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With the emergence of decadal predictability simulations, research
toward forecasting variations of the climate system now covers
a large range of timescales. However, assessment of the capacity
to predict natural variations of relevant biogeochemical variables
like carbon fluxes, pH, or marine primary productivity remains
unexplored. Among these, the net primary productivity (NPP) is of
particular relevance in a forecasting perspective. Indeed, in regions
like the tropical Pacific (30°N–30°S), NPP exhibits natural fluctua-
tions at interannual to decadal timescales that have large impacts
on marine ecosystems and fisheries. Here, we investigate predic-
tions of NPP variations over the last decades (i.e., from 1997 to
2011) with an Earth system model within the tropical Pacific.
Results suggest a predictive skill for NPP of 3 y, which is higher
than that of sea surface temperature (1 y). We attribute the higher
predictability of NPP to the poleward advection of nutrient anom-
alies (nitrate and iron), which sustain fluctuations in phytoplank-
ton productivity over several years. These results open previously
unidentified perspectives to the development of science-based
management approaches to marine resources relying on integrated
physical-biogeochemical forecasting systems.
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In 2010, global fisheries supplied the world with ∼148 million
tons of fish with a total value of 217.5 billion US dollars (1).

Fisheries represent a strong anthropogenic pressure on marine
ecosystems and an increasing fraction of commercially exploited
fish stocks are on the verge of collapse (1). However, in some
oceanic regions like the tropical Pacific, which hosts the largest
world fisheries (1), the decline of fish stocks cannot be attributed
solely to overfishing. It is suspected to result from the interplay
between human foraging and regional natural fluctuations in
food abundance at the base of the food web such as variations in
net primary productivity (NPP) occurring at interannual-to-
decadal timescales. These natural fluctuations impact marine
ecosystems across large oceanic regions (2). In the tropical Pacific,
these fluctuations are suggested to be driven by large-scale climate
variations such as the Madden Julian Oscillation (3), the El Niño
Southern Oscillation (4), or the Pacific Decadal Oscillation (5).
These climate modes are potentially predictable between one and
up to several years (6, 7). However, although past studies have
investigated the predictive skill of physical variables such as sea
surface temperature (SST) (8) or precipitation (9) in the tropical
Pacific, none has explored the potential predictability of natural
variations of biogeochemical variables like NPP. This is all of the
more surprising as the ability to predict natural variations of NPP
at interannual-to-decadal timescales may be of key relevance to
fisheries management (10–12).

Predicting Natural Variations of NPP
NPP is estimated from several algorithms on the basis of satel-
lite-derived chlorophyll, SST, and photosynthetically available
radiation (13). Continuous time series of satellite-derived esti-
mates of NPP are available since 1997 based on products of the

sea-viewing wide field-of-view sensor (SeaWiFS) (1997–2008) and
the moderate-resolution imaging spectroradiometer (MODIS)
(2003–2012). Despite substantial uncertainties in NPP mean
state related to the different ocean color-based algorithms (14),
the various algorithms show a good agreement for relative in-
terannual-to-decadal variations (15). The overall spatial and
temporal distributions of NPP are consistent with primary limi-
tation by nutrients, and temperature (16), for which the largest
interannual fluctuations are observed in the low-latitude oceans
(17). Despite large differences in terms of spatial variability for
NPP and SST in these regions, the temporal variations of NPP
(with a SD of ∼120 TgC·mo−1) are tightly linked with low-latitude
SST fluctuations, both being mainly associated to the El Niño
Southern Oscillation (ENSO) variability (18). During ENSO
phases, oscillations of NPP in the tropical Pacific prominently
arise from changes in nutrient supply (4, 19, 20). In the eastern
Pacific, the latter are injected from deeper layers to the upper
ocean by the equatorial upwelling, the intensity of which is strongly
modulated by changes in wind strength related to wind-SST
Bjerknes feedbacks (21). In the central and western Pacific, the
westward advection of nutrients in response to changes in zonal
currents during the ENSO phases explains most of the variations in
NPP with a time lag of several months (4, 20) to a decade (22, 23).
Simultaneously to these first-order mechanisms, local limitation of
specific nutrients plays an important role in setting the NPP
variability. In particular, low iron levels are recognized to limit
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phytoplankton growth during the bloom (24), while high iron
levels do not control the onset of the bloom (25). Earth system
models (ESMs) that include a representation of the iron-nitrate
colimitation within their ocean biogeochemical model reproduce
the NPP–SST variations and processes linking changes in the
physical ocean to ecosystem productivity (26). However, ESMs
have so far never been used in seasonal-to-multiannual fore-
casting systems. Here, in the context of the recent “near-term”

