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Plants detect different facets of their radiation environment via
specific photoreceptors to modulate growth and development.
UV-B is perceived by the photoreceptor UV RESISTANCE LOCUS 8
(UVR8). The molecular mechanisms linking UVR8 activation to
plant growth are not fully understood, however. When grown in
close proximity to neighboring vegetation, shade-intolerant plants
initiate dramatic stem elongation to overtop competitors. Here we
show that UV-B, detected by UVR8, provides an unambiguous
sunlight signal that inhibits shade avoidance responses in Arabi-
dopsis thaliana by antagonizing the phytohormones auxin and
gibberellin. UV-B triggers degradation of the transcription factors
PHYTOCHROME INTERACTING FACTOR 4 and PHYTOCHROME
INTERACTING FACTOR 5 and stabilizes growth-repressing DELLA
proteins, inhibiting auxin biosynthesis via a dual mechanism. Our
findings show that UVR8 signaling is closely integrated with other
photoreceptor pathways to regulate auxin signaling and plant
growth in sunlight.

In many plant species, the detection of neighboring vegetation
provokes a suite of elongation responses, collectively termed

the “shade avoidance syndrome.” Encroaching neighbors absorb
red (R) light and reflect far-red (FR) light, lowering the ratio of
R:FR sensed by phytochrome photoreceptors (1). This leads to the
stabilization and activation of a subset of bHLH transcription
factors, PHYTOCHROME INTERACTING FACTORS (PIFs),
which drive auxin biosynthesis and elongation growth (2, 3). If the
low R:FR signal persists, then flowering is accelerated to promote
seed set (1).
UV-B, detected by the UVR8 photoreceptor, regulates plant

morphogenesis (4, 5). UV-B is strongly absorbed by vegetation
(6) and could signal to plants that they are in sunlight to counter
shade avoidance responses. The potential role of UVR8 in
regulating shade avoidance has not been explored, however.
To investigate the effects of UV-B in shade avoidance, we

analyzed plant responses to simultaneous treatments of low
R:FR and narrow-band UV-B. We show that low-dose UV-B
perceived by UVR8 strongly inhibits hypocotyl and petiole
elongation, even in the presence of a strong low R:FR signal.
This occurs via a dual mechanism that simultaneously degrades
and inactivates PIF4 and PIF5, thereby inhibiting auxin bio-
synthesis and cell elongation.

Results
UV-B Perceived by UVR8 Strongly Inhibits Shade Avoidance. Arabi-
dopsis plants respond to low R:FR (+FR) by elongating and
elevating leaf stems (petioles). UV-B treatment has been shown
to result in smaller, more compact plants (7). When low R:FR-
treated plants were simultaneously exposed to low levels of UV-B
(+UV-B) (Fig. S1), petiole elongation and leaf elevation were
inhibited, despite the presence of a strong shade avoidance signal
(Fig. 1). This inhibition was dependent on the UVR8 photore-
ceptor, because the UVR8-deficient mutant, uvr8-1 (8) showed
very similar shade avoidance responses in the presence and ab-
sence of UV-B. In contrast to petiole elongation, leaf area was
inhibited by individual low R:FR and UV-B treatments indepen-
dent of UVR8 (Fig. S2A). Intriguingly, low R:FR promoted

leaf expansion in the presence of UV-B in a UVR8-dependent
manner (Fig. S2A). Along with the architectural responses,
UV-B perceived by UVR8 also partially inhibited the low
R:FR-mediated acceleration of flowering characteristic of shade
avoidance (Fig. S2B).
Low R:FR induces striking stem (hypocotyl) elongation in

seedlings (Fig. 2 A and B). Thus, we investigated the effect of UV-B
on this response. UV-B strongly inhibited low R:FR-mediated
hypocotyl elongation in a UVR8-dependent manner (Fig. 2 A
and B). Furthermore, low R:FR-mediated induction of the shade-
avoidance “marker” genes ATHB2 (9) and PIF3-LIKE 1 (PIL1)
(10) was strongly inhibited by UVR8 in the presence of UV-B
(Fig. S2 C and D). In addition to low R:FR, vegetational shading
reduces the quantity of blue (B) light, as sensed by the crypto-
chromes (11). Low B alone induces hypocotyl elongation in
seedlings. This response also was limited by UV-B in a partially
UVR8-dependent manner (Fig. 2 C and D and Fig. S3).

