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Abstract

Mapping the dynamics and spatial topography of brain source processes critically involved in

initiating and propagating seizure activity is critical for effective epilepsy diagnosis, intervention,

and treatment. In this report we analyze neuronal dynamics before and during epileptic seizures

using adaptive multivariate autoregressive (VAR) models applied to maximally-independent

(ICA) sources of intracranial EEG (iEEG, ECoG) data recorded from subdural electrodes

implanted in a human patient for evaluation of surgery for epilepsy. We visualize the spatial

distribution of causal sources and sinks of ictal activity on the cortical surface (gyral and sulcal)

using a novel combination of multivariate Granger-causal and graph-theoretic metrics combined

with distributed source localization by Sparse Bayesian Learning applied to a multi-scale patch

basis. This analysis reveals and visualizes distinct, seizure stage-dependent shifts in inter-

component spatiotemporal dynamics and connectivity including the clinically-identified epileptic

foci.

I. Introduction

Nearly 5% of patients with epilepsy are potential candidates for surgical treatment. Surgery

for epilepsy can have a good chance of success if the brain region(s) generating seizures can

be accurately localized. For this purpose, in selected cases recordings are acquired using

intracranial (subdural and/or depth electrode) recording for pre-surgical evaluation. Here we

describe some recent preliminary assays of the spatial and time-frequency dynamics of

seizure generation and propagation in an intracranial EEG recording by Dr. Worrell at the

Mayo Clinic (Rochester MN).

Under suitable conditions, a time-varying vector autoregressive (VAR) model provides a

useful model for the analysis of oscillatory structure in stochastic time series [5] including
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brain electrical activity. From the VAR coefficients, we can obtain a number of useful

quantities describing the spectral dynamics and causal relationships between elements of the

system under observation. One proposed approach for identifying epileptic foci involves

fitting VAR models to channel data and identifying electrodes that exert strong influence on

other electrodes using the normalized Directed Transfer Function (DTF) (e.g. [6], [14]).

Here we use the short-time direct DTF (SdDTF) [16] which measures direct (conditional)

Granger-causal influences within a system of observed variables and normalizes over all

outflows and inflows across all given time points and frequencies, making it possible to

directly compare the amplitudes of the resulting causal measures across sources, time

periods, and frequencies.

Volume conduction and relatively large inter-electrode distances can frustrate precise

identification of epileptic foci as well as interpretation of inter-regional connectivity when

considering only iEEG channel time-series. When the number of electrodes is large, the

quality of a VAR model fit may additionally suffer. To reduce dimensionality and minimize

effects of volume conduction, we apply SdDTF to partially-dependent component subspaces

of an infomax independent component analysis (ICA) model trained on ECoG data collected

before, during, and after two seizure periods. To identify the cortical regions critically

participating in seizure generation and propagation, we apply Sparse Bayesian Learning

(SBL) and a multi-scale patch-based source solution [1], [3], [2] to the maximally-

independent source process projections, allowing us to directly visualize source and sink

areas of multivariate Granger-causal influence on the cortical surface.

II. Theory

A. Adaptive multivariate autoregressive modeling

Assuming that X = [x1, …, xT ] is an M-dimensional zero-mean weakly-stationary stochastic

process of length T, we can describe the linear dynamics of the state vector

 as a vector autoregressive (VAR[p]) process of order p:

, where ut ∈ ℜM×1 is a zero-mean white noise process with

covariance matrix .

The coefficient matrices, Al, can be estimated using a number of approaches, including

multivariate ordinary and stepwise least-squares approaches, lattice algorithms (e.g. Vieira-

Morf) or state-space models (Kalman filtering) [8]. Neumaier and Schneider [12] provide an

efficient stepwise least-squares algorithm which we use here. To deal with the non-

stationary data, we model the time-varying cortical dynamics using a simple segmentation

approach in which we fit separate VAR[p] models to a sequence of highly-overlapping

locally-stationary windows [7].

B. Short-time Direct Directed Transfer Function

The Short-time Direct Directed Transfer Function (Sd-DTF) [16] from process j to i is

obtained from a fitted VAR[p] model by
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(1)

where , Âl = −Al, Â0 = I and H(f) = A(f)−1 is the transfer function of

the system with spectral density matrix S(f) = H(f)ΣH(f)−1, Ŝ = S−1 and

 is the partial coherence between variables i and j. It can be shown

that  will be nonzero if and only if there exists a direct (multivariate) Granger-causal

influence from X j to Xi at time t and frequency f.

C. Graph-theoretic measures

The causal participation of process j within the rest of the system can be represented by

graph theoretic measures such as Outflow , Inflow ( ), Causal

flow (Fi = Ωi − ϒi), and Causal asymmetry ratio ( ). Outflow characterizes the

causal influence of a node on the rest of the system, while the degree to which a node is

causally driven by other elements of the system is represented by the inflow. The causal

flow and causal asymmetry ratios represent asymmetry in causal influence of a given node.