decadal Coupled Model Intercomparison Project Phase 5
(CMIP5) exercise (27), we use ensembles of predictions from the
Institut Pierre Simon Laplace ESM, which all include an in-
teractive ocean biogeochemistry (28).
Our study primarily aims at investigating the predictability

of NPP and SST over the last two decades, covering the period
of satellite ocean observations (1997–2008 and 2003–2011 for
SeaWiFS and MODIS, respectively). We have focused our
analysis on the 30°S–30°N tropical Pacific, because this region is
located in the low-latitude permanently stratified waters and
corresponds to some of the most productive open-ocean waters
(18). We have restored SST anomalies of the ESM to the
observations (29) from 1949 onward (this simulation, referred to
as “nudged,” is described in SI Appendix). The nudged simula-
tion provides initial or starting conditions for a set of 10-y-long,
three-member ensemble simulations for which SST restoring has
been switched off. These simulations, referred to as “hindcasts,”
were started every year from 1987 to 2011 to cover the period of
satellite observations (1997–2011). These simulations are used to
assess the skill of retrospective prediction for NPP and SST, but
also to attempt an experimental forecast the future evolution of
NPP in the forthcoming decade (SI Appendix, Figs. S1 and S2).
Comparison between nudged and free (only forced by ob-

served changes in atmospheric chemical composition, including
volcanic impact, solar constant, and land use; Methods) ESM
simulations clearly demonstrates that SST nudging improves the
phasing and the amplitude of both SST and NPP interannual
variability across the tropical Pacific compared to observations
(Fig. 1 and SI Appendix, Fig. S4). Multiyear fluctuations of NPP
and SST in the nudged simulation are both significantly corre-
lated (R > 0.6) with observations at 95% confidence level.
The same variables in the free simulation show no significant

correlation with the data, although external forcings like volcanic
eruptions could partly ensure phasing between modeled and
observed natural climatic fluctuations (28). In good agreement
with previous studies, NPP anomalies are anticorrelated with
SST anomalies, corresponding to the successive El Niño–La
Niña climate state (18) (Fig. 1).
In our nudged experiments, these strong correlations illustrate

that variations of simulated NPP are phased with those estimated
from satellite measurements by our nudging strategy. However,
only SST has been restored to the observations, and neither the
wind nor the biological variables. Thus, NPP has been phased
indirectly through dynamical and biogeochemical processes (SI
Appendix, Fig. S5). Indeed, SST restoring induces a short-term
dynamical adjustment of winds to the observed SST gradients.
This dynamical adjustment improves the representation of zonal
winds over a large fraction of the tropical Pacific with temporal
correlation of >0.5 (significant at 90% confidence level) between
modeled and satellite-derived zonal wind (SI Appendix, Fig. S3).
The improved representation of the zonal wind pattern over the
tropical Pacific ensures an accurate phasing of the eastern
Equatorial upwelling with the various El Niño/La Niña events,
and therefore the supply of nutrients available to phytoplankton
growth (SI Appendix and SI Appendix, Figs. S6 and S7). Finally,
as biological rates are directly affected by environmental tem-
perature, SST restoring ensures the phasing of biological rates to
the observed variability and thus improves the realism of the
response of the NPP to the various El Niño/La Niña events.