UV-B–Mediated Inhibition of Shade Avoidance Occurs Through HY5/
HYH-Dependent and -Independent Mechanisms. Shade avoidance
responses can be inhibited by sun flecks through phytochrome-
mediated induction of the bZIP transcription factor ELONGATED
HYPOCOTYL 5 (HY5) and its close relative HY5 HOMOLOG
(HYH) (12). HY5 and HYH are also components of UV-B sig-
naling and control many UVR8-regulated genes (13, 14). UV-B
increased transcript levels of HY5 and HYH in high and low R:FR
backgrounds, in a UVR8-dependent manner (Fig. 2 E and F). To
investigate the roles of HY5 and HYH in UV-B–mediated shade
avoidance inhibition, we analyzed hypocotyl elongation in hy5 and
hyh mutants. Single mutants displayed similar UV-B responses
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to WT controls (Fig. 2G). In contrast, the hy5KS50/hyh double
mutant exhibited a significant low R:FR-mediated increase in
hypocotyl length in the presence of UV-B. These data suggest
that HY5 and HYH act redundantly to mediate the UV-B–
induced inhibition of shade avoidance. The hy5KS50/hyh double
mutant did retain some UV-B–mediated inhibition of hypocotyl
elongation in low R:FR, however, suggesting the existence of
HY5/HYH-independent mechanisms.
UV-B–mediated increases in HY5 expression require physical

interaction between a 27-aa C-terminal region (C27) of UVR8
and the WD-40 domain of CONSTITUTIVELY PHOTOMOR-
PHOGENIC 1 (COP1) (4, 15, 16). GFP–ΔC27UVR8 plants ex-
press a deletion mutant of UVR8 that is unable to bind COP1
(16). To investigate the importance of UVR8–COP1 interaction in
UV-B–mediated shade avoidance inhibition, we analyzed hypo-
cotyl elongation in GFP–ΔC27UVR8 plants. These plants dis-
played less inhibition than WT plants, suggesting a requirement
for UVR8–COP1 binding (Fig. 2H); however, the residual in-
hibition observed in GFP–ΔC27UVR8 plants compared with
uvr8-1 suggests a unique UVR8 function, independent of COP1
interaction.

UVR8 Activation Suppresses Low R:FR-Mediated Auxin Biosynthesis
Independent of HY5/HYH. Auxin has been linked to leaf blade ex-
pansion and flavonoid levels in UV-B–treated Arabidopsis plants,
although no molecular mechanism has been proposed (17). Elon-
gation growth responses to low R:FR require increased auxin bio-
synthesis via TRYPTOPHAN TRANSAMINOTRANSFERASE
OF ARABIDOPSIS 1 (TAA1) (3). It was recently shown that
members of the YUCCA family of flavin mono-oxygenases cat-
alyze the rate-limiting step of this pathway (3, 18). YUCCA2,
YUCCA5, YUCCA8, and YUCCA9 are rapidly up-regulated in
response to low R:FR, forming a key regulatory mechanism con-
trolling shade avoidance (3, 19). Thus, we investigated the role of
auxin in UV-B–mediated shade avoidance inhibition. Analyses of

transgenic plants expressing the auxin-responsive pDR5:GUS re-
porter (20) showed that low R:FR-mediated increases in auxin
activity were inhibited in the presence of UV-B (Fig. 3A and
Fig. S4A). Furthermore, UV-B strongly inhibited the low R:FR-
mediated induction of YUCCA2, YUCCA5, YUCCA8, YUCCA9,
and the auxin-responsive genes IAA29 and GH3.3 (Fig. 3 B–D
and Fig. S4 B–D). The UV-B–mediated suppression of auxin
biosynthesis/signaling genes observed in low R:FR was dependent
on the presence of UVR8 (Fig. 3 B–D), but not on the presence of
HY5/HYH (Fig. 3 E–G).
Taken together, our data suggest that a major HY5/HYH-

