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The immune system is influenced by the vital zinc (Zn) status, and
Zn deficiency triggers lymphopenia; however, the mechanisms
underlying Zn-mediated lymphocyte maintenance remain elusive.
Here we investigated ZIP10, a Zn transporter expressed in the
early B-cell developmental process. Genetic ablation of Zip10 in
early B-cell stages resulted in significant reductions in B-cell pop-
ulations, and the inducible deletion of Zip10 in pro-B cells increased
the caspase activity in parallel with a decrease in intracellular Zn
levels. Similarly, the depletion of intracellular Zn by a chemical
chelator resulted in spontaneous caspase activation leading to cell
death. Collectively, these findings indicated that ZIP10-mediated Zn
homeostasis is essential for early B-cell survival. Moreover, we
found that ZIP10 expression was regulated by JAK-STAT pathways,
and its expression was correlated with STAT activation in human
B-cell lymphoma, indicating that the JAK-STAT-ZIP10-Zn signaling
axis influences the B-cell homeostasis. Our results establish a role
of ZIP10 in cell survival during early B-cell development, and un-
derscore the importance of Zn homeostasis in immune system
maintenance.
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Zinc (Zn) has wide-ranging effects on immunity. Zn deficiency
has uncovered the importance of Zn homeostasis in immune

cell maintenance and function (1). Dramatic effects of Zn on
immunity have been observed in several immune and allergy-
related cells, including lymphocytes such as B cells (2–6). B cells
develop in the bone marrow (BM); the initial commitment to
pro-B cells is followed by their differentiation into pre-B cells,
and subsequently into immature B cells, which express the B-cell
receptor on their surface (7). The immature B cells reach the
spleen as transitional B cells, further differentiating into follic-
ular or marginal zone mature B cells (7). Although the pertur-
bation of Zn homeostasis causes splenic atrophy associated with
lymphocyte reduction, and compromises cellular and humoral
immune responses (6), the mechanisms underlying how Zn
controls immune cell function, and in particular, the impact on
early B-cell development, have been largely unknown.
Zn homeostasis is tightly controlled by Zn transporter family

members, Zrt- and Irt-like proteins (ZIPs, Zn importers) and
zinc transporters (ZnTs, Zn exporters) (8), and recent studies
revealed that alterations in Zn homeostasis mediated by specific
Zn transporters play indispensable roles in a variety of cellular
events (9). The intestinal Zn transporter ZIP4 is important for
the initial absorption of dietary Zn, and patients with mutations

in the SLC39A4/ZIP4 gene suffer from the inherited disorder
acrodermatitis enteropathica (10, 11). ZIP13 controls the forma-
tion of bone, teeth, and connective tissues by modulating BMP/
TGF-β signaling (12), and its loss-of-function mutation causes
spondylocheiro dysplastic Ehlers-Danlos syndrome in humans (12,
13). ZIP14 controls systemic growth by regulating G protein-
coupled receptor (GPCR) signaling (14), and ZIP8 is involved in
osteoarthritis (15) and negatively manipulates NF-κB activation
(16). In addition, ZnT5 regulates cytokine production by con-
trolling the activation of protein kinase C upon antigen exposure
in mast cells (17). Thus, Zn homeostasis mediated by Zn trans-
porters is linked to a wide variety of biological and regulatory
functions, and the disruption of a Zn transporter-Zn axis can lead
to various symptoms in the absence of redundant machinery (18).
Here we demonstrate a definitive role of ZIP10 in early B-cell

development. We found that a loss of ZIP10 during an early
B-cell stage specifically abrogated cell survival, resulting in the
absence of mature B cells, which led to splenoatrophy and re-
duced Ig levels. The inducible deletion of Zip10 in pro-B cells
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increased the caspase activity because of the reduced in-
tracellular Zn level, leading to cell death. This phenomenon was
mimicked by the intracellular chelation of Zn. These findings
indicated that Zn homeostasis via ZIP10 plays an indispensable
role in early B-cell survival. We also demonstrated that the ZIP10
expression levels were regulated by STAT3/STAT5 activation,
and that ZIP10 was highly expressed in human B-cell lymphoma
samples in which both STAT proteins were activated, indicating
that the JAK-STAT-ZIP10-Zn signaling axis is important for
B-cell maintenance. Our results establish a functional link between
ZIP10 and the survival of early stages of B cells, revealing a mo-
lecular mechanism underlying the requirement of Zn for mainte-
nance of the immune system.