Large positive values of Fi (or Ri = 1) indicate a causal source (a driving process) while

large negative values (or Ri = −1) indicate a causal sink. Values near zero indicate balanced

inflow and outflow or nonsignificant flow.

D. Source Separation and Localization

EEG recorded at each electrode pair can be modeled as linear instantaneous mixtures of

latent brain sources, st. The generative model for an M-channel observed signal vector xt can

thus be written as xt = Ast. An estimate of A can be obtained by ICA [4], which seeks to

maximize the independence of assumed non-gaussian sources st. This approach has been

demonstrated to be effective at separating both brain and non-brain sources of EEG and also

iEEG activity [9].

We denote each column Aq the loading vector of the qth independent component (IC) and

the time course of the estimated sources st we denote IC activations. For each IC source q =

1, … , N we may obtain a solution to the multi-scale distributed source localization problem

Aq = LHq + ε where ε is a zero-mean noise process, L is an [M ×V ] lead-field matrix and Hq

is a [V × 1] vector of weights for each of V elements of a cortical surface mesh. For more

details on the construction of L and its multiscale extension see [2], [3], [1]. Although L is

fat and ill-conditioned, we can obtain a unique solution for Hq by assuming source sparsity

and applying Sparse Bayesian Learning [15]. We then obtain the [V × T ] matrix Pq of time-

courses of the distributed cortical potentials (voltages) for the qth IC by multiplying its [1

×T ] activation time-course Sq by Hq.
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E. Visualizing IC dynamics on the cortical surface

We can model the dynamics of and interdependencies between IC sources by fitting a

VAR[p] model to the IC activations. While it may seem that physical (e.g., Granger-causal)

interactions between and statistical independence of source processes (as assumed by ICA)

are contradictory assumptions, it can be shown that for weakly coupled (e.g., partially

coherent or transiently coupled) systems they may be reconciled, since weakly interacting

sources may still be statistically independent or near-independent [17]. Infomax ICA only

explicitly minimizes instantaneous dependencies, so time-delayed dependencies (e.g.,

Granger-causal influences) may be generally preserved, typically within low-dimensional

component subspaces distinct from other non-affected source processes.

To obtain an estimate at each cortical surface mesh element of outflow, causal flow, spectral

density or any other univariate measure derived from the VAR[p] model, we can simply

multiply the estimate of the measure Φq computed for the qth IC by Hq. If we wish to

preserve the sign of Φq at each element, we may take the absolute value of the source

weights Hq before this projection. When projecting measures for multiple ICs

simultaneously, the weighted contributions from each IC are summed at each cortical

surface element, normalizing each Hq to have a maximum of 1 to preserve the relative

amplitudes of projected measures for different component processes.

III. Data collection and modeling

Intracranial EEG was collected from a patient undergoing presurgical evaluation at The

Mayo Clinic (Rochester, MN). The patient presented with seizures due to a porencephalic

cyst in the fronto-parietal brain. Seventy-eight channel iEEG data was collected at a

sampling rate of 500 Hz during drowsy resting. We selected for analysis a 16-minute epoch

of data containing two seizure bursts, each lasting about 2 minutes. The data were

decomposed by extended Infomax ICA into 78 maximally-independent processes. By visual

inspection, 16 ICs were identified as exhibiting clear epileptiform activity; remaining ICs

were ignored for present purposes. The selected ictal ICs were then localized as described in

section II-D and in [2], [11].

The time courses of the ictal ICs were downsampled to 256 Hz after application of a zero-

phase FIR antialiasing filter. Each IC activation sequence was then independently z-

normalized. A 16-dimensional VAR[7] model was fit to the normalized IC activations using

ARFIT stepwise least-squares [12]. An adaptive model was realized using a 15-sec sliding

window with 1-s step size. The model order (p=7) was selected based on inspection of the

distribution, over all windows, of model orders that minimized the Hannan-Quinn

information criterion. For each window, the power spectral density and SdDTF estimators

were obtained from the model coefficient and noise covariance matrices, as described in

Section II-B. Outflow, inflow, causal flow, and causal asymmetry ratio were computed for

each IC source. Statistical significance of causality was assessed by reference to a surrogate

null distribution constructed by repeatedly (500x) fourier transforming each time series,

replacing the phases at each frequency with uniformly random numbers in [−π, π] and

applying the inverse fourier transform. This destroyed all phase structure in each time-series,

while preserving its power spectrum.
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IV. Results

Figure 1 shows the time course of activations of the selected ICs around the scattered onset

(left) and abrupt offset (right) of the first seizure. IC12 exhibits earliest onset of ictal

activity, followed closely by ICs 1, 11 and 13.