independent role of UV-B in shade avoidance is to suppress low
R:FR-mediated increases in auxin biosynthesis. Consistent with
hypocotyl elongation data (Fig. 2H), ΔC27UVR8 plants dis-
played less UV-B–mediated inhibition of low R:FR-induced
YUCCA8 and YUCCA9 transcript abundance compared with WT
plants. A significant residual inhibition response was observed,
suggesting that UVR8 can suppress auxin biosynthesis indepen-
dent of COP1 binding (Fig. S5).

UV-B–Mediated DELLA Stabilization Contributes to Shade Avoidance
Inhibition. Along with increased auxin activity, shade avoidance
also involves gibberellic acid (GA) signaling (1). In low R:FR
environments, GA promotes elongation growth by triggering
the degradation of growth-repressing DELLA proteins. Indeed,
DELLA degradation is essential for low R:FR-induced hypo-
cotyl elongation (21). DELLAs function in part by physically
interacting with growth-promoting PIF proteins, preventing
them from binding to DNA targets (22, 23). A key mechanism
controlling bioactive GA levels in Arabidopsis involves 2β-
hydroxylation of GA to an inactive form by GA2-oxidases
(GA2ox) (24). UV-B induced a rapid increase in GA2ox1 tran-
script abundance in a response requiring both UVR8 (Fig. 4A)
and HY5/HYH (Fig. 4B) (25). Increased GA2ox1 levels were
accompanied by enhanced stability of the DELLA protein, RGA
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(Fig. 4C). Furthermore, UV-B inhibited transcript accumulation
of the GA biosynthesis gene GA20ox2 in a UVR8-dependent
manner. Inhibition of GA3ox1 transcript abundance was ob-
served only in low R:FR + UV-B, however, suggesting that in-
hibition effects may be gene-specific (Fig. S6).
We assessed the contribution of DELLA proteins to UV-B–

mediated shade avoidance inhibition through analysis of a
DELLA global null mutant (26). DELLA-deficient plants dis-
played long hypocotyls that were still elongated in low R:FR
(Fig. 4D). This response was partially attenuated by UV-B, sug-
gesting the existence of both DELLA-dependent and -independent
mechanisms (Fig. 4D).

PIF4 and PIF5 Are Degraded in the Presence of UV-B. The promotion
of auxin biosynthesis in shade avoidance is regulated by PIF
proteins. In low R:FR, PIF4 and PIF5 levels are stabilized,
whereas PIF7 is activated via dephosphorylation (2, 19). These
PIFs display enhanced binding to G-boxes in the promoter
regions of YUCCA8 and YUCCA9, driving auxin biosynthesis (19,
27). Other, minor roles have been reported for PIF1 and PIF3 in
parallel (28). Consistent with previous studies (2), we found that
pif4/5 double mutants displayed significantly impaired hypocotyl
elongation responses to low R:FR, confirming a role for these
transcription factors in shade avoidance in our experimental
conditions (Fig. S7A). UV-B suppressed the elongated pheno-
types of phytochrome-deficient (phyABCDE) mutants (Fig.
S7B), PIF4-overexpressing plants (Fig. S7C) and PIF5-over-
expressing plants (Fig. S7D), suggesting that UV-B may inhibit
PIF activity independent of phytochromes. Thus, we investigated
whether UVR8 could physically interact with PIFs. We used
a yeast two-hybrid (Y2H) approach to investigate UVR8 inter-
actions with PIF4, PIF5, and PIF7. Control experiments con-
firmed UV-B–dependent UVR8–COP1 interaction and PIF
heterodimerization (4, 16, 29) (Fig. S8), but after growth on
selective media, no interaction was observed between UVR8 and
PIF4, PIF5, or PIF7 (Fig. S8).
We next investigated whether UV-B affects PIF protein

abundance. Consistent with previous observations, PIF4-HA and
PIF5-HA accumulated in the dark, were degraded in white light
(WL), and were stabilized by low R:FR (2). Surprisingly, UV-B
significantly decreased the stability of PIF4 (Fig. 5A) and PIF5
(Fig. 5B) in both high and low R:FR backgrounds.
When plants were subject to continuous light treatments for