Results
Diminished Peripheral B Cells in Zip10flox/floxMb1-Cre Mice. It is well
established that Zn deficiency causes severe lymphopenia,
resulting in immune deficiency, which is mainly caused by a
significant reduction in the developmental stages of B cells in
the BM, leading to the depletion of antibody-producing mature
B-cell populations (19); however, how Zn homeostasis helps to
maintain early B-cell development has remained elusive. We noted
that the Slc39a10/Zip10 gene, whose encoded protein (ZIP10) was
predicted to have multispan transmembrane domains, a relatively
long extracellular sequence at the N terminus, and a long in-
tracellular loop (Fig. S1 A and B), was expressed in a variety of
tissues, including immune tissues, such as the thymus, spleen, and
lymph nodes (Fig. S2A). ZIP10 was relatively highly expressed in
cellular membrane of pro-B cells (Fig. S2B) on which it was gly-
cosylated and formed oligomers (Figs. S1C and S3) (20, 21). Based
on these findings but lacking evidence for immuno-physiological
roles of ZIP10 in vivo, we first investigated whether ZIP10 plays
a role in B-cell development by generating Zip10flox/floxMb1-Cre
(Zip10Mb1) mice, in which the Mb1-Cre transgene mediates con-
stitutive Cre recombination in the B-cell line from the pro-B-cell
stage (Fig. S4) (22). Although the Zip10Mb1 mice were healthy and
grew normally, they displayed splenoatrophy (Fig. 1A and Fig.
S5A), a reduced number of peripheral B cells (Fig. 1B), and de-
creased serum Ig levels (Fig. 1C), without significant changes in
peripheral T-cell populations (Fig. S5 B and C). Further analysis
showed that the reduction in peripheral B cells was attributed to
a decrease in the B-cell progenitors (Fig. 2A), in which the ZIP10
expression was decreased accompanied by a reduction in the in-
tracellular Zn level (Fig. 2 B–E). To confirm the intrinsic role of
ZIP10 in B-cell development, we generated B cells in vitro from
hematopoietic stem cells (HSCs) in the BM. Consistent with the
in vivo data, a loss of ZIP10 led to impaired B-cell differentiation
in vitro (Fig. 2F). We further confirmed the defective B lympho-
poiesis in a coculture system of lineage-negative HSCs (Lineage−/
Sca-1+/c-Kit+, LSK-HSCs) with a stromal cell line, TSt-4 (Fig. 2 G
and H) (23). These data demonstrated that ZIP10-mediated Zn
homeostasis is critical for early B-cell development in a cell-
autonomous manner.

ZIP10 Is Required for Early B-Cell Survival. To further clarify ZIP10’s
involvement in the early B-cell physiology, we generated another
strain, Zip10flox/floxRosa26ERT2-Cre (Zip10Rosa26) mice (Fig.
S4A), in which Zip10 could be inductively down-regulated by
4-hydroxytamoxifen (4-OHT) treatment (24). We cultured pro-B
cells from this strain with TSt-4 cells, followed by 4-OHT treat-
ment (Fig. 3A). The inducible ablation of ZIP10 (Fig. 3B) re-
duced both the pro-B and pre–B-cell populations (Fig. 3C),
accompanied by reduced intracellular Zn levels (Fig. 3D). Fur-
thermore, the Zip10-deficient pro-B and pre-B cells underwent
apoptosis, determined by annexin-V staining (Fig. 3E), with in-
duced caspase-3 activation (Fig. 3F). These findings indicated
that ZIP10 is required for the survival of early B-cell progenitors.