We perform an evaluation of the predictive skill of our system
using the hindcasts simulations over 1997–2011 for NPP and
SST. The anomaly correlation skill score (AC-SS) between
anomalies computed from the ensembles average of yearly-mean
NPP and SST and the SST reanalyses and satellite-derived NPP
provides a measure for evaluating the gain in skill attributable to
nudging compared with the simulation starting from free con-
ditions (30) (SI Appendix). In several regions, nudging initiali-
zation results in skillful prediction of natural variations in both
NPP and SST 1 y in advance (Fig. 2 A and D). In the tropical
Pacific, simulated NPP and SST variations closely follow ob-
served ones with correlations of >0.6. The similarity between
AC-SS for NPP and SST is lost for years 2–5 of the hindcasts
(Fig. 2 B and E). At these lead times, our model still exhibits skill
in predicting variations in NPP within the tropical Pacific, but
not for those of SST (SI Appendix, Figs. S1 and S2).
Previous predictability studies completed AC-SS analysis with

the root-mean-squared error skill score (RMSE-SS) to assess
both phasing and divergence between mean trajectories of model
ensembles and observations (31). Here, we use the combination
of both measures in a single skill score diagram to diagnose the
predictability horizon for both NPP and SST (Fig. 2 C and F).
The predictability horizon (32) represents the time at which
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Fig. 1. Monthly detrended anomalies of (A) SST represented by the Nino3.4
index, (B) NPP integrated over the low-latitude Pacific ocean (30°S–30°N)
from January 1991 to December 2011. Color shading for SST (in orange) and
NPP (in green) denotes an evaluation of the differences between two obser-
vationally derived data products, which consists in the SD between the
Reynolds and the HadISST reanalyses for SST and the Eppley–VGPM and the
VGPM algorithm for NPP. The dashed lines indicate the free ESM simulation,
whereas the bold lines indicate ESM simulations with SST nudging. Correlation
between each ESM simulations compared with the SST reanalyses and the
satellite-derived NPP are bracketed; correlations that pass a t test at 95% of
significance following Bretherton et al. (44) are indicated by an asterisk (*).
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skillful prediction for a given variables is lost. It is defined here
as the maximum lead time of the hindcasts for which AC-SS is
significant at 90% and RMSE-SS is lower than the SD of the
observations. The upper limit of the predictability horizon, re-
ferred to as potential predictability horizon, is obtained by
considering a perfect nudging (33). It is derived from the
comparison of hindcasts to the nudged simulation. Alternatively,
comparing the hindcasts to the observations provides a more
restrictive but unbiased estimate of the predictability horizon,
referred to as the effective predictability horizon.
In the tropical Pacific, the effective predictability horizon for

NPP extends up to 3 y, whereas that for SST hardly reaches 1 y
(squares in Fig. 2 C and F). This result is corroborated by the
analysis of the potential predictability horizon, which extends up
to 8 y for NPP as opposed to 3 y for SST (triangles in Fig. 2 C
and F). Additional experiments were performed to assess the
robustness of the predictability horizon for NPP in a “perfect
model framework” (Methods and SI Appendix). In this frame-
work, we estimate the potential predictability horizon for NPP to
be ∼5.6 y in average across the various experiments, indicating
that the 8-y-long predictability horizon is clearly the upper limit
of predictability that can be expected from our model. The im-
portant difference in predictability horizon between NPP and
SST translates into discrepancies in phasing and spread between
the trajectories of hindcasts and observations. Although hindcast
trajectories diverge substantially from the observed one after the
first year of prediction for SST (normalized ensemble spread,
>1), they closely follow the trajectory of the satellite-derived
NPP up to 3 y in the case of NPP (normalized ensemble spread,
∼0.5; SI Appendix, Fig. S1).

What Mechanisms or Properties Could Be Responsible for
the Difference Between the SST and NPP Predictability
Horizon?
Because phytoplankton growth is limited by nutrient availabil-
ity in the tropical Pacific, we hypothesize that the propagation
of nutrient anomalies pulsed by the successive ENSO events
explains this difference in persistence over longer timescale. We

assess this hypothesis by analyzing the persistence of anomalies
of NPP, surface nutrients (nitrate and dissolved iron), and SST
(Fig. 3), and the poleward propagation of NPP anomalies across
the tropical Pacific (Fig. 4). The analysis of 5-y smoothed
anomalies averaged across the tropical Pacific shows that per-
sistence of NPP, estimated to 4 y, is comparable to that of sur-
face nutrient anomalies. The persistence of both is larger than
that of SST by a few years, suggesting that both NPP and surface
nutrients exhibit a longer memory than SST.
The weaker persistence of SST anomalies reflects the tight