4 d, a reduction in PIF5 protein abundance was maintained in
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+FR +UV-B samples compared with +FR alone (Fig. S9A). UV-
B–mediated inhibition of low R:FR-induced IAA29 transcript
abundance was also maintained in a UVR8-dependent manner
(Fig. S9B). These data are consistent with the reduced pDR5:
GUS activity observed at this time point (Fig. 3A). In contrast,
UV-B–mediated increases in GA2ox1 transcript abundance were
not maintained after 4 d of continuous UV-B treatment, sug-
gesting that the DELLA-mediated inhibition component of the
inhibition response may be more transient (Fig. S9C).
Decreased PIF4 and PIF5 abundance in UV-B–treated plants

would contribute to the reduced auxin activity (Fig. 3 A–G) (19, 27,
30), decreased stem elongation (Figs. 1 and 2 A and B) (19, 27),
and delayed flowering (Fig. S2B) (2) observed in both high and low
R:FR. The lack of physical interaction between UVR8 and PIFs in
yeast is intriguing and suggests the existence of a unique UV-B–
mediated mechanism regulating PIF4 and PIF5 abundance.

Discussion
In this work, we show that UV-B, perceived by the UVR8
photoreceptor, acts as a potent brake on plant shade avoidance
(Figs. 1 and 2 A–D). This action occurs through multiple path-
ways (Fig. 6). UVR8 interaction with COP1 leads to elevated
levels of HY5 and HYH (15, 16, 25) (Fig. 2 E and F), which in
turn leads to increased GA2ox1 transcript abundance (Fig. 4 A
and B). Increased GA catabolism in UV-B without a concomi-
tant increase in GA biosynthesis likely will contribute to in-
creased DELLA protein stability (Fig. 4C), which suppresses
PIFs (22, 23). In a parallel HY5/HYH-independent pathway,
perception of UV-B by UVR8 inhibits low R:FR-mediated

induction of YUCCA2, YUCCA5, YUCCA8, and YUCCA9 (Fig. 3
B, C, E, and F and Fig. S4 B and C). This likely occurs in part
through UV-B–mediated turnover of PIF4 and PIF5 (Fig. 5).
UVR8 does not physically interact with PIF4 or PIF5 in Y2H
(Fig. S8), suggesting that an as-yet unidentified pathway may link
UVR8 activation to PIF degradation. The reduced abundance
and activity of PIF4 and PIF5 in UV-B decreases auxin activity
(Fig. 3A), which limits elongation growth, suppressing shade
avoidance.
The residual shade avoidance observed in pif4/5 double mu-

tants was inhibited by UV-B (Fig. S7A), suggesting that a PIF4/5-
independent mechanism must exist. This mechanism may include
UV-B–mediated dephosphorylation of PIF7 (19). In this way,
UV-B perception by UVR8 provides plants with an unambiguous
signal of sunlight, triggering a dual growth restraint mechanism to
prevent the unnecessary allocation of resources toward neighbor
competition. Furthermore, the inhibition of auxin signaling by
UVR8 activation provides a molecular explanation for the com-
pact architecture of UV-B–treated plants; however, shade avoid-
ance responses to reflected FR signals have been observed in
multiple species in the field, where UV-B is clearly present (31,
32). It is possible that the magnitude of UV-B–mediated shade
avoidance inhibition varies with both species and background
levels of photosynthtically active radiation (PAR). The impact
of UV-B:PAR ratio on shade avoidance will be an important area
of future study.
Taken together, our data show how plants integrate UV-B

signals with other photoreceptor pathways to interpret sunlight.
PIF proteins function as signaling “hubs” (29), regulating auxin
and GA activity to control plant development. Understanding
how plants integrate the full sunlight spectrum is essential to
provide a holistic understanding of growth and development in
fluctuating natural light environments.