IC12 accounted for prominent interictal discharges (IEDs) at the epileptogenic focus, but did

not appear to be a strong causal outflow hub during the seizure. Our analysis revealed

significant spectral power and SdDTF interactions between IC processes during the seizure

in the theta, alpha, and beta frequency ranges (Figure 2). To visualize the time course and

distribution of sub-networks potentially involved in seizure propagation (causal hubs), at

each time point and for each IC the spectrum and graph-theoretic measures were integrated

from 4–30 Hz (theta through beta bands) and projected onto the cortical surface mesh as

described in section II-E.

Figure 3 shows a sequence of frames from animations visualizing the projections of outflow,

causal flow, causal asymmetry, and spectral perturbation (all integrated from 4–30 Hz)

during the first seizure. The time-varying amplitudes of the measures are also plotted for all

ICs. At least three distinct stages appear during each seizure(s). IC1 (blue trace, Fig. 3(b–d))

and (transiently) IC9 (brown trace) appear to be the dominant causal sources during the first

stage of the seizure (particularly driving frontopolar IC5, pink trace). IC5 dominates in the

second stage (with some feedback into IC1,9) and finally joined by other frontal sources in

the third, final stage. This final stage of the seizure is characterized by strong dorsofrontal →

precentral (e.g., IC4, dark blue trace) synchronization. While the causal flow measure more

clearly delineates the driving causal hubs throughout the seizure, it does not distinguish

between zero flow (network decoupling) and balanced flow (symmetric information flow)

and thus should be examined in combination with another measure such as outflow.

The causal asymmetry ratio metric revealed an interesting spatial motif involving two

clusters of dorsal frontal and precentral sources close to the electrodes identified clinically as

exhibiting epileptiform activity. This motif, involving a strong positive dorsal frontal causal

asymmetry and negative dorsal parietal asymmetry, is evident throughout the pre-seizure

period in the causal flow measure and then reappears, more saliently, in the final stage of the

seizure, possibly indicating a susceptibility of cortex in these areas to dynamic

interdependency. In a parallel analysis using adaptive mixture ICA, these same frontal and

parietal regions appear as two quasi-independent component subspaces, suggesting they are

functionally distinct local processes that may interact as seen here near seizure end [2]. The

second seizure (not shown) had quite similar multi-stage dynamics.

V. Conclusions and Future Work

In this paper we analyzed neuronal dynamics during epileptic seizures using adaptive

multivariate autoregressive models applied to ICA sources of intracranial EEG data recorded

from subdural electrodes implanted in a human patient for presurgical monitoring. We

examined the spatial distribution of time-frequency information flow dynamics in the source

domain using a novel combination of causal flow metrics and SBL-based source

localization. This revealed that causal source and sink hubs emerged during the seizure. We
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observed distinct stages of alternating feedforward and feedback information flow between

adjacent or overlapping gyral and sulcal sources in a prefrontal network (elements of which

also expressed the primary epileptogenic focus). This activity might possibly be maintained

through short U-fiber connections. In the final seizure stage this was followed by a strong

asymmetric spread of sustained theta-alpha-beta ictal activity from this anterior frontal

network to a dorsal parietal/precentral gyrus network, possibly though cortico-cortical white

matter tracts or subcortical U-fibers.

To our knowledge, this preliminary report represents the first time that these techniques

have been combined to analyze spatially-localized information flow dynamics in

electrophysiological data. We note that ground-truth validation of the method will require

new multi-resolution electrical recording methods. We speculate that the temporal resolution

and goodness-of-fit of the VAR model under non-stationary conditions may be improved

through the use of a state-space representation of the adaptive VAR model. This would also

allow real-time online updating of the VAR coefficient matrices and thereby possibly

improve the robustness of the method. Finally, our approach may be readily extended to

modeling source dynamics from scalp EEG, broadening its applicability for clinical

monitoring or basic cognitive neuroscience research applications.
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Fig. 1.
Time course of activations of selected ICs during first seizure onset (left) and offset (right).

Time units are in seconds. ICs with red labels are those with SBL source solutions shown in

Figure 2
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Fig. 2.
SBL Solutions for selected components. A representative SdDTF time-frequency image

shown on bottom right. Note the mid-seizure burst of connectivity in theta, alpha, and beta

bands.
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Fig. 3.
Panel (a) shows a sequence of frames from animations mapping 4–30 Hz causal and spectral

measures projected onto the cortical surface before, after and during different stages of the

first seizure. Colormaps bounded at 99th percentile. Panels (b–d) show, respectively, the

causal flow, outflow, and spectral perturbation (deviation from 1–100 second baseline power

indicated by horizontal doublearrow) for all IC sources as a function of time. Blue (Red)

vertical ticks denote onset (offset) of both seizures. High resolution version of this and other

images available at [18].
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