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Abstract

We explored the underlying mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation (cell
type switchings) from landscape and flux perspectives. Lineage reprogramming is a new regenerative method to convert a
matured cell into another cell including direct transdifferentiation without undergoing a pluripotent cell state and indirect
transdifferentiation with an initial dedifferentiation-reversion (reprogramming) to a pluripotent cell state. Each cell type is
quantified by a distinct valley on the potential landscape with higher probability. We investigated three driving forces for
cell fate decision making: stochastic fluctuations, gene regulation and induction, which can lead to cell type switchings. We
showed that under the driving forces the direct transdifferentiation process proceeds from a differentiated cell valley to
another differentiated cell valley through either a distinct stable intermediate state or a certain series of unstable
indeterminate states. The dedifferentiation process proceeds through a pluripotent cell state. Barrier height and the
corresponding escape time from the valley on the landscape can be used to quantify the stability and efficiency of cell type
switchings. We also uncovered the mechanisms of the underlying processes by quantifying the dominant biological paths
of cell type switchings on the potential landscape. The dynamics of cell type switchings are determined by both landscape
gradient and flux. The flux can lead to the deviations of the dominant biological paths for cell type switchings from the
naively expected landscape gradient path. As a result, the corresponding dominant paths of cell type switchings are
irreversible. We also classified the mechanisms of cell fate development from our landscape theory: super-critical pitchfork
bifurcation, sub-critical pitchfork bifurcation, sub-critical pitchfork with two saddle-node bifurcation, and saddle-node
bifurcation. Our model showed good agreements with the experiments. It provides a general framework to explore the
mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation.
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Introduction

A pluripotent undifferentiated cell can differentiate into types of

differentiated cells. Each cell type has a specific regulated gene

expression. Cellular differentiation is determined by the underly-

ing gene regulatory network during the process of development,

which leads the primary cell into its ultimate fate-a particular

phenotype. Induced pluripotent stem (iPS) cells provide the

opportunity to obtain pluripotent stem cells which potentially

have therapeutic uses [1,2]. Recently many studies have been

reported that one type of cells can be converted to another type of

functional cells directly [3–7]. This is a big step forward in the cell

biology since there is no need to create iPS cells first for cell type

switching, skipping many intermediate steps. This direct repro-

gramming technology is called the lineage reprogramming. Thus

an adult cell can be reprogrammed directly to new cells as lineage

switching. The lineage switching through direct transdifferentia-

tion without going through the iPS state might be applied to

regenerative medicine with less risk of cancer. However, it is still

challenging to quantify the mechanisms of the differentiation,

dedifferentiation, reprogramming and transdifferentiation [3–11].

The concept of ‘‘epigenetic landscape’’ was first introduced by

Waddington in 1940s [12] The quantifications of the Waddington

potential landscape for the process of cell differentiation have been

explored recently [13–17]. Different valleys represent different cell

phenotypes (cell fates) on the cell development potential landscape

[13–17]. Waddington visualized the undifferentiated state as the

local maximum and differentiated states as the local minimum on

the landscape [12]. In our landscape picture, the undifferentiated

state and differentiated state are both local minima in certain

regions of the landscape. Undifferentiated state has relatively low

expressions of differentiation mark genes while differentiated state

has at least one high expressions of differentiation mark genes. In

addition, Waddington believed the differentiation is a downhill

process driven by the funneled landscape gradient. In our picture,

the differentiation can occur with several different mechanisms,
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through funneled landscape, through stochastic fluctuations and

the probability fluxes even when the landscape is not funneled

towards the differentiated states, and through induction.

For development and differentiation system, we represent a cell

as a chemical system having given genomic makeup, with each

and every possible phenotype as a potential ‘‘state’’ [18,19]. This is

very much analogous to the notion of a polypeptide, as a chemical

molecule, can have many different possible ‘‘conformational

states’’, although each individual protein molecule has only a

particular state at a given moment in time. This chemical

definition of ‘‘the system’’ is important. Imagine that proteins are

defined only through biological functions; then different confor-

mations of a polypeptide will be considered as ‘‘different

molecules.’’ Then the notion of spontaneous conformational

change would not make sense. Indeed, there are still cell biologists

who think different cells from the same person as different cells;

rather than as a ‘‘same chemical system in different states’’ [18,19].

The process of the cell development can be viewed as the system

moving from one valley (primary or stem cell phenotype) through

bifurcation to another valley (differentiated cell phenotype) on the

potential landscape. And the transdifferentiation process can be

viewed as the system escaping from one stable differentiated valley

to another differentiated valley through certain paths on the

potential landscape shown in Figure 1(A). The differentiated cells

(SA) can switch to another lineage cell type (SB) through an explicit

pluripotent stable state (SC ). Indirect transdifferentiation mecha-

nism which requires an initial dedifferentiation step SA?SC?SB

shown in Figure 1(A). It illustrates a differentiated cell (SA)

reprogrammed back to a pluripotent state (SC ) with less

differentiated, and then can be re-differentiated to another type

of differentiated cell (SB) [3,5,6]. This is a possible strategy of

pluripotent lineage reprogramming while the enhancement of

efficiency is required. The underlying process is a transdifferentia-

tion involving a stepwise dedifferentiation. In addition to indirect

transdifferentiation, there is another lineage reprogramming

approach: the direct transdifferentiation mechanism as

SA?SO?SB shown in Figure 1(A). Direct transdifferentiation is

a mechanism of converting one type of differentiated cells to

another type of differentiated cells without undergoing through a

pluripotent state or progenitor cell type. The differentiated cells

(SA) down regulate their own cell-specific genes (X1) and activate

the target cell-specific genes (X2), thus they can switch to another

lineage cell type (SB) through an explicit intermediate stable state

(SO) or a series of indeterminate states [3–5,8,9]. In our study, the

Figure 1. The scheme, phase diagram and intrinsic potential landscape of cell type switchings. A: The scheme of dedifferentiation
(including reprogramming and differentiation) and transdifferentiation. B: A model for the gene circuit for cell development. C: The phase diagram for
the gene circuit with S~0:5,n~4,k1~k2~1:0. D: The cell fate landscape w0 obtained from the Hamilton-Jacobi equation versus a and x, and the
phase diagram was drawn on the intrinsic potential landscape with stable states represented by black solid lines and unstable states represented by
black dash line. The red dash lines represent the dedifferentiation(reprogramming) and redifferentiation process while the yellow solid lines
represents the transdifferentiation process. (a1~a2~1:0, b1~b2~1:0, S~0:5,n~4,k1~k2~1:0.)
doi:10.1371/journal.pone.0105216.g001
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intermediate state is defined as an intermediate stable state with

low or medium pluripotency and having very low expressions of

the differentiation mark genes, while a series of indeterminate

states are defined as a series of unstable states with low or medium

pluripotency and very low expressions of differentiation mark

genes in the course of lineage switching. Sridharan et al [20]

showed that partially reprogrammed cells as an intermediate stage

of the reprogramming process can switch to the completely

reprogrammed iPS state. Thus the states of partially repro-

grammed cells may exist along the paths from a differentiated state

SA or SB to iPS state SC . The research by Mikkelsen [21] showed

that partially reprogrammed cells can be trapped at a common

intermediate state. Thus the states of partially reprogrammed cells

may exist along the paths from a differentiated state SA to another

differentiated state SB through an intermediate SO or indetermi-

nate states. These intermediate state and indeterminate states may

have certain expressions of stem cell marker genes and thus can be

viewed as partially reprogrammed cells. This is supported by the

observation that fibroblast cells specific genes are efficiently

silenced and the embryonic reprogramming is not fully induced

in partially reprogrammed cells [20]. We believe that different

experimental and environmental conditions can lead to quite

different results and change the topological structure of the

potential landscape [20,21]. The partially reprogrammed cells

may be trapped in certain regions in the gene expression space.