Materials and Methods
Plant Material. All mutants and transgenic lines used in this study have been
described previously. The uvr8-1 mutant (8), ΔC27UVR8 line (16), phyABCDE
mutant (33), and DELLA global mutant (26) are in the Landsberg erecta (Ler)
background. The hy5KS50, hyh, and hy5KS50/hyh mutants are in the Was-
silewskija (Ws) background (34). The pif4/pif5 mutant (2), PIF4- and PIF5-
overexpressing lines (2), and DR5::GUS reporter line are in the Columbia-0
(Col-0) background (20).

Growth Conditions. Seeds were sown directly onto a 3:1 mixture of compost:
horticultural silver sand. After 4 d of stratification in darkness at 4 °C,
seedlings were germinated in controlled growth cabinets (Microclima 1600E;
Snijder Scientific) in continuous WL (R:FR >10) at 20 °C and 70% humidity.
For adult plant experiments and protein stability assays, plants were grown
in the same cabinets under a 16-h light/8-h dark cycle. WL was provided
by cool-white fluorescent tubes (400–700 nm) at a photon irradiance of
90 μmol m−2s−1 for low R:FR experiments, decreased to 65 μmol m−2s−1 with
neutral density filters (Lee Filters) for low B experiment controls. Low R:FR
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experiments were performed with supplementary arrays of far-red LEDs
positioned overhead (λmax, 735 nm). For these experiments, plants received
the same photon irradiance of photosynthetically active radiation, but with
an R:FR of 0.05. For low B experiments, white fluorescent tubes were filtered
through two layers of yellow filter (010 Medium Yellow; Lee Filters) to re-
duce blue light (400–500 nm) from ∼12 μmol m−2s−1 to ∼2 μmol m−2s−1 (total
PAR, 65 μmol m−2s−1).

All light measurements were performed using an EPP2000 fiberoptic
spectrometer with a planar sensor (Stellarnet). Supplementary narrow-band
UV-B was provided at a photon irradiance of 400 mWm (2) (∼1 μmol m−2s−1)
by Philips TL100W/01 tubes filtered through a 3-mm-thick Perspex clear
acrylic sheet. The biologically effective UV-B dose (BE-UV-B) was calculated
as 3.6 μWm−2nm−1, following Flint and Caldwell (35). Control experiments
were performed with UV-B tubes filtered through 3-mm-thick extruded
acrylic tubes, which selectively removed all UV-B. UV-B measurements were
performed using a SpectroSense 2 fitted with a Skye Instruments SKU430 UV-
B sensor. The spectra of all eight light conditions are shown in Figs. S1 and S3.

Plant Measurements. Measurements of hypocotyl length, petiole length, leaf
angle, and leaf area were recorded using ImageJ software (rsb.info.nih.gov/ij/).
For hypocotyl measurements, a minimum of 34 seedlings were measured
for each genotype in each condition. For leaf area and petiole length
measurements, the largest fully expanded rosette leaf (leaf 4) was excised
from each plant at day 19. Flowering times were recorded by counting rosette
leaves when plants displayed a 10-mm bolt. Leaf angles were measured
from the horizontal soil surface at day 18. Measurements were recorded from
a minimum of 22 plants per treatment. All experiments were repeated
multiple times, with similar results.

