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Abstract

BACKGROUND—The popularity of social networks has triggered a number of research efforts 

on network analyses of research collaborations in the Clinical and Translational Science Award 

(CTSA) community. Those studies mainly focus on the general understanding of collaboration 

networks by measuring common network metrics. More fundamental questions about 

collaborations still remain unanswered such as recognizing “influential” nodes and identifying 

potential new collaborations that are most rewarding.

METHODS—We analyzed biomedical research collaboration networks (RCNs) constructed from 

a dataset of research grants collected at a CTSA institution (i.e. University of Arkansas for 

Medical Sciences (UAMS)) in a comprehensive and systematic manner. First, our analysis covers 

the full spectrum of a RCN study: from network modeling to network characteristics 

measurement, from key nodes recognition to potential links (collaborations) suggestion. Second, 

our analysis employs non-conventional model and techniques including a weighted network model 

for representing collaboration strength, rank aggregation for detecting important nodes, and 

Random Walk with Restart (RWR) for suggesting new research collaborations.

RESULTS—By applying our models and techniques to RCNs at UAMS prior to and after the 

CTSA, we have gained valuable insights that not only reveal the temporal evolution of the 

network dynamics but also assess the effectiveness of the CTSA and its impact on a research 

institution. We find that collaboration networks at UAMS are not scale-free but small-world. 
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Quantitative measures have been obtained to evident that the RCNs at UAMS are moving towards 

favoring multidisciplinary research. Moreover, our link prediction model creates the basis of 

collaboration recommendations with an impressive accuracy (AUC: 0.990, MAP@3: 1.48 and 

MAP@5: 1.522). Last but not least, an open-source visual analytical tool for RCNs is being 

developed and released through Github.

CONCLUSIONS—Through this study, we have developed a set of techniques and tools for 

analyzing research collaboration networks and conducted a comprehensive case study focusing on 

a CTSA institution. Our findings demonstrate the promising future of these techniques and tools in 

understanding the generative mechanisms of research collaborations and helping identify 

beneficial collaborations to members in the research community.

Keywords

research collaboration network; network analysis; Clinical and Translational Science Award 
(CTSA); link prediction; influential node; network characteristics; small-world; scale-free; power-
law distribution

1. Introduction

The Clinical and Translational Science Award (CTSA), funded by the National Center for 

Advancing Translational Sciences (NCATS, NIH) (formerly through the National Center for 

Research Resources (NCRR, NIH)), was launched in 2006 and has expanded to 60 academic 

institutions aiming to accelerate the process of translating biomedical research discoveries 

into clinical applications. One key function of the CTSA is to promote collaborative 

research efforts especially across different disciplines. For example, the University of 

Arkansas for Medical Sciences (UAMS)–a CTSA institution since 2009–created the 

Translational Research Institute (TRI) to support translational and collaborative activities 

such as helping basic and clinician scientists to develop and manage their studies, fostering 

collaborative partnerships among stakeholder communities, and providing infrastructures 

(e.g., clinical data warehouse) to affiliated researchers.

It is crucial to quantitatively assess the effectiveness and quality of research collaborations 

in a CTSA institution. Social network analysis (SNA) methods have been deemed as an 

effective tool to assess intra-institution research collaborations in the CTSA community [1]. 

Previous studies on RCN [2, 3, 4, 5, 6, 7], however, mainly focus on improving general 

understanding of collaboration networks by measuring common network metrics 1. More 

fundamental questions about collaboration still remain unanswered such as recognizing 

“influential” nodes and identifying potential collaborations that are most rewarding. In this 

paper, we aim at finding answers to those questions by analyzing biomedical research 

collaboration networks at a CTSA institution (i.e., UAMS) in a comprehensive and 

systematic manner. To achieve this goal, we have developed new models and techniques for 

research collaboration network by leveraging readily available network analysis methods, 

results, and tools.

1Network metrics, network characteristics, network measures, and network indices, are used interchangeably in this paper unless 
otherwise noted.
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The research collaboration networks we studied are distinctive in their data source and 

model. Those collaboration networks were constructed from collaborative research grants 

instead of conventional publication co-authorships [3, 4, 5] as we believe collaborative 

grants provide additional and earlier evidence of possible collaborations. Principle 

investigator and co-investigator(s) of a collaborative grant often work together in a number 

of aspects throughout the supported research project, from grant proposal writing to research 

conduct and findings dissemination. We studied the RCN before (RCN2006–2009) and after 

(RCN2010–2012) UAMS being awarded CTSA aiming to understand the temporal evolution 

of the RCN. Through comparing various network characteristics across different time 

frames, we were able to examine the effectiveness of CTSA and evaluate its impact on 

collaborative research activities at UAMS.

In our network model, links between investigators are weighted to reflect the degree of 

collaboration. Previous studies on collaboration networks [3, 4, 5, 6, 7, 8] model research 

collaborations as unweighted or binary networks where edges only indicate the existence of 

collaborations. However, collaborative research relationships may vary between 

investigators. It is intuitive that certain connections are “stronger” than others in an RCN, as 

we are often inclined to work with existing collaborators than finding new peers. Our 

network model reflects such a natural distinction through assigning the number of 

collaborative grants between two investigators as the edge weight.