In this study, we term direct transdifferentiation as transdiffer-

entiation and indirect transdifferentiation requiring an initial

dedifferentiation or reprogramming step as dedifferentiation. The

goal of regenerative medicine can potentially be realized through

the processes of differentiation, dedifferentiation, reprogramming

and transdifferentiation [4]. Here we use cell type switchings short

for the terms ‘‘differentiation, dedifferentiation, reprogramming,

and transdifferentiation’’. Recent advances have shown that there

are three possible driving forces for cell type switchings: (1)

Stochastic Fluctuations. Cells choose their pathways of differenti-

ation stochastically in the process of development without

apparent regards to environment or history [22]. Some studies

in cell development reveal that intrinsic stochasticity is an

important mechanism for development [22]. The extrinsic

fluctuations are also expected to play a role in cell development.

Thus the fluctuations can be a driving force for the processes of

cell type switchings. (2) Gene Regulation. cell type switchings can

be achieved by the change of regulation strengths of their lineage

specific genes in many studies [6,8,9,14,15]. (3) Induction. Lineage

specific cells can be reprogrammed to a pluripotent state through

over-expressions of some defined transcription factors [23,24].

Transfection of certain cell specific genes into the primary cells,

and over-expressions of the target lineage specific genes as well as

certain stem cell-associated genes can induce the processes of cell

type switchings.

Given the three driving forces for cell fate decision making, it is

still challenging on how to quantify the processes of cell type

switchings on the landscape, and how to connect them to

experiments. These processes of cell type switchings are controlled

by their underlying gene regulatory network. The lineage-specific

transcription factors play a critical role in the processes of cell type

switchings. In this study, we explored a simple cell differentiation

network module with autoregulation and mutual antagonism

between transcription factors (lineage-specific genes) [15,17],

which exists in many cell differentiation processes, shown in

Figure 1(B). The lineage-specific genes can strongly instruct the

cellular lineage choice. The circuit is composed of a pair of self

activating autoregulation and mutual inhibiting cross-antagonism

cell-specific genes X1 and X2 [15,17]. In iPSC or ESC (embryonic

stem cell), pluripotent genes are often highly expressed, and most

lineage related genes are off. However, there are examples of gene

regulatory circuits with the same architecture in our study which

control binary decisions at branch points of cell differentiation in

multi-potent cells. Such mutual antagonism gene circuit modules

(where the self activation can also be indirect) in binary branch

points of cell lineage commitment can often be found. A lot of

studies have explored the primed multipotent common myeloid

progenitor (CMP) can differentiate to either myeloid cell or

erythroid cell in blood cell formation by mutual antagonism

interaction of transcription factor gene GATA1 and PU :1 shown

in Figure 2(A) [25,26]. GATA1 and PU :1 are both self-activated.

In the genetic regulation of the inner cell mass/trophectoderm

lineage decision, Oct4 represses expression of Cdx2, and Cdx2
represses expression of Oct4 to allow the segregation of inner cell

mass and trophectoderm lineages [27,28]. Oct4 and Cdx2 are

mutual inhibited and self-activated [27,28] shown in Figure 2(A).

In the genetic regulation of the epiblast/primitive endoderm

lineage decision, antagonism between Nanog and Gata6 results in

segregation of primitive endoderm and epiblast within the inner

cell mass [27,29,30] shown in Figure 2(A). Nanog and Gata6 are

also both self-activated [30]. These three circuits all can be viewed

as X1 and X2 in our network.

We will study this key network module to uncover the

underlying functional mechanisms of cell type switchings. The

phase diagram in Figure 1(C) suggests that the system can have

five different phase regions, each of which has different underlying

landscapes with different distribution of valleys. Furthermore, we

show how stochastic fluctuation, gene regulation and induction

induce the cell type switchings. The potential landscape and flux

both direct the processes of cell type switchings. Probability flux

provide a curling force breaking the detailed balance and lead the

biological paths of cell type switchings to be deviated from the

paths obtained by steepest descent gradient of the landscape. The

forward and backward paths of cell type switchings are irrevers-

ible, without passing through the saddle point. Furthermore, the

flux can become the main driving force for cell type switching

when the landscape is not biased towards the specific processes

[16,31]. Barrier height and dynamic transition speed are used to

quantify the global stability of the landscape topography. The

stability here represents the ability for a cell to stay at a certain cell

type state against certain fluctuations. In practice, the fluctuations

in some cases maybe small but never zero. We uncover and classify

four mechanisms of cell type switchings: super-critical pitchfork

bifurcation, sub-critical pitchfork bifurcation, sub-critical pitchfork

with two saddle-node bifurcation, and saddle-node bifurcation.

Results and Discussions

I. The model of cell fate network
We start with gene circuit module for typical differentiation.

The gene regulatory circuit for cell fate decision has two mutual

repression and self-activation lineage-specific transcription factors:

X1 and X2 shown in Figure 1(B). It is more complete to consider

three or more gene system. But the challenge is that a network

with more genes requires more parameters to describe and

therefore much bigger search space to explore exhaustively for

uncovering the underlying mechanisms. Furthermore, with more

genes, it is more difficult to visualize the results. The two gene

system we considered is the simplest to exhaustively and effectively

explore the underlying mechanism in parameter space [15–17,25].

We would like to use this model to explore the basic underlying

mechanisms. The dynamics of this circuit is described by a set of

two-variable ordinary differential equations below, with the rate of

Mechanisms of Cell Type Switchings
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expression change for these two genes:

dx1

dt
~

a1xn
1

Snzxn
1

z
b1Sn

Snzxn
2

{k1x1~F1

dx2

dt
~

a2xn
2

Snzxn
2

z
b2Sn

Snzxn
1

{k2x2~F2,

ð1Þ

where x1 and x2 are the time-dependent expressions of the two

cell-specific transcription factors X1 and X2 [15,17,25]. Parameter

a1 and a2 are the self activation strength of the transcription

factors X1 and X2 respectively. b1 and b2 are the strength of the

mutual repression for transcription factors X1 and X2 respectively.

k1 and k2 are the first-order degradation rate for X1 and X2

respectively [15,17,25]. S represents the threshold (inflection

point) of the sigmoidal functions, i.e., the minimum concentration

needed for appreciable changes, and n is the Hill coefficient which

represents the cooperativity of the regulatory binding and

determines the steepness of the sigmoidal function. For simplicity,

we do not include studies of all the different parameters of S and n

in the main text. We included the studies in the supporting

information. We show the phase diagrams for varying these

parameters in Figure S1 in File S1. We can see varying these

parameters can also lead to bi-stable states or tri-stable states and

also the phase transitions. In the main text, the parameters for Hill

function and degradation rate for X1 and X2 are specified as:

S~0:5,n~4, and k~k1~k2~1:0 [15–17,25]. In this section, we

assume the symmetric situation a~a1~a2 and b~b1~b2.

Although the values of parameters can be different in organisms

under different circumstance, the mathematical model here

describes a simple yet representative motif gene circuit, and these

values (S~0:5,n~4,k~k1~k2~1:0) are used in many previous

studies [15–17,25].

1. The phase of cell fate network. To explore the dynamics

under different conditions mimicking by different choice of

parameters, we showed the phase diagram in Figure 1(C). If we

can keep the mutual repression strength b fixed and the self

activation a at various levels mimicking the actual developmental

process where expression levels of transcription factor change

[15](e.g. The expression level of transcription factor Klf 4 can be

viewed as the effective self activation a at various levels mimicking

the actual developmental process [32]. Because Klf 4 is not

required for the maintenance of undifferentiated state of ES cells

[32]. Furthermore, the expression level of Klf 4 decreases

gradually after induced differentiation [32].), the cells are attracted

to different differentiated and undifferentiated states. There are

five regions in the parameter phase space in Figure 1(C). Region I

with lower self activation a and mutual repression b has only one

stable state SO with lower equal levels of the expressions of two

lineage specific genes X1 and X2 shown in Figure 1(A). This is an

intermediate state phase with lower lineage specific genes in the

process of transdifferentiation [4]. Region II with higher mutual

repression b and lower self activation a has two stable states shown

in Figure 1(A): SA which represents the differentiated state with

higher expression of X1 and lower expression of X2, SB which

represents another differentiated state with lower expression of X1

and higher expression of X2. Region III with lower mutual

repression b and relative higher self activation a has three states:

SA,SB and SO. Region IV with higher mutual repression b and self

activation a has three states: SA,SB and SC which represents a

pluripotent state with medium equal expressions of X1 and X2 in

the process of dedifferentiation which can also be viewed as the

process of reprogramming. Region V with lower mutual

repression b and higher self activation a has all the four stable

states: SA,SB,SC and SO.