RNA Extraction and Quantitative PCR Analysis. Seedlings were initially grown
for 7 d in WL before being transferred to different light conditions for the
indicated times. RNA extraction, cDNA synthesis, and quantitative PCR were
performed as described previously (10). Transcript abundance values were
normalized to ACTIN2 using the primers ActinF and ActinR (Table S1). Selected

results were confirmed with normalization to UBIQUITIN CONJUGATING
ENZYME 21 (UBC21) using the primers UBC21F and UBC21R (Table S1).
These experiments produced similar results. The primers used for analysis
of HY5, HYH, YUCCA2, YUCCA5, YUCCA8, YUCCA9, IAA29, GH3.3, GA2ox1,
GA20ox2, GA3ox1, GUS, PIL1, and ATHB2 are listed in Table S1. Three bio-
logical replicates were performed for each experiment.

GUS Assay. GUS activity was assayed in 7 d-old DR5::GUS seedlings (3 d in WL,
followed by 4 d in light treatments). Samples were immersed in 1 mL of assay
buffer containing 0.1 M NaPO4 (pH 7.0), 10 mM EDTA, 0.1% Triton X-100,
1 mM K3Fe(CN)6, and 2 mM 5-bromo-4-chloro-3-indolyl glucuronide salt
(X-Gluc; Melford Laboratories) at 37 °C and incubated for 24 h in the dark.
Samples were then washed three times in 50% ethanol and photographed.

Western Blot Analysis. Seedlings were grown in 16-h light/8-h dark cycles of
high R:FR (90 μmol m−2s−1, 20 °C, 70% humidity). At 10 d, samples were
harvested predawn and following the indicated time in controlled experi-
mental conditions. 35S:PIF4-HA and 35S:PIF5-HA lines were extracted in
100 mM Tris·HCl pH 8, 4 M urea, 5% (wt/vol) SDS, 15% (vol/vol) glycerol, 10 mM
β-ME, and 30 μL/mL protease inhibitor cocktail (Sigma-Aldrich; P9599), be-
fore boiling at 95 °C for 4 min and centrifugation at top speed for 15 min.
pRGA:GFP-RGA lines were extracted in 1.1 M glycerol, 5 mM EGTA, 1.5%
(wt/vol) PVP, 1% (wt/vol) ascorbic acid, 400 mM BTP, and 10 μL/mL protease
inhibitor mixture (Sigma-Aldrich; P9599), pH 7.6, before centrifugation at
top speed for 10 min. Protein levels were quantified either by the RC DC
Lowry assay (Bio-Rad) for PIF4-HA and PIF5-HA or by the Bradford assay (Bio-
Rad) for GFP-RGA. SDS/PAGE sample buffer [4×; 8% (wt/vol) SDS, 0.4%
(wt/vol) bromophenol blue, 40% (vol/vol) glycerol, 200 mM Tris·HCl pH 6.8,
and 400 mM β-ME] was added to supernatants to a final dilution of 1×.
Samples were then heated for 10 min at 95 °C. Aliquots containing 30 μg
(PIF4-HA and PIF5-HA) or 40 μg (GFP-RGA) of total protein were then loaded
onto 10% SDS/PAGE gels and blotted onto nitrocellulose membrane (Bio-Rad).

For PIF4-HA and PIF5-HA detection, blots were incubated overnight in
1:1,000 anti-HA antibody conjugated to peroxidase (Roche). For RGA-GFP
detection, blots were incubated overnight in 1:1,000 mouse anti-GFP anti-
body (Roche) and for 1 h in 1:2,000 anti-mouse antibody conjugated to
peroxidase (Dako). Signals were detected using Pierce ECL2 Western blotting
substrate (Thermo Scientific). Two or three biological repeats of eachWestern
blot were performed, with identical results.

Statistical Analyses. Statistical analyses were carried out using SPSS version
21.0 (IBM). Morphological and flowering time assays were analyzed using
one-way ANOVA, treating genotype and light condition together as a single
factor. Tukey’s post hoc tests were used to deduce statistically significant
means (P < 0.05), as indicated by letters in the figures. For gene expression
analyses, relative expression values were first log2-transformed. Student t
tests were then performed to investigate differences between the means
indicated in the figure legends (P < 0.05).
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