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Abstract

Bipartite networks are a common type of network data in which there are two types of vertices,

and only vertices of different types can be connected. While bipartite networks exhibit community

structure like their unipartite counterparts, existing approaches to bipartite community detection

have drawbacks, including implicit parameter choices, loss of information through one-mode

projections, and lack of interpretability. Here we solve the community detection problem for

bipartite networks by formulating a bipartite stochastic block model, which explicitly includes

vertex type information and may be trivially extended to k-partite networks. This bipartite

stochastic block model yields a projection-free and statistically principled method for community

detection that makes clear assumptions and parameter choices and yields interpretable results. We

demonstrate this model’s ability to efficiently and accurately find community structure in

synthetic bipartite networks with known structure and in real-world bipartite networks with

unknown structure, and we characterize its performance in practical contexts.

I. INTRODUCTION

The defining feature of a bipartite network is that there are two types of vertices, a and b,

and only vertices of different types may be connected; there are no edges connecting

vertices of the same type. For example, if type a vertices represent flowers and the type b

vertices represent pollinating insects, two vertices i and j are connected if flower i is

pollinated by insect j; two flowers will never be connected, nor will two insects. Bipartite

networks appear specialized but are remarkably common. Examples include networks of

plants and pollinators [1], as well as documents and words [2, 3], genes and genetic

sequences [4], actors and movies [5–7], social network users and mobile access locations

[8], and scientific papers and their authors [9–12].

As with unipartite networks, a common task is to find groups or communities of vertices that

connect to the rest of the network in similar ways. Finding this underlying group structure

has many uses, including dividing a heterogeneous network into more homogeneous

subgraphs for subsequent analysis or modeling. However, communities in bipartite networks

do not fit the commonly-used definitions. Such definitions are usually motivated by
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assortative community structure in social networks [11], where vertices in the same

community are more likely to be connected than vertices of different communities. In a

bipartite network, however, two vertices of the same type can never be connected, and thus

assortativity-based definitions of communities are ill-suited. In this paper, we present a

bipartite formulation of the popular stochastic block model, which provides a statistically

principled solution to the community detection problem for bipartite networks and defines a

community as a group of vertices with similar connectivity patterns to other groups.

Common approaches to community detection in bipartite networks include applying

standard community-detection algorithms to a one-mode projection [13]. In a one-mode

projection, two type a vertices are connected if they share a common type b neighbor. By

eliminating all type b vertices, this procedure effectively reduces the dimensionality of the

network by discarding information. Often, projections are created implicitly, without first

constructing the bipartite network. For instance, in a scientific coauthorship network, a pair

of authors are connected if they ever wrote a paper together [9–11], which is a one-mode

projection of the larger bipartite network of all papers and authors. Measures like the Erdős

number [12] or Bacon number [7] are, in fact, counting path lengths on projections of

bipartite networks.

Using projections creates both practical and principled issues. Projections are necessarily

composed only of overlapping cliques, which are extremely low probability under most

community detection null models, including Girvan-Newman modularity Q [14], and tend to

inflate measures such as assortativity and the clustering coefficient. Moreover, reducing the

effective dimensionality of the data almost always requires a loss of information; not only

can structurally different bipartite networks exhibit identical one-mode projections [13], but

even the projection of a highly structured bipartite network can appear unstructured, which

we demonstrate in our results.

To avoid these issues, two bipartite extensions of Girvan-Newman modularity [14] have

been proposed. Broadly speaking, one approach formulates a null model for vertices

connected to each other in the projection [15], while the other formulates a null model for

vertices connected to each other in the bipartite network [16]. Both express implicit

modeling restrictions and assumptions in their outputs: maximizing the modularity of

Guimera et al. partitions one type of vertex at a time so that each type’s partition is

independent of the other [15], while maximizing Barber’s modularity yields mixed-type

groups (i.e., groups that consist of vertices of both types) [16]. Other methods find pure-type

groups while using the full bipartite network, and are sometimes called co-clustering or co-

partitioning methods [2].