By changing the parameters of self activation a and mutual

repression b, we can induce the initial differentiated cell to another

differentiated cell in region II through the region III or region I by

transdifferentiation (the yellow solid line), or through the region IV

by dedifferentiation (the red dash line). In regions II, III, IV and V,

there also exist tansdifferentiation within each. We will explore the

dynamics of gene regulatory network for cell fate decision making

process resulted from three driving force of stochastic fluctuations,

gene regulation and induction through the instructive changes in

details via the corresponding landscape topography for cell

development.

2. Super-critical and sub-critical pitchfork bifurcation

versus saddle-node bifurcation in cell fate network. We

Figure 2. The gene circuits of mutual antagonism and self activation. A: The interaction of PU :1 and GATA1 in determining myeloid cell or
erythroid cell, Oct4 and Cdx2 in determining inner cell mass or trophectoderm, Nanog and GATA6 in determining epiblast or primitive endoderm. B:
Scheme for the gene circuit of B cell to macrophage conversion. The dashed lines indicate uncertainty. C: Scheme for the gene circuit in determining
mesendodermal and ectodermal.
doi:10.1371/journal.pone.0105216.g002
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explored the bifurcation for cell fate decision network for different

conditions. When mutual repression regulation parameters

b~b1~b2 increase with small self activation regulation

a~a1~a2~0:2, the phase diagram has a super-critical pitchfork

bifurcation which is a second order phase transition [33,34] shown

in Figure 3(A). The solid lines represent stable fixed points while

the dash lines represent unstable fixed points. We can see a stable

state SO becomes an unstable state and splits into a pair of new

stable states SA and SB at the critical point [33,35]. As the self

activation regulation strength a increases, the phase diagram

changes to a new form of sub-critical pitchfork with two saddle-

node bifurcation which is a first order phase transition shown in

Figure 3(B) as a~a1~a2~0:5. The initial state SO is mono stable

at lower mutual repression b, then a pair of new stable states SA

and SB (two saddle-node bifurcations) emerge at somewhere far

away from the initial state SO as mutual repression b increases.

After the critical point of sub-critical pitchfork, the center initial

stable state SO at the center becomes unstable, only the two new

stable states SA and SB are left in the phase space. Super-critical

pitchfork bifurcation represents a type of ‘‘second-order transi-

tion’’ in physics [36]. The difference between super-critical

pitchfork bifurcation and sub-critical pitchfork bifurcation is that:

super-critical pitchfork bifurcation represents one stable equilib-

rium splits into two stable equilibrium and a unstable equilibrium

while sub-critical pitchfork bifurcation represents two unstable

equilibrium and a stable equilibrium merge into an unstable

equilibrium. Thus super-critical pitchfork bifurcation differs from

the sub-critical one in that two new stable equilibrium SA and SB,

when they appear, already have a significant distance away from

the middle stable equilibrium SO. But the two stable fixed points

and the two unstable fixed points in sub-critical pitchfork with two

saddle-node bifurcations are both symmetric in x1{x2{b three

dimensional space, while they are not symmetric in x1{b two

dimensional space shown in Figure 3(B). These two bifurcations

shown in Figure 3(A) and (B) are similar to the picture described in

Waddington’s epigenetic landscape [12].

The phase diagrams shown in Figure 4(A), Figure 5(A) and

Figure 6(A) are saddle-node bifurcations. A saddle-node bifurca-

tion denotes a collision and disappearance of two equilibria rather

than a pitchfork bifurcation [33,35]. The saddle-node bifurcation

is a first order phase transition [33,34]. We can see that the initial

valley SA does not split into new valleys as the description of

Waddingtons epigenetic landscape (a pitchfork bifurcation) [35].

New valleys SB and SC or SO are born at somewhere far from the

existing valley SA in the state space. It is anther way of creating or

eliminating the valleys from the potential landscape besides a

pitchfork bifurcation [35]. The cell moves to the new valley SC or

SO and SB in sequence under fluctuations since its own valley

disappears in another saddle-node bifurcation. We have already

explored another form of bifurcation for cell fate network as self

activation a decreasing with b~1:0 in our previous study [15,17].

The phase diagram was drawn on the intrinsic potential landscape

as the black lines in Figure 1(D) which is a sub-critical pitchfork

[33,34] at the phase transition point (a~0:774).

We would like to explore these mentioned non-equilibrium

phase transition under fluctuations and gene regulation. We might

monitor the expressions of the differentiation marker genes in time

and obtain the correlation functions. The singularity of the self-

correlation function indicates the first order phase transition

(saddle-node bifurcation) and the continuity of that shows the

second order phase transition [33,34]. Thus we might distinguish

these mechanisms of cell type switchings. We will explore these

mechanisms of four bifurcations through our potential landscape

theory in details below.

3. Intrinsic potential landscape. We obtained the intrinsic

potential landscape w0 (see the section of Methods) with Lyapunov

properties to quantify the global stability by solving the zero

fluctuation limit Hamilton-Jacobi equation and the associated

intrinsic flux velocity in the zero noise limit [37]. The population

potential landscape of cell development can be obtained through

the exploration of the underlying probability dynamics, by solving

the Fokker-Planck diffusion equation (see the section of Methods)

[15]. The population potential landscape U is related to steady

state probability distribution Pss through {lnPss under fluctua-

tions. The intrinsic potential landscape is quantified at the zero

noise limit while the population potential landscape is quantified

under finite fluctuations. Both show the global properties of the

cell developmental process. Although intrinsic potential landscape

gives less information (only at zero noise limit) about the network

than population potential landscape, it can be used to quantify the

global stability due to its nature of being a Lyapunov function [37].

We can illustrate two-dimensional potential landscape (the

coordinates x1 and x2) to one dimension. One dimensional cross

section coordinate x links SA side minimum through SC middle

minimum to SB side minimum. x represents the gene expression

levels, xv0 shows gene X1 is dominant while xw0 shows X2 is

dominant. If the self activation strength a decreases relatively

slowly, relative to gene regulation in development, the potential

landscape can be viewed as a succession of one dimensional

potential slice. Figure 1(D) shows the intrinsic potential landscape

for normal cell differentiation development process from plurip-

otent state (SC ) to differentiated states (SA and SB) and the

pluripotent reprogramming process from differentiated states (SA

and SB) to pluripotent state (SC ). We can see the intrinsic potential

landscape w0 can be used to quantify the Waddington’s picture

and has almost the same shape with the population potential

landscape [15].

The red dash lines and the yellow solid line shown in

Figure 1(D) schematically described the lineage reprogramming

process: dedifferentiation and transdifferentiation, respectively.

The dedifferentiation process shows that differentiated state SA

follows a step backward to a pluripotent state SC and then is

induced to re-differentiate to another differentiated state SB. While

the transdifferentiation process shows that differentiated state SA

converts directly to another differentiated state SB through certain

intermediate stable state or not. Much work has been done on

lineage reprogramming and progress has been made in manipu-

lating the key regulator gene to convert cell lineages [3–6,8,9]. The

understanding of the underlying mechanism is still challenging.

We will discuss the possible mechanisms of these lineage

reprogramming process in detail using this simple gene regulatory

circuit.