Next, we investigated the molecular mechanism by which
ZIP10 promotes B-cell survival using a cytokine-dependent BM-
derived cell line, BAF-B03. The siRNA-mediated gene silencing
of Zip10 reduced its surface expression (Fig. 4A) accompanied by
a decreased intracellular Zn level (Fig. 4B and Fig. S6A). In
accordance with these observations, the Zip10 RNA interference
increased the apoptosis of the cells (Fig. 4C) and activated
caspases involved in various apoptotic cascades: caspase-8 for
Fas-FasL, caspase-9 for mitochondrial stress, caspase-12 for
endoplasmic reticulum stress, and caspase-3 as an effector of
apoptotic pathways (Fig. 4D and Fig. S6B) (25), suggesting that
ZIP10-mediated Zn uptake exerts negative effects on caspase-
dependent apoptotic pathways to maintain cell survival. To test
this hypothesis, we examined the impact of intracellular Zn dep-
rivation in the BAF-B03 cells. A selective Zn chelator, TPEN
[N,N,N′,N′-Tetrakis(2-pyridylmethyl) ethylenediamine], induced ap-
optosis (Fig. 4E) with caspase activation (Fig. 4F and Fig. S7),
and these effects were cancelled by Zn supplementation (Fig. 4 E
and G), indicating that the Zn transported via ZIP10 is critical
for the repression of caspase-mediated apoptosis.

Cytokine Signaling Controls ZIP10-Mediated Zn Homeostasis. Be-
cause the cytokine-mediated JAK-STAT signals are known to be
important for early B-cell survival and development (26, 27), we
next assessed whether cytokine signaling governs the ZIP10-
mediated Zn homeostasis in early B-cell stages. We found that
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stimulation with IL-7 plus stem-cell factor (SCF) or IL-7 alone
induced Zip10 expression in primary pro-B cells (Fig. 5A) and
a pre–B-cell line, 2E8 (Fig. S8), respectively. Similarly, increases
in surface ZIP10 protein expression and intracellular Zn level
were observed in BAF-G133, a BAF-B03–derived cell line that
expresses a chimeric receptor composed of the extracellular
domain of the G-CSF receptor and intracellular domain of gp130
(Fig. 5B) (28). Notably, introduction of a dominant-negative form
of STAT3 (Fig. 5C) or STAT5 siRNA (Fig. 5D) repressed the
cytokine-induced ZIP10 expression, indicating that ZIP10-medi-
ated Zn uptake depends at least partly on cytokine-JAK-STAT
signaling. Finally, we identified two potential STAT-binding sites
in the proximal regions of both the mouse and human Zip10
promoters by TFSEARCH (Fig. S9), where activated-STAT3

and -STAT5 were bound (Fig. 5E). These results indicated that
cytokine-mediated signals positively control the ZIP10 expression
and Zn influx to regulate the B-cell survival in the early B-cell
stages. In addition, we found that ZIP10 was highly expressed and
colocalized with activated-STAT3 and -STAT5 in follicular B
lymphoma cells in the salivary gland from human patients (Fig. 6
and Fig. S10A). Taken together, these findings suggest that ZIP10’s
expression is at least partly influenced by the activation status of
STAT3 and STAT5 proteins, and that the JAK-STAT-ZIP10-Zn
signaling axis has an important role in B-cell maintenance.

Discussion
In the present study, we demonstrated that ZIP10 promotes
early B-cell survival by inhibiting the activation of caspases, and
that ZIP10 expression and Zn homeostasis are regulated in
a STAT-dependent manner. Thus, ZIP10-mediated Zn signaling
is a novel regulator of early B-cell development, which establishes
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a functional link between Zn homeostasis and B-cell development
(Fig. 7), and reveals the physiological significance of Zn in main-
taining immune systems.
Since Zn deficiency was first described in the 1960s (29), nu-

merous reports have emphasized Zn’s physiological importance
in the immune system. Aberrant Zn homeostasis leads to a re-
gression of lymphoid tissue and compromises both B- and T-cell
development (30). In particular, early B-cell development is se-
verely affected by Zn deprivation in vivo (19). Acrodermatitis
enteropathica patients, who have Zn deficiency because of loss
of the intestinal Zn transporter ZIP4, display depressed immune
functions accompanied by reduced lymphocyte numbers, resulting
in death within a few years because of increased susceptibility to

infections if left untreated (10, 11). We observed a similar mode of
immunological disturbance in the present study. The ablation of
ZIP10 caused decreased intracellular Zn levels, leading to a sub-
stantial reduction in the total B-cell populations (Figs. 1–3). Our
results clearly demonstrated an essential role for cellular Zn ho-
meostasis in B-cell development, providing a molecular basis for
the immunodeficiency that results from Zn deficiency.
We showed that ZIP10 negatively regulates the activity of