To understand network dynamics and generative mechanisms of research collaborations in a 

CTSA institution, more specifically, to answer questions such as: “Is the RCN at UAMS a 

small-world? Is the CTSA effective in fostering interdisciplinary collaborations? How to 

identify potential new collaborations that are more likely to succeed?,” we have developed 

new network analysis methods and obtained interesting and valuable findings from our 

unique dataset. The methods and findings are aimed to assist administration and leaderships 

in making such organizational policies and strategic plans that are inclined to cause positive 

and substantial impacts on research collaborations and their outcomes. For example, key 

nodes in a collaboration network can be identified on the basis of centrality measures, and 

promising new collaborations can be recommended by applying the link prediction 

techniques. Leveraging our network analysis and link prediction techniques, necessary 

resources can be provisioned to spawn new collaborations and attract new investigators.

Our first finding of the collaboration networks at UAMS is that those networks are indeed 

small-world but not scale-free. Small-world and scale-free properties, manifesting in many 

real-world complex networks, have important implications in network robustness and 

efficiency. We quantitatively measured the “small-world-ness” [9] and revealed that the 

RCNs at UAMS indeed exhibit the small-world property. Moreover, the statistical measures 

[10] show that the degree distributions of both RCN2006–2009 and RCN2010–2012 do not 
follow the power law. Therefore, the RCNs at UAMS are not scale-free.

Our results also testified the effectiveness of the CTSA and its important role in promoting 

collaborative research within an institution. In addition to studying temporal evolution of 

network measures pertaining to RCNs, we also devised a quantitative “diversity” measure to 

model the trend of cross-disciplinary collaborations. The diversity measures how easy it is 
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for an investigator from one discipline to reach another investigator in a different research 

field. The bigger the diversity value, the easier the cross-disciplinary collaboration will be. 

The diversity measure increases from 0.37 in RCN2006–2009 to 0.56 in RCN2010–2012, 

indicating that the RCN at UAMS is moving towards favoring cross-disciplinary research 

after the CTSA.

We leveraged centrality measures [2] and rank aggregation techniques [11, 12] to derive a 

single consented ranking of important (or “influential”) nodes in a collaboration network. 

Moreover, Our collaboration recommendation technique employs the random walk with 

restart (RWR) algorithm [13] to construct a recommendation model for suggesting new 

research collaborations. The benchmarks of the our recommendation method on the RCNs 

of UAMS show promising results (AUC: 0.838 ~ 0.974 and MAP@3: ≈ 0.977).

Last but not least, we have developed an open source software package—the research 

collaboration network analysis (RCNA) tool kit (available at https://github.com/bianjiang/

rcna under MIT license)—to help catalyze research in this area, especially to facilitate 

CTSA institutions to effectively evaluate the CTSA in promoting collaborative research 

activities. A unique and valuable component of the kit is a set of interactive visualization 

tools, which help us better explore and understand complex RCNs. A visualization of the 

UAMS’s RCNs can be accessed at http://bianjiang.github.com/rcna/.

The rest of the paper is organized as follows. We first describe the source data retrieved 

from an in-house developed research grant management system. We then introduce our 

weighted network model of research collaborations, the concept of network characteristics 

and measures pertaining to this study. After that, we describe our methods of using network 

centrality measures and rank aggregation to identify centrality “leaders” 2. Furthermore, we 

present a link prediction based model for suggesting new research collaborations. Finally, 

we present the experiment results and our interpretations which indicate that the CTSA 

award has a positive impact on the collaborative research environment at UAMS.

2. Material and Methods

2.1. Background and dataset

In this paper, we study research collaboration networks constructed from collaborative 

research grants. The Office for Research and Sponsored Programs (ORSP) at UAMS uses an 

in-house developed software system to track detailed information of research grants such as 

the requested budget amount, the budget start/end date, the funding agencies, as well as all 

the investigators and their roles on each grant. Besides the ORSP, the Translational Research 

Institute (TRI, UAMS) supports all CTSA activities at UAMS since July 2009. As the TRI 

tracks all CTSA related activities such as publications, pilot awards and so on, we use the 

TRI’s CTSA reports to obtain the information of whether an investigator is supported by the 

CTSA or using TRI services.

2The centrality “leaders” are not necessarily the actual leaderships in an organization. It merely expresses the importance of these 
nodes in the network. For example, removing highly connected nodes–centrality “leaders”–will certainly reduce the overall efficiency 
of the network, and cause the network to be more prone to random failures.
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Table 1 shows the statistics of the research grant data we have obtained from the ORSP. We 

use these meta-data of grants to construct RCN for each fiscal year from 2006 to 2012. Each 

fiscal year at UAMS starts on July 1st till June 30th of the next year. Therefore, we collected 

data for grant applications whose budget start date is in the range between July 1st, 2006 and 

June 30th, 2013. The CTSA at UAMS started on July 14th, 2009. Therefore, in this analysis, 

the “number of CTSA Investigators” (i.e., investigators who are listed on the original CTSA 

grant) and “number of CTSA supported investigators” (i.e., investigators who received 

support from the CTSA) columns in Table 1 are not applicable to budget years from 2006 to 

2009. Moreover, we only consider the researchers with the “Principle Investigator”, “Co-

Investigator”, and “Sub-Investigator” roles on the grants, and exclude other personnel such 

as “Support Staff” and “Laboratory Staff”. In addition, we only take into account the grants 

that have been “Awarded” for two main reasons: 1) an awarded collaborative grant indicates 

successful executions of team science; and 2) a grant might have to go through a few review 

and revision cycles to get funded. By considering only the final awarded version, we can 

effectively eliminate some of the noises in the constructed networks. For a multi-year 

project, the grant is counted individually for each fiscal year.