We can see that when self activation a~a1~a2 is strong with

higher mutual repression b~b1~b2~1:0, the valley of the central

pluripotent state SC is much deeper and the system is attracted to

this valley shown in Figure 1(D). As the strength of self activation a
decreases, the valleys of side differentiated attractors SA and SB

become deeper while the central pluripotent state SC becomes

weaker. When the strength of self activation a approaching to

zero, the central state SC becomes a ridge and therefore it is not

stable while the side states SA and SB become stable. This result of

intrinsic potential landscape with global Lyapunov property of

global stability shows the similar mechanism with the result

obtained from exploring the population potential landscape [15–

17].

In order to quantify the stability of each state from the potential

landscape topography, we can apply barrier height to measure the

relative weights between different stable states. We showed barrier

Mechanisms of Cell Type Switchings
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height of intrinsic potential landscape versus the strength of self

activation a in Figure 7A. We set Dw0S A~w0S{w0A and

Dw0S C~w0S{w0C , where w0S is the value of the intrinsic potential

landscape at the saddle point between state SA and state SC , w0A

represents the minimum value of the intrinsic potential landscape

at differentiated state SA while w0C represents the value of that at

pluripotent state SC . Barrier height Dw0S C decreases as a

decreases, and state SC vanished after the phase transition critical

point ac1~0:774, where the system transits from three stable states

(SA,SB,SC ) to two stable states (SA,SB). It implies that the

attraction of state SC becomes shallower. Barrier height of Dw0S A

increases first, then decreases. It shows that the attraction of the

differentiated state SA (SB) becomes deeper first, then becomes

weaker after another critical point around ac2~0:4. So differen-

tiated states SA and SB at ac2 are more stable. Figure 7B shows the

intrinsic potential barrier height Dw0S A has positive correlation

with the population potential barrier height BaS A~BaS{BaA

under the diffusion coefficient D~0:004 and D~0:02, where BaS

is the value of the population potential landscape at the saddle

point between state SA and state SC , BaA represents the minimum

value of the population potential landscape at the differentiated

state SA. The mean first passage time (MFPT) is useful to

characterize the global stability if stochastic fluctuations are the

dominant source of noise since it measures how the system can

globally communicate from one state to another. The intrinsic

barrier height Dw0S A and the corresponding MFPT have the

correlation of t*exp(DBaS A) shown in Figure 7(C) with diffusion

coefficient D~0:02.

A cell is a non-equilibrium open system with exchanges of

energy and information from the outside environment. This leads

to dissipation which is determined by both potential landscape and

flux. The dissipation can give another global physical character-

ization of the non-equilibrium system. Non-equilibrium system

dissipates both energy and entropy in steady state, where the

entropy production rate is equal to heat dissipation rate. The heat

dissipation rate is formulated as HDR~
Ð

F:Jdx [13,37–40],

which increases first then decreases as self activation a decreases as

shown in Figure 7(D). This indicates that larger area of the

dominant probability flux leads to more heat dissipation because

the system needs to consume more energy [37]. The system

Figure 3. The dynamics of super-critical and sub-critical bifurcations for cell type switchings. A: The phase diagram for changing the
parameter b~b1~b2 with a~a1~a2~0:2. B: The phase diagram for changing the parameter b~b1~b2 with a~a1~a2~0:5. C: The quantified
dedifferentiation and differentiation landscape and pathways for continuous changing parameter b with a~a1~a2~0:2. D: The quantified
dedifferentiation and differentiation landscape and pathways for continuous changing parameter b with a~a1~a2~0:5.
doi:10.1371/journal.pone.0105216.g003
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Figure 4. The dynamics of transdifferentiation undergoing an intermediate state. A: The phase diagram for decreasing a1 induced the
differentiated state SA to the other differentiated state SB through the intermediate state SO. (a0~1:0, b~0:2) B: The barrier heights of the
population landscape versus the parameter a1 . C: The quantified transdifferentiation landscape and pathways for continuous changing parameter a1 .
doi:10.1371/journal.pone.0105216.g004

Figure 5. The dynamics of transdifferentiation undergoing a series of unstable states. A: The phase diagram for decreasing a1 induced the
differentiated state SA to the other differentiated state SB. (a0~1:0, b~0:3) B: The barrier heights of the population landscape versus the parameter
a1 . C: The quantified transdifferentiation landscape and pathways for continuous changing parameter a1.
doi:10.1371/journal.pone.0105216.g005
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consumes more energy in the process of the development with

three dominant states while the system consumes less at the

beginning of cell development and at the end of cell development

with less states. The heat dissipation rate provides a global

characterization of cell development. It is intimately related to the

robustness of the underlying network.

II. The mechanisms of cell type switchings
1. Stochastic Fluctuations. The cell type switchings at a

given stage of development with different symmetric self

activation a at fixed mutual repression b. The stochastic or

inductive cell development can often be influenced by the external

environment. We showed the paths of state transitions in cell

development on the intrinsic potential landscapes for different self

activation a with fixed mutual repression b~1:0 due to stochastic

fluctuations shown in Figure 8. We can see the green lines

represent the reprogramming or dedifferentiation paths from

differentiated state SA or SB to pluripotent state SC while the red

lines represent the differentiation paths from pluripotent state SC

to differentiated state SA or SB shown in Figure 8(A)(B) when self

activation a is relative stronger and the system has three stable

states. Its worth pointing out that a green path from differentiated

state SA to pluripotent state SC connected to a red path from

pluripotent state SC to another differentiated state SB can provide

a possible mechanism of the process of dedifferentiation first and

then redifferentiation shown in Figure 8(A)(B). We also showed

that both the green and the red lines represent the transdiffer-

entiation paths from one differentiated state to another differen-

tiated state shown in Figure 8(C)(D) when self activation a is

relative weaker and the system has only two stable states, just as a

toggle switch. The intrinsic flux velocity ((Jss=Pss)D?0) represented

by purple arrows are perpendicular to the negative gradient of

intrinsic potential ({+w0) represented by the white arrows in

Figure 8 (see the section of Methods).

The cell type switchings processes at a given stage of

development with symmetric changing mutual repression b

while fixing self activation a. We considered the potential

landscape changing under fluctuations with varying mutual

repression parameter b~b1~b2 at a given state with fixed self

activation a~0:9. Figure 9(A) shows the phase diagram for

changing mutual repression strength b. We can see that when

mutual repression strength b decreases below bv0:222, a new

stable state SO emerges. This is an intermediate stable state

between differentiated states SA and SB. There are lower

expressions of gene X1 and X2 in state SO. Dashed lines represent

the saddle point between stable states. As mutual repression

bv0:222, the system has all four states SA,SB,SO and SC . The

fluctuations in the system can enable stochastic switching among

the stable states. Note that smaller mutual repression strength b

here represents larger repression effect since the parameter b is in

the numerator of an inhibition term with a positive sign. Smaller b,

that is larger repression, leads the system towards intermediate

state SO, while larger b which represents smaller repression effect

leads the system towards pluripotent state SC .

Any given cell may take a completely different route back to

their pluripotent state in principle. Certain sequence of stages can

emerge in the process of cell type switchings [4]. In experiments, if

there are several pathways, one can collect the statistics and find

out the relative probabilities of each path, giving the quantification

of the path weights. In modeling, path integral weights are

Figure 6. The dynamics of dedifferentiation undergoing a pluripotent state. A: The phase diagram for decreasing a1 induced the
differentiated state SA to the other differentiated state SB through the pluripotent state SC . (a0~4:0, b~0:5) B: The barrier heights of the population
landscape versus the parameter a1 . C: The quantified dedifferentiation landscape and pathways for continuous changing parameter a1 .
doi:10.1371/journal.pone.0105216.g006
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calculated by the action of the system analogous to the classical

mechanical systems which determine the likelihood of one path

versus the other. We often used the dominant paths with the

largest weights to represent the major pathways. We showed four

dominant biological paths on the corresponding population

landscape with different mutual repression strength b~0:15 (A),

b~0:22 (B), b~0:25 (C) in Figure 10. These processes are

fluctuation or induction induced transition. The purple lines

represent the paths from state SB to state SA while the black lines

represent the paths from state SA to state SB [15,37]. We can see

there are two dominant paths with the same color for transdiffer-

entiation from a certain differentiated state to another differen-

tiated state in each sub figures, one path is through intermediate

state SO while the other path is through pluripotent state SC . We

also found the two different colored development paths between

each two states follow quite different routes. It is irreversible

between the forward dedifferentiation and the backward dediffer-

entiation paths through the pluripotent state SC , and between the

two transdifferentiation paths through intermediate state SO or

without an explicit intermediate state. This illustrates the

irreversibility of the developmental paths which can be verified

from the ongoing and future dynamical experiments.

