed the
striking finding that Total RNAseq detected a widespread early
host response to HIV-1 infection at 12 hpi that was not detected by
mRNAseq. Our analysis indicated that the discrepancy was driven
mainly by nascent transcripts captured by Total RNAseq and the
detectable delay between pre-mRNA transcription initiation and
the production of mRNAs at the 12 h time point. Several recent
studies have shown that a clearly detectable lag exists between
pre-mRNA and mRNA production in response to stimuli such as
LPS or TNF activation of macrophages (6, 7) or epidermal growth
factor stimulation of epithelial cells (8). The observation that
splicing is a significant factor contributing to the delay between
pre-mRNA and mRNA production (6, 7) is particularly notable
since HIV-1 infection can modulate host RNA splicing machiner-
ies (1, 9). These findings suggest that the analyses of nascent tran-
scripts will likely offer a more accurate picture of the kinetics of
transcriptional induction than mRNA analyses in the case of
HIV-1 infection.

The discovery of large numbers of differentially expressed
lncRNAs during HIV-1 infection presents new challenges and op-
portunities in AIDS research. Zhang et al. reported that the knock-
down of the lncRNA NEAT1, also upregulated here (Fig. 1D),
enhanced HIV-1 production by increasing the export of Rev-de-
pendent instability element-containing HIV-1 mRNAs from the
nucleus to the cytoplasm (34). This example clearly demonstrates
the relevance of lncRNAs to HIV-1 infection, but more-systematic
approaches are needed to efficiently prioritize lncRNAs for mech-
anistic studies. Here, we leveraged a human tissue expression
compendium to infer lncRNA function through correlated ex-
pression of functionally annotated genes. The effectiveness of
this guilt-by-association strategy has been illustrated previ-
ously, using expression data collected from custom-designed
ncRNA microarrays (35) or simply reannotating existing mi-
croarrays (38). With RNAseq or comparable technologies, fu-
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ture studies will have more complete coverage of both ncRNAs
and coding genes. Previously, we found mouse lncRNAs differ-
entially expressed during severe acute respiratory syndrome
coronavirus and influenza virus infection (10), and here ln-
cRNAs differentially expressed during HIV-1 infection were
also differentially expressed during influenza infection. Com-
bining gene expression data from different virus infection
studies will therefore likely improve the statistical power for
ncRNA functional inference and facilitate the prioritization of
HIV-1 infection-related lncRNAs.

The more complete characterization of early transcriptional
changes induced by HIV-1 infection offers at least two unique
benefits. First, it enables investigation of underlying molecular
regulatory mechanisms. Our strategy relied on the integration of
multiple large-scale orthogonal data sets, including CHiP-seq TF
binding sites, a tissue expression compendium, an HIV-protein
interaction database, and a compendium of related expression
data compiled from GEO. Combining the expression profiles in-
duced by nonreplicating virions and TF predictions, our analyses
show that early transcriptional changes are largely initiated in a
manner independent of viral replication, and we identified spe-
cific master regulators triggered by HIV-host interactions. Next,
we combined network analysis and machine learning techniques
to show that identified regulators were indeed predictive of the
early transcriptional changes. Not only do these results provide
additional evidence for the relevance of predicted regulators, but
also they offer novel insights into transcriptional regulation. In
particular, we showed how those host genes were regulated in a
modular manner under the synergistic control of multiple regu-
lators, and not by a particular regulator. Also we inferred that
less-studied long ncRNAs are potentially additional regulators,
which has not been done routinely. The integration of the emerg-
ing ncRNAs is made feasible because the generation of genome-
scale data by RNAseq or CHiP-seq is independent of gene anno-
tation. These emerging ncRNAs may represent a new class of
biomarkers for HIV disease progression or drug targets.

Another benefit to our approach is that it can be used to dis-
cover candidate drugs that could be repurposed for treating
HIV-1 infection. In this study, we used Connectivity Map (26), a
large collection of drug transcription profiles. With the expression
signature of HIV-1 infection identified at 12 hpi, we found several
drugs capable of reversing the gene expression changes induced by
HIV-1 to various degrees. In particular, lycorine, an alkaloid com-
pound found in plants, was predicted to reverse about 70% of the
gene expression changes induced by HIV-1 infection at 12 hpi.
Remarkably, we showed experimentally that lycorine potently in-
hibited HIV-1 infection of CD4� T cells. This result convincingly
demonstrates that the principle strategy that we developed will be
effective in discovering more host-based antiviral therapies, since
the databases of drug profiles are continuously growing. Lycorine
has previously been reported to have antiviral activity against fla-
viviruses (39) and even against HIV-1 in human T cells (40), but
by unknown or virus-based mechanisms. Our results suggest that
lycorine’s regulatory impact on the host response is a likely mech-
anism of action, which is a novel finding. Since targeting the host
response is very different from targeting viral proteins, lycorine
and its derivatives (and other drugs identified here) could be fur-
ther investigated for treating HIV-1 infection. Also, the results
showing that reversing the expression changes of a subset of host
genes as defined here can confer resistance to HIV infection indi-

cate that we have identified candidate host restriction factors for
HIV infection, which are worthy of more investigation. Here, we
used the reversed expression profiles to assess and refine the pre-
dicted regulators. Therefore, these drugs can also be used experi-
mentally as perturbations to better understand HIV biology.

In conclusion, by contrasting transcriptome sequencing by to-
tal RNA and mRNA, we show that there are widespread nascent
host transcriptional changes early after HIV-1 infection of CD4�

T cells but the production of mature mRNAs is largely delayed.
Using integrative computational analysis, we uncovered possible
regulatory mechanisms driving these transcriptional changes.
This more complete characterization of the early host response
also enabled the discovery of promising drugs for treating HIV-1
infection. This study provides a framework for better understand-
ing HIV biology through iterations of systems level analyses,
which will guide the development of targeted intervention of
HIV-1 infection in the future.
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