2.2. Abstraction of research collaboration networks

Existing studies [3, 4, 5, 8, 6, 7] on scientific collaboration networks, to our best knowledge, 

abstract the networks as undirected and unweighted (binary) graphs, which only consider the 

existence of collaboration relationship between two investigators. However, it is common 

that collaborative relationships among investigators vary. Intuitively, the association and 

partnership between two frequent collaborators should be much stronger than those who 

have collaborated only once in the past.

Therefore, we formalize a research collaboration network (RCN) as an undirected weighted 

graph, G = (V,E), where each investigator is represented by a vertex or node (vi). The 

collaborative relationship between two investigators is evident by an edge or link between 

the two nodes, and the weight (wi j) of the edge (ei j) is the number of research grants the two 

investigators (vi and v j) have collaborated on during the time period of interest. Figure 1 

depicts two RCNs, where graph (a) is the RCN at UAMS prior to the CTSA from 2006 to 

2009 (RCN2006–2009) and graph (b) is the RCN after the CTSA from 2010 to 2012 

(RCN2010–2012). For visualization purpose, we only pick out the largest strongly connected 

components of the two RCNs. We note that both of the original RCNs contain isolated small 

clusters (i.e., groups that have strong collaborations internally but no connections to other 

parts of the RCN) and isolated individual nodes (i.e., investigators carried out the research 

independently).

This weighting schema, however, is inappropriate to the situations where a smaller weight is 

preferred. For example, when calculating the characteristic path length of a network (i.e., the 

average (shortest) distance between all pairs of vertices), algorithms for finding shortest 

paths in a weighted graph favor smaller edge weight as the weight of an edge is considered 

as the cost to travel between two nodes. Hence, under the original weighting schema, 

shortest path algorithms will select the paths where the two investigators have less 

collaborations. Such results contradict the common sense that it is “shorter” and easier to 
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reach a frequent collaborator than a one-time collaborator. Therefore, we use the reciprocal 

of the original edge weight (1/wi j) as the new edge weight–namely the resistance factor–for 

edge ei j where it is appropriate. In the rest of the paper, we denote the original weighting 

schema, where the edge weight is the number of collaborations between two investigators, 

as , and the revised weighting schema based on resistance factor as .

2.3. “Small-world-ness” and the scale-free property

Small-world networks [14] and scale-free networks [15] are two important types of 

networks that are resilient to link failures. Watts and Strogatz coined the term “small-world” 

networks to categorize complex sparse real-life networks that have significantly high 

clustering coefficients than sparse random graphs yet have small degrees of separation 

between nodes. Small-world networks have been extensively studied in many domains [14, 

16, 17, 18]. Within the context of research collaboration networks, a small-world network 

indicates the overall robustness of the collaborative relationships. Random deletion of a 

node in the RCN, e.g., an investigator leaving the institution, is unlikely to cause dramatic 

decreases in the overall collaborative research efforts.

In this study, we adopt a quantitative measure of the network’s “small-world-ness” S [9]. A 

network G is a small-world network [14] if it has greater clustering of nodes than an 

equivalent Erdős-Rényi graph[2] that has a similar small path length as G. The “small-

world-ness” S measures the trade-off between high local clustering and short path length. 

Let G be the network of interest. Formally,

where CG and and CG–Rand are the clustering coefficient of G and a corresponding E-R 

random network of G, respectively; and LG and LG–Rand are the mean shortest path length of 

G and the random graph, respectively. Then, the “small-world-ness” S of the network G is 

defined as

A network is deemed as a “small-world” network if S > 1 [14].

There are two common ways of defining network clustering. In this study, we adopted the 

Watts and Strogatz definition [14] (see detail in the next section). For a graph with 

disconnected components, we compute the “small-world-ness” on the largest connected 

component (i.e., the subgraph with the most connected vertices). Moreover, we do not 

consider edge weights when calculating S, since there is not a meaningful way to generate 

comparable corresponding weighted E-R networks.
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Another noteworthy model of complex networks is the scale-free network, where the 

network degree distribution follows a heavy-tailed power-law [15]. A power-law degree 

distribution suggests the relative commonness of nodes with a degree that greatly exceeds 

the average. Similar to the small-world property, the scale-free property strongly correlates 

with the network’s robustness. In this study, we tested the power-law degree distribution of 

our research collaboration networks according to the methods described in [10]. The 

goodness-of-fit between the data and the power-law can be computed and we can conclude 

that the power-law is a plausible hypothesis for the data if the resulting p-value is greater 

than 0.1. The p-value is used as a measure of the hypothesis that we are trying to verify, and 

high p-values are “good,” as noted in [10]. A good discussion of this interpretation of p-

values can be found in [19].

2.4. Characteristics of research collaboration networks as evaluation metrics

Topological features of a network can be quantitatively measured as network characteristics 

such as the clustering coefficient and characteristic path length. These structural network 

characteristics are often used to benchmark or infer the functional aspects of the network. 

For example, the mean path length (characteristic path length) L of a network is often 

employed to measure the efficiency of information flow on a network.

The following are the network characteristics of our interest in analyzing research 

collaboration networks. Note that our RCNs are weighted undirected graph; therefore, we 

shall respect the edge weights if possible.