Stochastic block models (SBMs) are an elegant probabilistic model of group-structure in

networks [5, 6, 17–22] that have been used to identify community structure in biological

networks [4, 23], product recommendation systems [24], and directed social cooperation

networks [25]. SBMs are often capable of community detection in bipartite networks [5, 6,

20, 22], and some SBM-based schemes have been developed for the specific case of

bipartite networks with multiple non-overlapping edge types [24, 25].
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Generally, however, SBMs are generative models for networks with block or community

structure, meaning one can partition the vertices into K groups, specify the connectivity

parameters among groups, and then generate network data. In this way, the SBM defines a

parametric probability distribution over all networks. When given a network, community

detection becomes a form of inference, in which we aim to find the parameters that best

explain observed network data, which is equivalent to finding configurations that minimize

the system’s free energy. Relative to many other community detection techniques, stochastic

block models have the advantage of explicitly stating the underlying assumptions, which

improves the interpretability of the results.

In fact, we may specify parameters for a SBM that will produce bipartite networks, and for

this reason, community detection in bipartite networks is possible by directly applying the

SBM to bipartite data. We may also apply the SBM to one-mode projections of bipartite

networks. However, we will show later, even though the SBM is flexible enough to

accommodate both of these cases, the bipartite formulation of the SBM exhibits both

improved speed and improved quality of community detection.

In the following sections we formulate the bipartite stochastic block model (biSBM) and

describe an algorithm that searches for a maximum likelihood partition of a network into

communities. We first show the biSBM can correctly extract a planted network partition

from a noisy background, particularly in a case where the one-mode projection is

uninformative. We then apply the biSBM to several empirical networks, showing that the

biSBM outperforms its non-bipartite SBM counterpart.

II. THE BIPARTITE STOCHASTIC BLOCK MODEL

Our approach to the bipartite stochastic block model, hereafter biSBM, builds on recent

work of Karrer and Newman [20], who described a simple SBM that generates networks

with a fixed expected degree sequence. This degree-corrected SBM is substantially more

effective at finding a correct partition when vertex degrees are heterogeneous, as in many

real-world networks. We first introduce the simple case, and then extend it to include degree

correction.

We begin by dividing the Na vertices of type a into Ka groups and the Nb vertices of type b

into Kb groups. In this way, each group or community contains vertices of a single type. We

use the N × N adjacency matrix A rather than the Na × Nb bipartite adjacency matrix B,

which are related as

Similarly, we express the matrix of group interrelationships ω as a K × K matrix (where K =

Ka + Kb), instead of a Ka × Kb matrix, as is sometimes chosen. We will set to zero any

entries of A and ω that would connect vertices of the same type, thereby enforcing bipartite

Larremore et al. Page 3

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2014 August 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



structure. This notation is more easily extended to k-partite or more complicated networks, is

less cumbersome, and is consistent with previous work on the SBM [20].

Let vertex i be of type ti and belong to group gi. Let Tr be the type of group r, imposing the

constraint

(1)

which indicates that vertex types and group types must match and ensures that groups will

be pure-type. With this common set of definitions, we develop the biSBM without and with

degree correction.

A. biSBM without degree correction

The block structure of the biSBM network is defined by a K × K matrix ω. Let ωrs be the

expected value of the adjacency matrix entry Aij for vertices i and j belonging to groups r

and s respectively. Let the number of actual edges between i and j be drawn from a Poisson

distribution with the corresponding mean. Though most real-world networks do not have

multi-edges, we allow them here because the Poisson distribution makes calculations easier,

and because for sparse networks in which ωrs is small, multi-edges are highly unlikely and

corrections to the more simple Bernoulli probabilities become vanishingly small. Enforcing

the bipartite constraint of Eq. (1) produces a restriction on ω

(2)

This equation restricts the model to bipartite networks only, both in generation and

inference. When presented with a bipartite network, the lack of edges between vertices of

the same type is not informative to the biSBM; it is taken as a given. The SBM, on the other

hand, makes no such assumption. The lack of edges between subsets of vertices is

informative to the SBM, and so it must discover bipartite structure from the data and weigh

a bipartite partition against non-bipartite alternatives. We discuss this point in more detail in

Sec. III.

Given parameters g, T, and ω, we can write down the probability of generating a network G

with adjacency matrix A

(3)

By using the symmetry of A and ω, this can be rewritten as
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(4)

where nr is the number of vertices in group r and mrs is the number of edges between groups

r and s, defined using the Kronecker delta function as

(5)

Given a bipartite network G with adjacency matrix A and vertex types t [26], we seek the

parameters that maximize Eq. (4). In practice, it is easier to maximize its logarithm, since

this changes only the value of the maximum but not its location in parameter space.