The path weight represents the probability of each route for cell

type switchings. It can be used to predict the probability of

different routes for cell type switchings. The path probability can

be obtained by the action A(x) for cell development (See methods

for details). We labeled AP C as the action of the path through state

SC , and AP O as the action of the path through state SO.

Figure 9(C) showed the logarithm of dedifferentiation path

probability through state SC divided that of transdifferentiation

through state SO decreases as mutual repression strength b

becomes weaker. This showed that the dedifferentiation path

Figure 7. The barrier height, escape time and dissipation rate for different self activation strength a with mutual repression
strength b~1:0 under fluctuations. A: The intrinsic barrier height Dw versus a. B: The intrinsic barrier height Dw0S A versus the population barrier
height BaS A in U for D~0:004 and D~0:02. C: The escape time lntA from the valley SA versus the intrinsic barrier height Dw0S A. D: The dissipation
rate versus the decreasing parameter a.
doi:10.1371/journal.pone.0105216.g007
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probability through state SC decreases or the transdifferentiation

path probability through state SO increases as mutual repression

strength becomes weaker.

The purple arrows represent the direction of the probability flux

J while the black arrows represent the direction of the negative

gradient of population potential landscape {+U shown in

Figure 10. We can see the flux is almost perpendicular to the

negative gradient of the population potential landscape [13,37].

The dynamics of transdifferentiation and dedifferentiation pro-

cesses are determined by both gradient landscape and probability

flux. Probability flux provides a curling force breaking the detailed

balance, and leads the system to stay at the non-equilibrium state.

The gradient force attracts the system into stable valleys. The

potential landscape and flux both direct the processes of cell type

switching. Flux can lead a system to move on even a relatively flat

landscape, e.g., the limit cycle attractor, thus ‘‘flux-directed

differentiation’’ and ‘‘down-hill-directed differentiation (Wadding-

ton)’’ both can occur in cell development. ‘‘down-hill-directed

differentiation (Waddington)’’ leads to the exponential waiting of

barrier crossing while ‘‘flux-directed differentiation’’ gives a much

more precise timing. Flux also can lead the biological paths of cell

type switchings to be deviated from the paths obtained by steepest

descent gradient, and the corresponding paths of cell type

switchings are irreversible. We would like to point out additional

flux can emerge from epigenetics of slow (non-adiabatic)

transcription and translation regulations [41] often encountered

in eukaryotic cells. The flux generated by the slow time scales can

lead to the new mechanism of differentiation and reprogramming

[31,42]. The competition of barrier crossing and slow binding can

lead to optimal speed of cell type switching. [31,42,43].

It is worth noting that even though state SO disappears in

Figure 10(C), there still exist transdifferentiation paths through a

series of indeterminate states near (0,0) position. This provides the

possible mechanism of two ways of lineage reprogramming. We

labeled the saddle point between state SA and state SC as s1 while

the saddle point between state SA and state SO as s2. In

Figure 8. The paths of cell type switchings with different self activation strength a. The paths of differentiation (A,B), dedifferentiation (A,B)
and transdifferentiation (C,D) for different a in zero-limit fluctuations on the intrinsic potential w0 . Purple arrows represent the intrinsic flux velocity
((Jss=Pss)D?0) while the white arrows represent the negative gradient of intrinsic potential ({+w0)).
doi:10.1371/journal.pone.0105216.g008
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Figure 9. The phase diagram, barrier height, probability of the dominant path and mean first passaging time for different mutual
repression strength b. A: The phase diagram for changing mutual repression strength b~b1~b2 with a~a1~a2~0:9. B: The barrier heights
versus the parameter b. C: The probability of the dominant path through the progenitor cell state SC divided that of the path through the
intermediate state SO versus the inhibition strength b. D: The mean first passaging time through the two paths versus the inhibition strength b.
doi:10.1371/journal.pone.0105216.g009

Figure 10. The flux on the population potential landscape. The flux on the population potential landscape with D~0:004. Purple arrows
represent the flux (Jss) while the black arrows represent the negative gradient of population potential landscape ({+U )) for a~0:9, b~0:15 (A),
b~0:22 (B), b~0:25 (C). The black lines represent the pathways from state SA to state SB while the purple lines represent the pathways from state SB

to state SA.
doi:10.1371/journal.pone.0105216.g010
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Figure 9(B), we can see barrier height Bas2O~Us2{UO measur-

ing the stability of intermediate state SO increases and barrier

height Bas2A~Us2{UA measuring the degree of difficulty for

transition from state SA to state SO decreases dramaticlly as

mutual repression strength b decreases, where Usi is the potential

value at saddle point si and Uj is the minimum potential value at

valley Sj . This implies that state SO becomes more stable and

robust as b decreases.

We also can explore MFPT by t*exp(A(x)) [44]. Importantly,

MFPT is also useful to characterize stability of the network for

changing the regulations represented by the self activation a and

mutual repression b under a small but fixed fluctuations (during

the regulation changes or induction) mimicking the real environ-

ments. Figure 9(D) showed MFPT along dedifferentiation and

transdifferentiation paths versus mutual repression strength b. We

can see that the transdifferentiation path through state SO

becomes more preferred than dedifferentiation path through state

SC , and MFPT becomes shorter for transdifferentiation path

through state SO as mutual repression strength decreases. In other

words, transdifferentiation process is easier (harder) and the

dedifferentiation process is harder (easier) when mutual repression

is weaker (stronger).

2. Gene Regulation. Decreasing self activation a1 and
increasing self activation a2 induce the transdifferentiation
process from state SA to state SB with lower mutual

repression strength b. The instructive change of landscape

via varying regulation strengths is another important mechanism

in action for cell development. Down regulating the lineage

specific gene for initial primary differentiated cell and up

regulating the lineage specific gene for final target differentiated

cell can induce transdifferentiation or dedifferentiation. We

explored this mechanism below with changes in decreasing self

activation a1 for gene X1 and increasing self activation a2 for gene

X2.

Self activation strength can be set for describing the time

evolution of the self activation regulation parameters as:

a1~a0 exp({l1t) [25] which continuously decreases in time

(down-regulates cell specific gene X1 for differentiated state SA)

and another self activation regulation strength

a2~a0½1{exp({l2t)� which continuously increases in time (up-

regulates cell specific gene X2 for target differentiated state SB) in

cell developmental process due to the influences of the regulations

of other genes. l1 and l2 are the rates for the decrease of self

activations a1 and a2. We assumed the same value of

l~l1~l2~10{4 for simplicity for the latter calculations. At this

value of l, self activation strength a1 and a2 decrease relatively

slowly compared with regulation dynamics of gene X1 and X2.

Thus the dynamics is a slow non-equilibrium relaxation process.

a0 is the scaled value of self activation a1 and a2 [25].

We explored the transdifferentiation mechanism below with

decreasing self activation a1 and increasing self activation a2 with

lower mutual repression strength b. Figure 4(A) shows the saddle-

node bifurcation phase diagram for decreasing self activation

strength a1 with lower b~0:2 and smaller a0~1:0. Figure 4(B)

shows barrier height versus decreasing self activation a1 with

D~0:005. We defined the saddle point between state SA and state

SO as s1, and the saddle point between state SB and state SO as s2.

Barrier height is defined as: Basij~Usi{Uj , where Usi is the

potential value of the i saddle point, and Uj is the minimum at

valley Sj . Barrier height can quantify the degree of global robust

and stability at a valley. We can see the cell stays at the monostable

differentiated state SA at the beginning of the transdifferentiation.

As self activation a1 decreases, an intermediate state SO emerges.