• Degree/strength: The degree of a vertex/node (vi) – ki – is the number of edges 

incident to vi. The weighted degree (also called the strength) si of vi is defined as si 

= Σj wi j. Here wi j denotes the weight of the edge (ei j) between vi and v j, and we 

use the number of collaborations between the two investigators as the edge weight 

( ).

• Characteristic path length: The characteristic path length (L) is the average 

shortest path length in a network [14], , where |V | is the cardinality 

of vertex set V, i.e., the number of vertices, and Li is the average distance between 

vertex (vi) and all other vertices in the network. The characteristic path length on a 

weighted graph is computed similarly, provided that path lengths are calculated 

with respect to the weights of the edges along the paths. Note that we use the 

resistant factor ( ) as the weighting schema for all shortest path related 

measures.

• Clustering coefficient: The clustering coefficient of a vertex expresses the chance 

of how likely its neighbors are also connected to one another. The (local) clustering 

coefficient is defined by Watts and Strogatz [14] as, , where Ei is the 

number of connections between the neighbors of vertex vi, and ki is the degree of vi. 

The global clustering coefficient CG is the average of the local clustering 

coefficients of all vertices in the network: . A generalization of 

the clustering coefficient to weighted graphs was proposed by Barrat et al. [20], in 
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which the weighted clustering coefficient of vertex vi is defined as: 

, where si and ki are the strength and degree of 

vi, respectively; wi j is the weight of edge ei j and ai j is the element of the 

underlying binary adjacency matrix (i.e., ai j is either 0 or 1 indicating whether vi is 

connected with v j). The weighted clustering coefficient of the network G is the 

average of weighted clustering coefficients of all vertices: . As 

the Barrat weighted clustering coefficient favors high edge weight (i.e., higher 

clustering coefficient value), we use the original weighting schema when 

calculating the weighted clustering coefficient ( ).

• Diversity: We propose a quantitative – diversity – measure to model the trend of 

cross-disciplinary collaborations in a RCN. We denote LS ->¬S as the average 

distance from nodes in set S to all other nodes in the network: 

, where |V | is the total number of nodes in the network, |S | 

is the number of nodes in set S, and Li->j is the distance between node vi and v j. We 

define the diversity of a network DG as the inverse of average LS ->¬S for all S in 

the network:

where n is the number of distinct groups (a collection of nodes having the same 

property of certain kind) in the network. If we define each group as a discipline in 

the RCNs, the diversity can be interpreted as how easy an investigator from one 

discipline can reach another investigator of a different research field. Therefore, the 

higher the diversity value, the more diversified the collaborations are in the RCNs, 

as the average distance is shorter for an investigator to travel from one group to 

another. Note that the resistance factor as the weighting schema ( ) is used 

for calculating  as  is employed in computing shortest paths.

2.5. Identify influential nodes in a research collaboration network

In social network analysis, the centrality measures of a vertex are often used to determine 

the relative importance of the node in the network. Within the context of research 

collaboration network, an investigator’s centrality measure can be interpreted as how 

influential or important the person is in the RCN of interest. There are various network 

centrality measures, where each measure defines the meaning of importance from a different 

perspective [2]. To identify influential nodes in a comprehensive manner, we investigate 

four widely-used network centrality measures: degree centrality, betweenness, closeness, 

and eigenvector centrality [21]. We briefly describe them below:

• Degree centrality is simply the degree of a vertex. Since RCNs are weighted 

graphs, we shall use the weighted degree (strength) when calculating degree 

centrality.
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• Betweenness centrality of a vertex is defined as the fraction of all shortest paths in 

the network that pass through that vertex. Betweenness centrality on a weighted 

graph is defined similarly, given the shortest path length is the weighted shortest 

path length where the resistance factor based weighting schema is used, i.e., 

. Betweenness centrality measures a node’s control of the communication 

between other nodes in the network [22]. Conceptually, in the RCNs, a node with a 

high betweenness centrality value can be interpreted as the investigator often acts 

as a bridge for other investigators in the research community.

• Closeness centrality of a vertex (i.e., local closeness centrality) is the inverse of 

the local characteristic path length of the vertex [22]. Closeness centrality on a 

weighted graph can be computed similarly, considering that the path lengths are 

calculated using the weighted definition (with resistance factor based weight 

schema). The closeness centrality value measures how fast information can flow 

from a node to all other nodes [23]; a node is more “central” if its closeness 

centrality value is higher.

• Eigenvector centrality measures the influence score of a vertex in the graph [24]. 

The random walk with restart (RWR) process that will be described in the next 

subsection essentially calculates the personalized pagerank score of each vertex, 

which is a variant of the eigenvector centrality measure. Calculating eigenvector 

centrality of a vertex in a weighted graph is straightforward and the original 

weighting schema is used.

Using these centrality measures, we can rank an investigator’s relative influence (or 

importance, contribution) in the research community. However, the centrality measures can 

rarely make a consensus regarding the ranking orders of the nodes in the same network. 

Therefore, we propose to use rank aggregation techniques [11, 25, 12] that can combine 

multiple rankings of nodes (investigators) to generate a more convenient and concise 

ranking. There are basically two classes of rank aggregation methods: 1) score-based rank 

aggregation, where each object in the input ranking is associated with a score and the goal is 

to combine different scoring systems to produce one set of scores; and 2) order-based rank 

aggregation, where only the orders of objects produced by individual ranking methods are 

considered. Since the scores given by different centrality measures are diverse and it is 

difficult to choose a meaningful normalization process, we decide to use Borda count [25] 

system, which is an order-based voting system. The Borda count system gives each 

candidate certain points based on her position on each ballot, and the candidate with the 

most points is the winner. If we consider each centrality measure as a voter that gives a 

preference ranking of all investigators in the RCNs, the final ranking can be easily computed 

using the Borda count of each investigator.