caspases by inducible gene knockout, RNA interference, and Zn
chelation experiments (Figs. 3 and 4). Thus, ZIP10 is a novel
survival factor for B-cell progenitors and has a suppressive effect
on caspase activity through Zn uptake. Although in vitro studies
have previously demonstrated that physiological concentrations
of Zn modulate caspase activity (31–33), and that Zn’s binding to
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vation of caspases in Zn-chelated BAF-B03 cells. Indicated amounts of TPEN
were added into culture medium. Tubulin is shown as a loading control. (G)
Activation of caspases in Zn-chelated BAF-B03 cells in the presence or absence
of extracellular Zn. Tubulin is shown as a loading control.
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Fig. 5. JAK-STAT–mediated cytokine signaling regulates Zip10 expression. (A)
Pro-B cells were sorted from the BM of wild-type mice and stimulated with
hematopoietic cytokines IL-7 and SCF for 3 h. (Left) Zip10 mRNA expression;
(Right) Socs3 mRNA expression as a positive control. Values represent means ±
SD. N.D., not detected. ***P < 0.001. (B) Surface ZIP10 protein expression and
intracellular Zn level in cytokine-treated BAF-G133 cells, which express a chi-
meric receptor consisting of the extracellular domain of the human G-CSF
receptor and the intracellular domain of gp130 (28). BAF-G133 cells were
stimulated with IL-3 or G-CSF for 12 h, followed by FACS analysis using anti-
ZIP10 antibody and Newport Green. The MFI of ZIP10 and Newport Green are
shown. *P < 0.05. (C) BAF-G133 and BAF-G133STAT3F cells expressing a domi-
nant-negative STAT3 were stimulated with IL-3 or G-CSF for 15 min. (Left)
Zip10 mRNA expression; (Right) Socs3 mRNA expression as a positive control.
Values represent means ± SD *P < 0.05, **P < 0.01; N.S, no significance. (D)
Zip10 mRNA expression in Stat5b siRNA-treated BAF-B03 cells. BAF-B03 cells
were transfected with the indicated siRNA (Stat5b-targeting or nontargeting),
then harvested after culturing for the indicated times. (Left) Zip10 mRNA ex-
pression; (Right) Stat5b mRNA expression. Values represent means ± SD *P <
0.05, **P < 0.01, ***P < 0.001. (E) STAT3 and STAT5 binding to the proximal
region of the Zip10 promoter. BAF-G133 cells were stimulated with G-CSF or IL-
3, and the binding of activated STATs to promoter regions of Zip10 was ana-
lyzed by ChIP: (Left) STAT3, (Right) STAT5.
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cysteine residues in the catalytic domain of caspases inhibits their
enzymatic activity (34), it was still elusive how Zn homeostasis
modulates caspase-mediated apoptotic signaling in the physio-
logical situation. It is well recognized that rigorous selection
processes occur during B-cell maturation, in which down-regu-
lation of the antiapoptotic factor B-cell lymphoma 2 (BCL2)
induces apoptosis to prevent the generation and expansion of non-
or self-reactive B-cell clones (19, 35). Our findings raise the pos-
sibility that Zn signaling mediated by ZIP10 exerts an antiapoptotic
effect in coordination with BCL members for the fate decision of
lymphocyte progenitors during their selection process.
There are several reports on the involvement of other Zn-

sensitive signaling molecules in lymphopoiesis. Zn mediates the
recruitment of the tyrosine kinase Lck to the T-cell receptor
(TCR) signaling complex to facilitate TCR signaling (36, 37).
Tyrosine phosphatase (38) and phosphodiesterase are also
inhibited by Zn (14, 39, 40). Therefore, we do not exclude the
possibility that the ZIP10-Zn signaling axis simultaneously
modulates the related signaling pathways. A Zn finger tran-
scriptional factor BCL6 is critical for cell survival at the pre–
B-cell transitional stage (41). In addition, E2A is also essential for
B-cell development, and its absence results in growth arrest (42)
and caspase-dependent apoptosis (43). These findings suggest
that the ZIP10-Zn signaling axis may also affect transcriptional
control in early B-cell development. Intriguingly, our results
indicated that the other cell-membrane localized ZIP family
members expressed in B cells (Fig. S11) could not compensate
for the loss of ZIP10 (Fig. S6C). In addition, forced Zn influx by
pyrithione could not restore cell death induced by ZIP10 de-
ficiency (Fig. S12), most likely because Zn plus pyrithione treat-
ment triggers necrosis (44), suggesting that the ZIP10 regulates
early B-cell survival through the tight regulation of Zn uptake
in the specific Zn-signaling axis. In the future, more detailed
investigations of the underlying molecular mechanisms, including
the identification of ZIP10-binding proteins, which mediate be-
tween ZIP10-Zn and caspase activities, and exploration of the
roles of intracellular or truncated ZIP10 (Fig. S3C) (as reported