Valley SA is much deeper than valley SO due to barrier height

Bas1A of valley SA being higher than that of Bas1O. It means the

differentiated state SA is more preferred and more attractive than

intermediate state SO. The system is preferred to stay at state SA

with gene X1 being dominant. As self activation strength a1

becomes weaker and self activation a2 becomes stronger, the valley

of state SA becomes shallower while the valley of state SO becomes

deeper. Then, the valley of state SO is more attractive than that of

state SA since barrier height Bas1 A is lower than barrier height

Bas1O, and gene X1 and X2 are both at lower expressions. After

state SA disappears, the cell is driven into intermediate state SO.

As self activation strength a1 decreases further, the other

differentiated state SB emerges, and barrier height Bas2B becomes

higher than barrier height Bas2O. Finally, the cell is forced into

state SB. This process interprets the mechanism of transdiffer-

entiation from state SA to state SB through an intermediate state

SO.

The above results showed the dynamics at certain stage of

transdifferentiation. We can also explore the continuous dynamics

controlled by the set of equations below:

dx1

dt
~

a1xn
1

Snzxn
1

z
b1Sn

Snzxn
2

{k1x1

dx2

dt
~

a2xn
2

Snzxn
2

z
b2Sn

Snzxn
1

{k2x2

da1

dt
~{la1,

ð2Þ

where l~10{4 and a2~a0{a1. The continuous time dynamics

of down-regulating gene X1 and up-regulating gene X2 is shown in

Figure 4(C) with a0~1:0,D~0:005,b~0:2 using Eq.2. We

obtained the transdifferentiation paths on the four dimensional

potential landscape. The purple path is from state SA to state SB

while the green path is the reverse transition both through

intermediate state SO. It implies that the system with small mutual

repression strength b (large inhibition) prefers the transdifferentia-

tion path through intermediate state SO. Although transdiffer-

entiation process does not seem to occur naturally, it has been

observed in many experiments. For example, the exocrine cells in

adult mice can transdifferentiate into b-cells using defined factors

for direct reprogramming without passing through a pluripotent

state but through an unnatural intermediate state [4,8,9].

Figure 5(A) shows the phase diagram of saddle-node bifurcation

under a0~1:0 and mutual repression b~0:3. Figure 5(B) shows

barrier height versus self activation a1 with D~0:005. We defined

barrier height as Basi~Us{Ui, where Us is the potential value of

saddle point s between state SA and state SB, and Ui is the

potential value at state Si. Figure 5(C) shows the paths and the

landscape for continuous dynamics using Eq.2 with

a0~1:0,D~0:005,b~0:3. We can see the cell stays at differen-

tiated state SA with higher barrier height Bas A at first, then the

landscape valley tilts the cell from state SA to state SB, barrier

height Bas B becomes higher than barrier Bas A and the valley of

state SA eventually disappears. Finally, valley SB becomes deeper.

The weights of these two valleys exchange at the end of

transdifferentiation process [35]. This process interprets the

mechanism of transdifferentiation from state SA to state SB

directly without through a specific intermediate state but through a

series of indeterminate states. This result can be used to explain

the mechanism that the enforced expressions of C=EBP with

endogenous PU :1 can reprogram B cell into macrophages [4,5]. B

cell specific marker is CD19 while the macrophage specific genes is

Mac{1. The gene regulatory circuit is shown in Figure 2(B). B

cell commitment factor Pax5 can up-regulate many B cell specific
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genes (such as CD19). The macrophage commitment factor

C=EBP can up-regulate many macrophage cell specific genes

(such as Mac{1) and down-regulate B cell specific genes (such as

Pax5) [4,5]. Transcription factor PU :1 is needed in the process of

transdifferentiation. The gene PU :1 has the property of auto-

activation. Mikkola’s work indicated that C=EBP and Pax5 act in

mutual antagonisms [5,45]. The dashed lines for the auto-

activation indicate uncertainty in Figure 2(B). Thus we can reduce

the gene regulatory circuit in to two markers of CD19 and

Mac{1 similar as our mutual antagonistic and self activation X1

and X2 [4,5]. C=EBPs inhibit B cell commitment transcription

factor (B cell-specific genes) which down-regulates B cell marker

CD19 (X1) in B cell, and co-activate macrophage specific genes

which up-regulates its target marker Mac{1 (X2) in macrophag-

es. B cells pass through a series of indeterminate states with lower

expressions of B cell-specific genes CD19 (X1) and macrophage-

specific genes Mac{1 (X2), which does not seem to undergo an

initial dedifferentiation [4,5].

Figure 11(A)(B) show the logarithms of MFPT versus barrier

heights using the same parameters in Figure 4(B) and Figure 5(B)

respectively. We can see the time spent from one state to another

and barrier height have the relationship as: t*exp(Ba). It implies

that the harder the system is out from one valley with higher

barrier height, the longer the escape time is.

We also explored the behavior for the system when regulation is

not symmetrical, not only for the case when self-activation strength

a1 is not equal to self-activation strength a2, but also for the case

when self-activation strength a2 is not changing synchronously

with self-activation strength a1. In Figure S2 in File S1, we showed

the potential landscape of continuous dynamics with self-activation

strength a2 set as a constant (a2~0:65) while the self-activation

strength a1 continuously decreases. The other parameters are

diffusion coefficient D~0:005, mutual inhibition strength

b1~b2~0:2. We can see the cell may stay at differentiated state

SA at first since the basin of differentiated state SA is lower than

differentiated state SB when self-activation strength a1~1:5, then

the landscape basin tilts the cell from the differentiated state SA to

the intermediate state SO, and the basin of state SA eventually

disappears. Finally, the basin SB becomes deeper, and the system

shifts from the intermediate state SO to the differentiated state SB.

The green path is from state SA to state SB while the purple path is

the reverse transition from state SB to state SA both through the

intermediate state SO. In Figure S3 in File S1, we showed the

potential landscape of continuous dynamics with self-activation

strength a2 set as a constant (a2~0:1) while the self-activation

strength a1 continuously decreases. The other parameters are

diffusion coefficient D~0:005, mutual inhibition strength

b1~b2~0:2. We can see the cell may stay at differentiated state

SA at first when self-activation strength a1~1:0, then the cell shifts

from the differentiated state SA to the intermediate state SO, and

eventually the basin of state SA disappears. The green path is from

state SA to state SO while the purple path is the reverse transition

from state SO to state SA. Here, intermediate state SO may

represent the partially reprogrammed cells.

Decreasing self activation a1 and increasing self

activation a2 induce dedifferentiation process from state

SA to state SB with higher mutual repression strength

b. We assumed self activation a1 and a2 at relatively higher

average scaled values with a0~4:0 and relative larger mutual

repression strength b~0:5 to induce the initial cell undergoing

through a balanced pluripotent state [24]. Figure 6(A) showed the

saddle-node bifurcation phase diagram for decreasing self activa-

tion strength a1 with a0~4:0 at different time. Figure 6(B) showed

the barrier height versus the parameter a1 with D~0:005. We

defined the barrier height as Bai~Ucmax{Ui, where Ucmax is a

constant relative maximum value of population potential land-

scape and Ui is the minimum value of population potential at

valley Si. We can see the system begins with a monostable

differentiated state SA with higher expression of cell-specific gene

X1 and lower expression of cell-specific gene X2. As parameter a1

decreases, a saddle node bifurcation emerges, giving rise to

another differentiated state SB with lower expression of cell-

specific gene X1 and higher expression of cell-specific gene X2.