2.6. Link prediction and collaboration recommendation model

Social networks including research collaboration networks are highly dynamic. They can 

grow and evolve rather quickly through edge additions and deletions, which evidences new 

interactions among social entities in the networks. The link prediction problem in social 

network analysis has drawn a considerable amount of attentions as it helps to understand 
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how a complex social network evolves over time [26]. Recent surveys on this topic can be 

found in [27, 28]. In this study, we employ link prediction to discover missing links 

(overlooked collaborations) and the links that could appear in the future (new 

collaborations). Despite the conceptual differences, the same prediction model can fulfill 

both tasks.

We consider the link prediction problem in a weighted undirected graph G(V,E) in which no 

duplicate edges or self loops are allowed. One general approach to link prediction is to treat 

it as a recommendation (and ranking) problem. In this setting, the task is to find an 

algorithm that can rank a set of nodes with respect to a querying node (qi), where the nodes 

that should have edges incident to qi will have higher scores. Then the system would 

“recommend” a list of nodes to qi as potentials to have new links according to the ranking. 

Such a system has a direct application in recommending new collaborations in research 

collaboration networks.

PageRank [29] and its variants such as Personalized PageRank [30] and Random Walks with 

Restarts (RWRs) [13] are effective methods for link prediction based on finding structure 

similarities between nodes in a network. Conceptually, the PageRank score of a node is the 

long-term probability that a random web surfer is at that node at a particular time step. For 

sufficiently long time, the probability distribution of the random walks on the graph is 

unique, that is, minor changes to the graph make the random walk transition matrix 

aperiodic and irreducible [31].

The Markov model represents the graph with a square transition matrix P whose element 

pi->j is the probability of moving from state (node) i to state (node) j in one time step. The 

PageRank algorithm assumes that it is equally likely to follow any of the outgoing links 

from a node. In other words, pi->j = 1/deg(i) where deg(i) is the out-degree of node vi. 

However, the PageRank algorithm was originally defined on directed unweighted graphs. 

For an RCN, which is a weighted undirected graph, we make two necessary modifications to 

the construction of the transition matrix. First, we turn each undirected edge (ei j) into two 

directed edges (ei->j and e j->i). Second, we take into account the weight of an edge pi->j, 

which is w(i->j)/s(i) where w(i->j) is the weight of the edge and s(i) is the strength of the 

node vi, so that a random walker will be more likely to travel through an edge with a higher 

weight, under the premise that an investigator is more likely to work with an old long-turn 

collaborator. We also incorporate a restart probability c. With probability 1 − c the random 

walker jumps back to the seed node s and thus “restart”:

where e⃗ = [1]n×1 is a column vector of all ones, and v⃗ is the restart vector, where
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The unique stationary distribution ( ) of the RWRs w.r.t. the seed node s can be found as 

the eigenvector with the largest eigenvalue (i.e., the construction of P′ guarantees the 

following equation has the largest eigenvalue as λ1 = 1 [31]) of the following eigenvector 

problem:

Conceptually, the vector  (a.k.a. Personalized PageRank scores) gives us a probability 

distribution of walking from node vs to all other nodes in the graph based on the network 

structure. Therefore, the similarity score of any two nodes vi and v j can be define as:

where zi->j is the probability to walk randomly from node vi to node v j. In an undirected 

graph, zi->j = z j->i as the adjacency matrix of the graph is symmetric. Based on these RWR 

scores, we can generate a ranking of all edges of interest, and recommend the top ranked 

edges as our prediction.

3. Results and Discussion

3.1. Characteristics of the research collaboration network at UAMS

We constructed a number of RCNs with varying time periods of interest to study the 

structure of an RCN from the short-term, medium-term, and long-term perspectives. Each 

RCN is composed based on the grants 3 that were awarded during a specific time period. We 

instantiated seven snapshot RCNs where each RCN covers one budget year from 2006 to 

2012. We also created three aggregate RCNs: The first and second networks represent the 

RCN at UAMS prior to the CTSA from 2006 to 2009 (RCN2006–2009) and after the award 

from 2010 to 2012 (RCN2010–2012) respectively, and the third aggregate RCN covers all the 

research grants awarded since 2006 until 2012 (RCN2006–2012). We eliminated all isolated 

single nodes, which are investigators who carried out research activities independently, from 

each network as those isolated individual nodes do not contribute to our study of 

collaborations.

Table 2 lists the network metrics we measured for the RCNs at UAMS. We included a few 

extra measures that are important but not formally defined in the previous section. We 

introduce these measures briefly as follows. The density d of a network is defined as the 

ratio of the number of edges over the maximum possible number of edges. It measures how 

“busy” the network is. For an undirected graph, , where |E| is the number of 

edges and |V | is the number of vertices. An isolated component is a small subgraph that has 

no links to any nodes outside of that subgraph, and its count in a network is an important 

measure of connectedness (or segregation) of that network. The average number of new 

edges is measured as follows. We first compare each year’s RCN with the RCN in the 

3The CTSA itself is counted in when constructing an RCN after the CTSA.
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previous year to identify all the nodes in both RCNs (i.e., investigators who had 

collaborative grants in both years). We then count the number of newly created edges for 

each of the identified nodes and take the average over all the nodes. Note that this metric is 

not applicable to RCN2006, RCN2006–2009, and RCN2006–2012 as those networks have no 

baseline data for comparison. The average number of new edges in RCN2010–2012 is 

measured against the data in RCN2006–2009. The transitivity [32] of a network, an alternative 

definition of network clustering coefficient, is expressed by

Therefore, the (global) clustering coefficient measure of a network has three versions in our 

study: the unweighted Watts and Strogatz definition , the Barrat’s generalization to 

weighted graph , and the transitivity definition .