coupling between SST and the lower atmosphere. SST anomalies
are damped by heat exchange between the ocean and the at-
mosphere at short timescale (34). To the contrary, anomalies of
nutrients and NPP evolve without direct interactions with the
atmosphere. The absence of direct coupling between nutrients,
as well as NPP and the atmosphere explains the longer persis-
tence of their anomalies (Fig. 3). The persistence of salinity
anomalies at interannual timescale (35) and their propagation
across the Pacific at decadal timescales (36) have been previously
ascribed to a similar mechanism. Our study suggests that, as for
salinity, nutrient and NPP anomalies are transported by ocean
currents across the tropical Pacific (Fig. 4). Spatial lagged cor-
relation between the mixed layer and NPP demonstrates that
NPP anomalies generated by ENSO-induced vertical supply of
nutrients (Fig. 4A) are advected away from the equator over 1–5 y
(Fig. 4 B and C). Such a trans-Pacific propagation of anomalies
was proposed to drive the major differences in surface chlorophyll
observed between 1997–1998 and 2009–2010 ENSO events (23).
Away from the region directly influenced by the upwelling, the

persistence of NPP anomalies is partly modulated by biological
processes because a fraction of nutrients is available to the
phytoplankton growth through recycling of organic matter in the
mixed layer (i.e., regenerated loop; SI Appendix). The influence
of these processes on NPP variability and the resulting spatial
repartition of regenerated versus new production (respectively
in the western and eastern part of the tropical Pacific) are in
agreement with previous regional modeling studies forced by
atmospheric reanalyses (37, 38). Thus, the model predictive skill

0 2 4 6 8 10 12 14

−
0.1

5.0
0.0

5.0

Lag [year]

P
er

si
st

en
ce

 (
A

C
F

)

SST
NPP
NO3

dFe

Fig. 3. Persistence of yearly anomalies for sea surface temperature (SST) and for surface concentrations of nitrate (NO3), dissolved iron (dFe) averaged within
30°S–30°N Pacific and that of net primary productivity (NPP) integrated over the same latitudinal band in the nudged simulation. The null hypothesis of a zero
correlation is tested against a t test at 90% and 95% significance levels. They are indicated in blue and red dashed lines, respectively. Persistences of yearly
anomalies were computed from a 5-y running-mean smoothing over the 1991–2011 period.

Séférian et al. PNAS | August 12, 2014 | vol. 111 | no. 32 | 11649

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1315855111/-/DCSupplemental/pnas.1315855111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1315855111/-/DCSupplemental/pnas.1315855111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1315855111/-/DCSupplemental/pnas.1315855111.sapp.pdf


for nutrients and NPP benefits longer from SST nudging than
SST itself, because nutrients are less directly affected by the sto-
chastic forcing of the atmosphere (39).

Conclusions
In this first attempt to predict natural variations of NPP in the
tropical Pacific, we demonstrate that NPP anomalies can be pre-
dicted up to 3 y in advance showing higher predictability than that
of SST. Within this time frame, we can thus attempt to forecast
future variations of NPP in the tropical Pacific. Our model pre-
dicts, with an agreement of five hindcasts over seven (∼71%), an
increase of NPP from 2013 to 2014 of 250 ± 200 TgC with a return
to climatological values in 2015 (SI Appendix, Fig. S1).
Considering that skillful prediction of NPP was achieved

through the nudging of SST only, our results open the perspec-
tive for future investigations of alternative nudging schemes in-
cluding ocean color or hydrodynamical variables such as sea
surface salinity. Benefits of such improved nudging were recently
demonstrated for the realism of the Atlantic meridional over-
turning circulation (40). This approach holds thus the potential
for an extension of the effective predictability horizon within the
ultimate limit of our model set by the potential skill horizon of 8 y.
Our results might prove useful for the management of fisheries
across the tropical Pacific at interannual timescales. The combina-
tion of NPP monitoring as derived from satellite measurements and
multiannual forecasts could be included to management strategies
to adjust fishing pressure to natural climate variability. For the fu-
ture development of integrated science-based management strate-
gies for marine resources, our model skill will have to be compared
with other forecast systems, pending of the inclusion of a fully in-
teractive ocean biogeochemistry component. To ensure robust skill
score statistics, the continuity of satellite ocean color measurements
over the next decades is an essential requirement. Finally, the in-
tegrated end-to-end evaluation of the food chain needs still to be
carried out to bridge the gap between NPP and fish biomass (12).