Initially, barrier height BaA of valley SA is much higher than that

Figure 11. Mean first passage time versus barrier height with different mutual repression strength b. A: The logarithm of the mean first
passage time (MFPT) versus the barrier heights according to Figure 4(B). B: The logarithm of the mean first passage time (MFPT) versus the barrier
heights according to Figure 5(B).
doi:10.1371/journal.pone.0105216.g011
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of valley SB, thus valley SA is much more stable than valley SB. So

the system prefers to stay at differentiated state SA. As a1 becomes

weaker and the corresponding a2 becomes stronger, two self

activations a1,a2 for two cell specific mutually exclusive genes

X1,X2 are over-expressing balanced (relative higher expression),

another stable pluripotent state SC with medium expressions of

gene X1 and X2 emerges, and the potential landscape has three

valleys. Valley SA quantified by barrier height BaA is deeper than

valley SC and valley SB quantified by barrier height BaC and BaB

at the beginning of valley SC emerging. As self activation a1

decreases and a2 increases further, valley SC and valley SB

become deeper while valley SA becomes shallower. Barrier height

BaC is higher than BaA and BaB at a1~a2. Therefore, the system

with differentiated state SA shifts to under pluripotent state SC as a

process of dedifferentiation. A recent experimental studies [24]

proposed a model for the coupled pluripotency module (self-

activation of Oct4 and Sox2) and for the differentiation module

with mutual antagonism between the MEs (mesendodermal) and

ECTs (ectodermal) shown in Figure 2(C). MEs inhibit the

activation between Oct4 and Sox2, then Oct4 can only activates

gene MEs, and inhibits gene ECTs [24]. This process can be

viewed as MEs have the effect of self activation. Thus, this module

can be reduced to two mutual antagonism gene MEs and ECTs

with indirect self activation as our gene regulatory circuit of X1

and X2 shown in Figure 2(C). It implies that higher self activation

strength a1 and a2 being balanced can lead the differentiated cell

back towards the pluripotent cell. As self activation a1 keeps on

decreasing and a2 keeps on increasing, the valley of the other

differentiated cell state SB becomes deeper than that of pluripotent

cell state due to barrier height BaB being higher than BaC and

BaA. Eventually, the valleys of SA and SC disappear at their

saddle-node bifurcation [35]. Thus the cell leaves the pluripotent

cell state SC and is forced to enter into the other differentiated cell

state SB. The results showed the mechanism of dedifferentiation

and redifferentiation. This mechanism can be used to explain

many studies of cell dedifferentiation process during tissue

regeneration both in vitro and in vivo [6]. For example, Pax5 is

essential for initiating B cell commitment and is continuously

required to maintain B cell lineage commitment [6,7,45]. Pax5
deletion can convert committed B cells into hematopoietic

progenitors with pluripotency [6,7,45]. It is partly similar as the

circuit in Figure 2(B) if we substitute Mac{1 into other lineage

specific genes. Pax5 deletion means down-regulating the B cell

specific genes (such as BCs) as the effect of self activation a1. This

gene regulation can lead B cells (SA) to dedifferentiate to

hematopoietic progenitors (SC ). Then these cells can re-differen-

tiate to T cell, macrophage or granulocyte (SB) under appropriate

culture conditions, such as the T-cell-deficient circumstance to

reconstitute T cell development [6,7]. The appropriate culture

conditions can be achieved by up-regulating the target cell genes

as the effect of another self activation a2.

The population potential landscape at different developmental

stage of decreasing self activation parameter a1 after the relaxation

process to a steady state among x1 and x2 is shown in Figure 6(C)

using Eq.2. The green line represents the dedifferentiated path

from differentiated state SA to another differentiated state SB

through pluripotent state SC . The purple line represents the

backwards dedifferentiated path from differentiated state SB to

another differentiated state SA also through pluripotent state SC .

We can see the irreversible paths on the four dimensional

population potential landscape due to non-zero flux. The

dedifferentiated landscape and the paths can be quantitatively

described for predictions.

Decreasing mutual repression strength b induces
differentiation and dedifferentiation process from state SC

to state SA(SB) with certain self activation a. Figure 3(A)

shows the phase diagram of super-critical pitchfork bifurcation

under self activation a~a1~a2~0:2 while changing mutual

repression strength b. We can see the potential landscape of

continuous dynamics shown in Figure 3(C) using Eq.2 with

D~0:005, self activation a~a1~a2~0:2 and decreasing mutual

repression b is similar to Waddington’s epigenetic landscape

[12,35]. A cell valley can form from an undifferentiation state

around SO. SO can be viewed as a stem cell state with lower

expressions of differentiation gene markers while SC can be viewed

as the stem cell with medium expressions of the stem cell markers

[17,46]. When decreasing mutual repression strength b, the initial

valley splits into two other valleys and the initial valley becomes a

ridge [35]. The cell will choose one valley as its fate. Figure 3(B)

also shows the phase diagram of another form of sub-critical

pitchfork with two saddle-node bifurcation under larger self

activation strength a~a1~a2~0:5 when increasing mutual

repression b. The continuous potential landscape shown in

Figure 3(D) using Eq.2 with D~0:005, self activation

a~a1~a2~0:5 and decreasing mutual repression b is also similar

to Waddington’s epigenetic landscape [12,35] except the sur-

rounding of the critical point. Around the critical point, there

coexist three stable states SO, SA and SB. We also quantified the

paths on the potential landscapes. The purple lines represent the

differentiation paths from undifferentiation state to differentiation

state while the green lines represent the dedifferentiation or

reprogramming paths. We can see the paths are irreversible even

in the pitchfork bifurcation due to the existence of flux. This

mechanism can describe the autonomous cell fate specification

[47]. Stem cells must fulfill two tasks of self-renewal and

generation of differentiated cells. In symmetric cell division, each

stem cell can divide to generate either two daughter stem cells or

two differentiated cells symmetrically while in asymmetric cell

division, each stem cell splits to one daughter stem cell and one

daughter differentiated cell [48]. The pitchfork bifurcation in this

study can represent an asymmetry event that a polarized mother

stem cell splits into two daughter cell M or N with different

expressions of X1 or X2. If daughter cell M with a very low value

of X1 or X2, it might fall into differentiated state, while daughter

cell N with relative higher expression of X1 or X2 still stays at the

pluripotent state [35,48]. The asymmetric cell division usually

occurs early in embryogenesis [35,47].

3. Induction of over expression. Cell fate is influenced by

inductive stimulus from a group of surrounding cells [23,35].

Over-expressions of defined transcription factors can induce one

cell type to another cell type which does not depend on gene

regulations. This has been achieved in practice using over

expression of stem cell marker transcription factors. In our

previous gene circuit studies of cell fate decision making for stem

cell differentiation and development [15,17], the two genes in the

network are both differentiation markers. The idea is that the

specific differentiation markers when imbalanced will give

differentiation of one cell fate or the other (two side basins SA

and SB). A more balanced differentiation marker setup (between

the two) will lead to iPS stem cell state (center basin SC ). Our

theoretical work [15,17] has predicted the possibility of the seasaw

mechanism (balance or imbalance) of reprogramming. That is

over-expressing both the concentrations of differentiation marker

genes in a balanced way can induce and force differentiated cells

into iPS stem cells or pluripotent cells [15,17].

The two mutually exclusive differentiation markers MEs (SA)

and ECTs (SB) shown in Figure 2(C) with balanced over-
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expressions of key transcription linage specific factors can induce

the lineage cell into pluripotent state (SC ) instead of the stem cell

markers Oct4 and Sox2 for pluripotency of reprogramming as a

‘‘seesaw model’’ [24]. Our theoretical work [15,17] has already

predicted this possibility of expressing differentiation markers for

reprogramming and the seasaw mechanism suggested in their

work [24].

Significant efforts have been made towards the experimental

converting fibroblasts (SA) to cardiomyocytes (SB) by induction of

over-expressing key genes. It is reported that direct transdiffer-

entiation can be achieved by over-expressing gene Gata4, Tbx5
and Mef 2c from fibroblasts (SA) to cardiomyocytes (SB) [11].

Gata4, Tbx5 and Mef 2c are core transcription factors during

early heart development and can co-activate other cardiac gene

expression [11]. So Gata4, Tbx5 and Mef 2c can be viewed as

cardiomyocyte cell specific gene C M s which have self activation.