3.1.1. Temporal evolution of the research collaboration network at UAMS—
Nagarajan et al. presented a baseline study [6] on research collaboration networks (RCNs) 

prior to the UAMS’ CTSA (from 2006 to 2009). Their study suggests that the RCNs at 

UAMS have “unique characteristics different from those of the established real-world 

networks.” For example, the networks were disconnected with mutually exclusive groups 

and few weakly connected clusters of staff within the same department.

In our study, as shown in Table 2, significant changes can be observed in UAMS’s RCN 

since the introduction of CTSA. By comparing RCN2006–2009 with RCN2010–2012, we see an 

evident increase in the number of edges, the weighed clustering coefficients, and the 

diversity measures; while a clear decrease manifests in the number of isolated components 

and the weighted characteristic path length. For the entire collaboration network, the number 

of edges increases from 1,318 in RCN2006–2009 to 2,008 in RCN2010–2012
4, but the number 

of isolated components decreases from 55 (RCN2006–2009) to 38 (RCN2010–2012). Comparing 

the largest connected component of RCN2006–2009 to that of RCN2010–2012, all three 

clustering coefficients have increased after the CTSA award; in particular, the weighed 

clustering coefficient ( ) increases from 0.654 to 0.761. At the same time, the weighted 

characteristic path length (L) is substantially shortened from 3.537 and 1.961. The diversity 

of the largest component grows from 0.133 in RCN2006–2009 to 0.173 in RCN2010–2012.

Our measured network metrics indicate that the RCN at UAMS is moving towards a positive 

direction, that is, not only more collaborations but also more trans-disciplinary teamworks 

were generated between 2010 and 2012. The growth of the number of edges and average 

number of collaborators per grant (see Table 1) in RCN2010–2012 reflects more collaborative 

research efforts were made at UAMS after the initiation of the CTSA, which coincides with 

the dramatic reduction of isolated components. The proposed diversity provides a concise 

4RCN2010–2012 has 1,476 edges after excluding the CTSA award from the data set, which is still more than that of RCN2006–2009 
by 12%.
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quantitative measure of “interdisciplinary-ness.” The growth of diversity (from 0.133 in 

RCN2006–2009 to 0.173 in RCN2010–2012) suggests that the research community at UAMS is 

evolving towards more interdisciplinary collaborations. As the goal of CTSA is to incubate 

new multidisciplinary collaborations and high impact research across the spectrum of 

translational science, the revealed shifting suggests that the impact of CTSA is positive.

As the clustering coefficient (C) measures the degree of herding effect in a network (or 

network component), a large coefficient value implies that nodes tend to create more tightly 

knit groups, as shown in Figure 1. The characteristic path length (L) measures the average 

degree of separation between nodes in a network (or network component). Therefore, the 

shorter the length, the “easier” (or more likely) it becomes for an investigator to reach 

another researcher and form new collaborative research projects. The increase of C and 

decrease of L in the results are aligned with the finding in [6] that UAMS RCN is evolving 

towards a more robust small-world topology. Besides the observations of C and L, we also 

measured the “small-world-ness” of the three aggregate RCNs (RCN2006–2009, RCN2010–2012 

and RCN2006–2012). Our results confirm that the research collaboration network at UAMS is 

“small-world”. We will discuss the “small-world-ness” along with the scale-free property in 

detail in a later section.

We measured the clustering coefficient and the characteristic path length in both 

conventional model (unweighted edges) and our model (weighted edges), as presented in 

Table 2. Clearly, the clustering coefficient becomes larger and the characteristic path length 

is shorter in our weighted network model, which are consistent with the intuitions that the 

clustering effect shall be more evident with investigators who are already actively 

collaborating; and that more existing collaborations will create more opportunities (thus 

make it easier) for two separate researchers to establish new collaborations. In other words, 

the effects of collaboration in our weighted model can be recognized more easily and 

accurate.

The average number of new edges can be seen as a growth rate of newly secured 

collaborative grants. Its value is fairly stable across years with an interesting oscillation 

occurred in 2009–2011. There was a surge of new collaborative grants in 2010, that is, 

10.803 new collaborations on average compared to the 2009 dataset. We believe it is a 

mixed effect of the CTSA award and the American Recovery and Reinvestment Act of 

2009, which resulted in a large number of new grants funded that year. However, a 

significant drop immediately followed (i.e., −10.013 in 2010–2011), possibly due to the 

economic recession. Without network analysis of the RCNs, these novel observations would 

not be uncovered.