Methods
Data. This study relies on several datasets. Two datasets (29, 41) were used for
SST to account for observational uncertainties in our skill score estimates.
Similarly to SST, we used several estimates of NPP, which were derived from
satellite measurements of SeaWiFS (1997–2008) and MODIS (2002–2012),
along with vertically generalized production model (VGPM) (42) and Eppley–
VGPM algorithms (13). These products are developed at the Oregon State
University. Skipjack tuna catch biomass was estimated from purse seine data
from 1991 to 2012 over the tropical Pacific (30°S–30°N). These data were

provided by the Inter-American Tropical Tuna Commission (IATTC) and the
Western and Central Pacific Fisheries Commission (WCPFC) for the Eastern and
theWestern part of the Pacific Ocean, respectively. Catch per units was combined
onto a 1° × 1° regular Mercator grid (SI Appendix) and linearly detrended.

Simulations. Results of this study are based on simulations with the ESM
developed at the Institut Pierre Simon Laplace (IPSL) for the CMIP5: IPSL-
CM5A-LR (28). The following simulations were used in this study:

i) The free simulation corresponds to one member of the ensemble of
historical simulations performed with IPSL-CM5A-LR for CMIP5. That is,
between 1850 and 2005, the model is forced by observed changes in the
atmospheric chemical composition, solar constant, and land use. From
2005 to 2011, IPSL-CM5A-LR is forced by changes in atmospheric chem-
ical composition following the Representative Concentration Pathway
4.5 (RCP45).

ii) The nudged simulation results from the relaxation of observed SST anomalies
to IPSL-CM5A-LR between 1949 and 2011 (28). Relaxation consists in adding
a nudging term to the heat conservation equation at surface as follows:

∂SST
∂t

= :::+ γnudg:ðSSTESM − SSTOBSÞ,

where the relaxation term, γnudg:, is −40W·m−2·K−1 is applied to the difference
between the modeled and observed SST, SSTESM and SSTOBS, respectively. It
corresponds to a relaxing timescale of ∼60 d for a mixed layer of 50-m depth.

iii) A set of 10-y-long, three-member ensemble hindcasts was performed
every year between 1987 and 2001, covering the period from 1997 to
2011. They started from the initial or starting conditions provided by
the nudged simulation for each three-member ensemble hindcast.
There was no SST restoring during the 10 y of simulations for the hindcasts
(meaning that the model was not guided by observed SST anomalies
in these simulations). Hindcast ensembles were created by applying a
white-noise perturbation on SST from the initial condition with an anomaly
chosen randomly for each grid points in the interval ±0.05 °C.

iv) Several simulations are performed in a “perfect model framework” to
conduct an in-depth evaluation of the NPP potential predictability skill
scores. This experimental setup has been widely used and is detailed in
ref. 43. The reference simulation consists in a 1,000-y-long preindustrial
simulation of IPSL-CM5A-LR (1,800–2,799 in model years). Ten 20-y-long
ensemble simulations were performed for five starting dates (i.e., 1,901,
2,056, 2,066, 2,071, and 2,171 in model years). At each starting date,
these ensembles were generated with a similar perturbation method
that used for generating the hindcasts.

Skill Scores. Skill scores were computed by comparing a time series consti-
tuted by the years of the hindcasts for a given lead time to that of the
observations (SI Appendix). This methodology was used previously to assess
benefits of SST nudging on North Atlantic region (30).
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The AC-SS between model prediction (p) and observations (o) over N years
was computed as follows:

AC-SS=
1
N

Pðp−pÞðo−oÞ
P ðp−pÞ2 P ðo−oÞ2,

where the bar indicates the temporal averaging operator.
The significance of the AC-SS was tested against a two-tailed t test as-

suming N − 2 − 1 degree of freedom.
The RMSE-SS is given by the following:

RMSE-SS=
1
N

X
½ðp−pÞ− ðo−oÞ�2:

The RMSE-SS was tested against the SD of the observations.
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