Over-expressing gene Gata4, Tbx5 and Mef 2c (C M s) can

transdifferentiate fibroblasts to cardiomyocytes not through a

pluripotent state [11]. Another experiment showed that the

indirect transdifferentiation can be achieved with an initial

dedifferentiation from fibroblasts (SA) through pluripotent precur-

sor-Cardiac progenitor (SC ) by over-expressing some stem cell

markers Sox2,c{Myc,Oct4 and Klf 4, and then be induced to

cardiomyocytes (SB) [10].

Conclusions

In this study, we applied our potential and flux framework to

explore the mechanisms of cell developmental processes of

differentiation, dedifferentiation, reprogramming and transdiffer-

entiation. The potential landscape of two gene regulatory circuit

shows that the system has four stable valleys at specific regulation

regions, two differentiated state SA and SB, one pluripotent state

SC , and an intermediate state SO. Our work provides a

quantitative basis for explaining the mechanisms of the transition

among the four states. Barrier height based on the population

potential landscape or the intrinsic potential landscape can

quantify the stability of the attractors and the efficiency of

switching among the attractors. We can acquire the dynamical

transition rate of the system from one valley of attraction to

another by MFPT for escape and the dominant paths for

dedifferentiation and transdifferentiation via the path integral

method. We can see the paths of cell type switchings are

irreversible due to non-zero probability flux.

In this study, we have discussed three driving forces: stochastic

fluctuations, gene regulation and induction, which can lead to cell

type switchings. The cell type switching driven by stochastic

fluctuations is a spontaneous transition, gene regulation is much

like a non-autonomous varying of time-dependent landscape, and

induction is a condition of initial value re-setting process with no

apparent paths. The fluctuations maybe small in some cases but

never zero. When exploring the stochasticity, we used fixed set of

the values of self activation and mutual repression regulation

parameters a and b. We not only discussed the possibility of cell

type switching through stochastic dynamics but also other two

mechanisms including the induction and regulation changes. We

also explored the different dynamics with different sets of the

parameter a and b. For gene regulation, we varied the parameters

a and b for regulating the cell type switchings. For induction, we

did not change any parameters. Instead, we just gave the cell an

initial set (condition) with over-expression of its lineage specific

gene. We quantitatively investigated the mechanism of cell type

switching through the induction without the change of the

underlying landscape and through the changes in regulations

leading to the changes of the underlying landscape topography.

Furthermore, these two types of cell type switchings driven by gene

regulation and induction are not spontaneous transitions only due

to fluctuations, but a controlled process under either the changes

in regulations with regulation-dependent potential landscape or

the induction with fixed potential landscape.

We found that the topography of the global potential landscapes

is strongly correlated to the self activation strength and the mutual

repression strength of the transcription factors. Dedifferentiation

can be induced by the core regulators of pluripotent genes using in

iPS or the synergistic effect of lineage specifiers in specification of

differentiated cells. We can adjust two self activation strength a1

and a2 to be relative larger to force the differentiated cell to a

pluripotent cell with higher inhibition strength b, and then re-

differentiate the pluripotent cell to our target differentiated cell

type [24]. This process can be viewed as an initial epigenetic

activation phase representing the redifferentiation after a temporal

overexpression of pluripotent reprogramming factors to a plurip-

otent state [4,24,49]. Somatic cells can be transdifferentiated by

temporal over-expressions of pluripotent reprogramming tran-

scription factors. Transdifferentiation can be induced by down

regulating the lineage specific marker gene (X1) of the original

differentiated cell (decreasing self activation a1) while activating

another lineage specific marker gene (X2) of the final differentiated

cell (increasing self activation a2) at relative lower inhibition

strength b, through an intermediate state or a series of

indeterminate states. This process can be viewed as lineage-

instructive transcription representing the induction of lineage

specific gene for the target differentiated cells [4,49]. This gives us

a new understanding that the topography of underlying potential

landscapes in cell development dynamics determines the feasibility

and efficiency of cell type switchings.

We also classified the mechanisms of pitchfork bifurcations

depicted Waddington’s epigenetic development landscape includ-

ing super-critical pitchfork bifurcation, sub-critical pitchfork

bifurcation, sub-critical pitchfork with two saddle-node bifurca-

tion, and saddle-node bifurcation depicted the transdifferentiation

landscape [35]. We uncovered a pitchfork bifurcation of

Waddington’s epigenetic landscape and the irreversible paths

(caused by the non-equilibrium flux) between differentiation and

reprogramming. We also uncovered the saddle-node bifurcation

landscape. Saddle-node bifurcation can give the explanation of

possible mechanisms of dedifferentiation and transdifferentiation

processes and can further explain the irreversibility of the paths for

differentiation, dedifferentiation, reprogramming and transdiffer-

entiation processes as hysteresis loop even without the presence of

the non-equilibrium flux. We noticed a special kind of sub-critical

pitchfork with two saddle-node bifurcations also shares the certain

features with saddle-node bifurcation (hysteresis loop) and certain

features of pitchfork bifurcation (Waddington’s landscape).

Importantly, we uncovered some novel mechanisms as a

starting point to decipher the mysterious code of the cell type

switchings. Our theory can be used to guide the designs of the

differentiation, dedifferentiation, reprogramming and transdiffer-

entiation processes.

Methods

Quantifying non-equilibrium potential landscape, flux,
non-equilibrium thermodynamics and the paths

Fluctuations exist widely in biological systems [13,50–55]. The

dynamics in noisy fluctuating environments can be formulated as:
_xx~F(x)zf. F(x) is the deterministic force, where x is the vector

representing different concentrations in state space. f is Gaussian
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noise term and its autocorrelation function is

vf(x,t)f(x,0)w~2D(x)d(t), where D(x) is diffusion coefficient

matrix. We set D(x)~DG(x), where D is the diffusion coefficient

representing the level of noise strength while G is the scaled

diffusion matrix described the anisotropy phenomenon. We can

explore the corresponding Fokker-Planck diffusion equation

[56,57] for probability distribution P(x,t): LP=Lt~
{+:(FP{DG(x)+P). In this study, we set G(x) as a unit matrix

for simplicity. The probability flux J is defined as: J~FP{D+P.

In steady state, the force decomposition is shown as:

F~{D+UzJss=Pss [13,50,51].

We obtained the Lyapunov function w0 as the intrinsic potential

from the zero fluctuation limit Hamilton-Jacobi equation(HJE)

[37,58]: F:+w0z+w0
:G:+w0~0 by a numerical method - level set

method using the Mitchell’s level-set toolbox [59]. The force

decomposition in zero fluctuation limit is shown as:

F~{G:+w0z(Jss=Pss)DD?0. From the Hamilton-Jacobian equa-

tion above, we can obtain (Jss=Pss)DD?0
:+w0~0 [37,51,60,61].

We also can obtain the mean first passage time from the following

equation [56]: F:+tzD+2t~{1. ti j represents the mean first

passage time from state i to state j.
The path integral approach we used is shown as below. The

path probability starts from initial state xi at t~0, and end

at the final state of xf at time t. The path integral formula is

shown as [15,44]: P(xf ,tDxi,0)~

ð
Dx exp½{

ð
dt(

1

2
+:F(x)z

1

4
(dx=dt { F(x)) :

1

D(x)
:(dx=dt{F(x)))�~

ð
Dx exp½{A(x)�~Ð

Dx exp½{
Ð

L(x(t))dt�, where L(x(t)) is the Lagrangian and

A(x) is the action for each path [15,44]. The path integral over Dx
represents the sum over all possible paths connecting xi at time

t~0 to xf at time t. The exponent factor gives the weight of each

specific trajectory path. The probability from initial state to the

final state is equal to the sum of all possible paths with different

weights. Every dynamical path doesn’t contribute to the same

weight and each path is exponentially weighted. Therefore, the

path integrals can be approximated with a set of dominant paths

while the other subleading path weights can be neglected for their

relative small values. We can find the dominant paths with the

optimal weights through minimization of the action A(x) or

Lagrangian L(x(t)). Thus, we can identify the optimal paths which

give more contribution to the weight as biological paths or cell

type switching pathways in our study.
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