3.1.2. Impact of the CTSA program on the research collaboration network at 
UAMS—To examine the effectiveness of CTSA, we split nodes of RCN2010–2012 into two 

disjoint groups, a CTSA-related group (denoted by +) which contains all the investigators 

either on the CTSA grant or supported by the CTSA and a non-CTSA group (denoted by −) 

which contains all the rest of investigators. We compared two network metrics, the average 

strength S̄ and the average shortest path length from a node to any other nodes in the same 

group, between the two groups. To understand how “fast” for an investigator in one group to 
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establish a collaboration in general, we also calculated the average shortest path length from 

a node in one group to any other nodes (i.e., L̄(+⇒±) and L̄ (−⇒±), ± denotes both groups). To 

assess the impact of CTSA, we used the CTSA-related group in RCN2010–2012 as the 

hypothetical CTSA-related group in RCN2006–2009 and calculated the same set of metrics for 

RCN2006–2009. The results of those metrics are shown in Table 3.

As shown in Table 3, the average strengths dramatically increase for both groups. Moreover, 

the average strength of the CTSA-related group (S̄ +) is larger than that of the non-CTSA 

group (S̄ −) in both RCNs and the difference between the two groups is enlarged after the 

inception of CTSA. Both intra-group (L̄ (−) and L̄ (+)) and inter-group average shortest path 

lengths (L̄ (−⇒±) and L̄ (+⇒±)) are shortened significantly after the introduction of CTSA, 

which suggests CTSA is an important factor for promoting and catalyzing more 

collaborative research activities, not only for CTSA supported researchers but also for those 

not supported by CTSA.

3.1.3. Examination of “Small-world-ness” and the scale-free property—We 

measured the “small-world-ness” (S ) for the three aggregate RCNs (i.e., RCN2006–2009, 

RCN2009–2012, and RCN2006–2012) and found that all the three networks meet the criterion of 

small-world network (i.e., S > 1). As the testing procedure involves generating a random 

graph, we bootstrapped the procedure 1,000 times to eliminate random fluctuation. The 

mean (avg(S )) and standard deviation (std(S )) of the measures are reported in Table 4 along 

with their minimum value (min(S )) and maximum value (max(S )) in the test. The averages 

of the S measures of the three aggregate networks are significantly higher than the “small-

world” criterion, S > 1, as shown in Table 4. One interesting observation is that the S 

measures of RCN2006–2009 appear to be more fluctuated than those of the other two RCNs, 

reflected by a much higher standard deviation. This may be attributed to the fact that 

RCN2006–2009 has significantly less edges (see Table 2), which can cause more fluctuations 

to be generated in the testing procedure.

Following the methods described by Clauset et al. in [10], we tested whether the degree 

distribution of the RCN at UAMS follows the power-law, and therefore is scale-free. We 

tested the power-law fitting for both unweighted and weighted (i.e., strength) degree 

distribution of the three aggregate RCNs. The p-values of all the power-law fitting 

experiments are not significant. Therefore, the RCN at UAMS is not scale-free.

Figure 2 shows the fitting of the degree distributions for the three aggregate RCNs. The top 

row of Figure 2 shows the fitting of the tails of the degree distributions. The best fitted 

power-law parameters can only cover a portion of the distribution’s tail, where the dotted 

green line shows the power-law fit starting at Xmin = 1 while the dashed green line shows the 

power-law fit starting from the optimal Xmin. The bottom row of Figure 2 shows the 

comparison of the fitting between the power-law distribution and the exponential 

distribution, where the dashed green line is the power-law fit and the dashed red curve is the 

exponential fit. As shown in Figure 2, it is not clear which hypothesis (power-law vs. 

exponential) can fit the degree distribution better.
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3.2. Centrality leaders in the research collaboration network at UAMS

We use the proposed method to identify centrality leaders (i.e., influential nodes) in the 

three aggregate RCNs. Figure 3 visualizes the networks where the size of a node is set 

proportional to its ranking (i.e., the larger the node in size, the higher the investigator’s 

ranking) to depict the leader nodes. The networks shown in Figure 3 are plotted using a 

force-directed graph drawing algorithm–the Kamada-Kawai algorithm [33], where the 

positions of nodes are determined based on the spring forces proportional to the nodes’ 

graph theoretic distances. As shown in Figure 3, the identified centrality “leaders” are 

positioned in the center of the graphs, indicating that our method is consistent with the 

Kamada-Kawai algorithm.

The discovered centrality “leaders” are rather different from what we normally perceive in 

the context of organizational structure. For example, we found that some of the top ranked 

centrality “leaders” are neither the actual leaders of the university nor the leading 

investigators. A few top ranked investigators instead are biomedical informatics researchers 

or bio-statisticians, who appear on many different grants as “Co-Investigator.” In the context 

of collaboration network, researchers from these domains are the “leader” nodes as they do 

contribute more to the structure and efficiency of the network based on their network 

centrality scores. The ability to identify influential nodes in a RCN is important as these 

centrality “leaders” are often the bridges in the network as presented in Figure 3. Although a 

small-world network such as the RCN is robust to random failures, losing highly influential 

nodes could cause significant declines in terms of network efficiency. Thus, it is important 

for an organization to identify and protect the bridging nodes. For example, based on 

identified centrality “leaders”, the administration is considering different resource allocation 

strategies to maximize the possible outcomes of collaborative researches.

3.3. Link prediction based research collaboration recommendation

We benchmarked our link prediction models based on three widely used metrics: the area 

under the ROC Curve (AUC), the average precision at top k = {3,5} (AP@k), and the mean 

average precision at top k = {3,5} (MAP@k). An AUC score of 1.0 represents a perfect 

classifier/predictor, and a score of 0.5 is random guessing. The AP@k measure is derived 

from the Precision at k (P@k), i.e., how many of the top k nodes suggested by our algorithm 

to s actually receive links from s. However, the AP@k measure takes into account the 

ranking orders of the recommended nodes. The MAP@k for n nodes is simply the average of 

the AP@k of each node.