in ref. 20, for example), will help us understand how Zn signaling
systems function with specificity.
It is of particular interest that activated STAT proteins regu-

lated the ZIP10 expression upon cytokine stimulations (Fig. 5).
Our findings indicated that cytokine (first signal) stimulation
induces the activation of JAK-STAT proteins (second signal),
which is then converted to a Zn signal (third signal) via ZIP10
(Fig. 7). A perturbation of these sequential signal conversions
may profoundly affect immune function. Given that STAT sig-
naling is an oncogenic consequence (45), that ZIP10 facilitates
antiapoptotic effects in B-cell progenitors, and that ZIP10 is
involved in the migration of some cell types (46), ZIP10 might
play a role in human cancers and related diseases. This notion is
consistent with the results of an in silico search, which showed
high ZIP10 expression in various types of cancers including acute
myeloid leukemia and acute lymphoid leukemia (Fig. S10B).
In addition, the ZIP10 expression was highly correlated with
STAT3/STAT5 activation in human follicular lymphoma and
diffuse large BCL cells (Fig. 6 and Fig. S10A). Because most fol-
licular lymphoma cells also overexpress BCL2 (47), the highly
expressed ZIP10, at least in part, via JAK-STAT signaling may
exacerbate malignancy by eliciting antiapoptotic effects in co-
ordination with BCL2. STAT family members are activated not
only by cytokines but also by growth factor receptors and onco-
genic tyrosine kinases (45), so ZIP10 may be involved in various
disease conditions associated with STAT activation.
Taken together, our results uncover an essential role of ZIP10

in early B-cell development, and reveal that ZIP10-mediated
intracellular Zn homeostasis contributes to B-cell survival by
inhibiting the activity of caspases. Notably, we also found that
ZIP10 has an important role in the humoral immune response
mediated by mature B cells (21), indicating that ZIP10 has
unique functions in both early and mature B-cell populations by
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Fig. 6. Colocalization of ZIP10 and activated STAT3/STAT5 in human BCLs.
(A) Histological analysis for the expression of ZIP10, activated STAT3 (pSTAT3)
and STAT5 (pSTAT5) in human follicular lymphomas found in salivary glands.
H&E staining and immunohistochemistry are shown. Other patient cases are
shown in Fig. S10A. (B) Immunofluorescence analysis for the expression of
ZIP10, activated STAT3 (pSTAT3) and STAT5 (pSTAT5) in human follicular
lymphoma cells. (Magnification: A, Upper, 40×; A, Lower, 400×; B, 600 ×.)

Fig. 7. Schematic model: ZIP10-mediated Zn signal promotes an anti-
apoptotic effect by inhibiting caspases in early B-cell developmental stages.
Cytokine (first signal) stimulation induces JAK-STAT activation (second sig-
nal), and is subsequently converted to intracellular Zn signaling (third sig-
nal), through the up-regulation of Zn transporter ZIP10. This sequential
intracellular “signal conversion” promotes early B-cell survival by inhibiting
caspase activation or by an unknown mechanism via molecule X. A disrup-
tion in the signal conversion suppresses the survival signaling in B-cell pro-
genitors, resulting in lymphopenia.
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regulating different molecular and cellular events. Our studies
on ZIP10 in B cells provide new insight into the relevance of Zn
signaling in immuno-physiological events. Further exploration of
the functions of ZIP10 will shed light on the relevance of Zn
signaling in various aspects of the immune system.

Materials and Methods
Detailed descriptions of all of the materials and methods are provided in SI
Materials and Methods, genotyping methods and primer sequences in Figs.
S13–S15, and antibodies and reagents in Table S1.

Differences among multiple groups were compared by one-way ANOVA
followed by a post hoc comparison using Fisher’s protected least-significant
difference test. The two-tailed Student t test was used to analyze differences
between two groups.
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