We performed two different types of prediction tasks: 1) per-user recommendations, where 

we recommend new collaborators to a specific investigator in the RCN; and 2) per-network 

recommendations, where a set of new collaborations are “prompt” to the overall 

collaboration network. The general procedures of benchmarking the two recommendation 

tasks are the same except that the MAP@k measure is only applicable to the per-user 

recommendation task as we want to measure how the model performs for all candidates on 

average. In either case, we first randomly select a set of edges as our target datasets. More 

specifically, in the per-user recommendation task, we first pick a pool of random nodes and 

then choose all the edges that incident to these nodes; while in the per-network task, we 
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randomly select the set of edges from the network directly. For each dataset, we perform a 

10-fold cross-validation. In each iteration we first choose 1/10 of the dataset as the test set, 

then remove all the edges in the network that exist in the test set, train the recommendation 

algorithm (i.e., calculate the RWR scores related to the test set) on the rest of the graph, and 

finally evaluate the method on the test set.

As shown in Table 5 and Figure 4, we can accurately identify missing links in RCNs. 

Especially in RCN2006–2012, we can achieve a near optimal prediction model, reflected by 

AUCPer–U ser = 0.990 and AUCPer–Network = 0.954. The two testing approaches, per-user and 

per-network recommendations, provide us two complementary conceptual models for 

assessing collaboration recommendations and each has its own unique merit. The per-user 

model provides a more microscopic view of the recommendation problem, where it focuses 

on suggesting new collaborations to each investigator. On the contrary, the per-network 

model offers an eagle eye’s view over the entire collaboration network, and allows us to 

strategically allocate resources to catalyze important new edges in the network, therefore 

improving the overall network efficiency.

4. Conclusion and Future Work

In this paper, we presented a set of network analysis methods that covers the full spectrum 

of a collaboration network study. We applied those methods to the research collaboration 

network at the University of Arkansas for Medical Sciences, a research institution with a 

Clinical and Translational Service Award (CTSA), to investigate the effectiveness of CTSA. 

Our analyses and quantitative measures suggest that the CTSA program has a positive effect 

in promoting research collaboration across disciplines inside the institution. Our analysis 

methods and findings can help not only researchers to improve the understanding of 

structural patterns and underlying generative force of collaboration networks, but also 

administration and leaderships of research institutions to strategically allocate resources and 

shape policies to attain an effective, trans-disciplinary collaboration environment.

Our study has spawned a few possible directions for future research on collaboration 

networks. One immediate study we would like to explore is to assess the effects of research 

environment changes on a collaboration network. For example, to foresee the impact of 

funding reduction, we can purposely remove certain edges from the network through 

simulation and measure the overall effects of such changes both qualitatively and 

quantitatively. Another direction we are interested in pursuing is the development of a 

hybrid network model that can combine collaborative relationships from multiple data 

sources (e.g., both collaborative grants and co-publications). We expect to use different 

sources to correlate collaborative activities and identify the roles of participants in the 

collaboration. We believe that such a hybrid model will be able to capture both short-term 

and long-term network dynamics and provide a more accurate and comprehensive 

abstraction of research collaborations.
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Highlights

• We model research collaborations as a weighted undirected graph.

• Research collaboration network is small-world but not scale-free.

• The Clinical & Translational Science Award has positive impacts on 

collaborations.

• Combining various centrality measures offers a concise ranking of influential 

nodes.

• Link prediction model can identify potentially successful collaborations.
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Figure 1. 
The research collaboration networks (RCNs) at UAMS, where graph (a) is the RCN prior to 

the CTSA (i.e., 2006 – 2009); and graph (b) shows the RCN after the CTSA from 2010 to 

2012. (*The edge weights are visualized as thickened lines, which represent more 

collaborations between the two investigators. The nodes in green represent investigators 

who are supported by the CTSA.)
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Figure 2. 
The power-law degree distribution plots for RCN2006–2009 (Xmin = 19, α = 3.083), 

RCN2010–2012 (Xmin = 13, α = 2.067), and RCN2006–2012 (Xmin = 13, α = 2.005).

Bian et al. Page 21

J Biomed Inform. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Visualization of the centrality leaders (i.e., influential nodes) identified in the RCNs at 

UAMS, where graph (a) is the RCN prior the CTSA award (2006 – 2009), graph (b) shows 

the RCN after the CTSA (2010 – 2012), and graph (c) presents the aggregate long-term 

network (2006 – 2012). *The relative sizes of nodes illustrate the consented centrality 

rankings. Green nodes represent investigators supported by the CTSA program.
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Figure 4. 
The ROC curves for the two link prediction tasks, where the figure on the left shows the 

ROC curves for the per-user model and the figure on the right depicts the ROC curves for 

the per-network task.
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Table 4

The “small-world-ness” (S ) of the research collaboration networks (RCN) at the University of Arkansas for 

Medical Sciences.

RCN avg(S ) std(S ) min(S ) max(S )

2006 – 2009 23.873 8.158 12.995 74.142

2010 – 2012 17.413 1.311 13.800 22.399

2006 – 2012 24.845 3.036 19.811 49.017
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