Neglecting constants, taking the log yields

(6)

Following Ref. [20], we maximize this sum first with respect to ω and then with respect to g.

Taking a derivative of Eq. (6) with respect to ωrs and setting it equal to zero yields

(7)

A hatted variable denotes a maximum likelihood parameter estimate, while a non-hatted

variable denotes a model parameter. Substituting this expression into Eq. (6) yields

(8)

where the latter term sums to twice the number of edges in the network, regardless of the

partition. We therefore drop it, yielding

(9)

which we now maximize over all group assignments g, subject to the constraint of Eq. (1)

which requires that any partition g must divide vertices into pure-type communities.
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B. Degree-corrected biSBM

Both the motivation for and derivation of the degree-corrected biSBM parallel those of the

degree-corrected SBM: real-world networks tend to have broad degree distributions in

addition to community structure, but the uncorrected biSBM finds edge bundles between

communities with Poisson degree distributions, which in practice tends to sort vertices by

degree. The degree-corrected model explicitly models the observed degree sequence before

finding community structure, allowing it to be applied to empirical networks with broad

degree distributions.

As before, we consider a network of N vertices, indexed by i, each with type ti, divided into

Ka type a groups and Kb type b groups, with gi denoting the group to which vertex i belongs.

Let θi control the expected degree of vertex i, and let ωrs again be a K × K symmetric matrix

of parameters to control the number of edges between groups r and s. Following [27], we let

the numbers of edges between vertices i and j follows a Poisson distribution with mean

θiθjωgiωgj. To enforce the bipartite structure of the network, Eqs. (1) and (2) must hold, and

the probability of observing a network G with adjacency matrix A is

(10)

The parameters θ are arbitrary to within a multiplicative constant that can be absorbed into

ω, so we choose the normalization

(11)

which means θi is the probability that an edge connected to the community to which vertex i

belongs lands on i itself. This constraint allows Eq. (10) to be rewritten as

(12)

where ki is the observed degree of vertex i and mrs is the number of edges between groups r

and s, as before [Eq. (5)]. We again seek to maximize this probability by maximizing its

logarithm. After dropping constants and multiplying by two, we have

(13)
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Taking partial derivatives with respect to ωrs and setting them equal to zero gives the

maximum likelihood parameters

(14)

The maximum likelihood θ̂
i can be found via the constrained maximization of Eq. (13)

subject to Eq. (11) using using Lagrange multipliers, yielding

(15)

where κr is the sum of the degrees in group r, κr = Σs mrs. The maximum likelihood

parameter estimates preserve not only the expected numbers of edges between groups, but

also the expected degree sequence of the network [20]. They may be substituted into Eq.

(13), and after manipulation and dropping constant terms, we have

(16)

which we maximize over all partitions g.

As in the case of non-bipartite networks, the differences between the uncorrected and

corrected log-likelihood functions, Eqs. (9) and (16) respectively, appear to be a simple

substitution of nr for κr, but their effect on optimal partitions can be drastic when degrees

are heterogeneous, which we will demonstrate in Sec. IV. Both formulations of the model

will find K pure-type groups, Ka within the vertices of type a and Kb within the vertices of

type b.

C. A biSBM algorithm

To maximize Eqs. (9) or (16) over all partitions g, we present an algorithm adapted from

Karrer and Newman’s algorithm [20], which is a variation on the classic Kernighan-Lin

algorithm [28]. Our algorithm takes as inputs the adjacency matrix A and the vertex types ti,

and then assigns vertices of type ti = a uniformly at random to Ka groups, indexed {1, …,

Ka}, and vertices of type ti = b uniformly at random to Kb groups, indexed {Ka + 1, …, Ka +

Kb}. This means Tr = a for the first Ka groups, and Tr = b for the remaining Kb.

The algorithm searches the likelihood surface by proposing to move a vertex from one group

r to another group s, provided their types match Tr = Ts. After proposing all such moves,

across all vertices and eligible groups, it selects the move that will most increase the

likelihood function. If no improvement is possible, the algorithm chooses the move that least

decreases the likelihood function, because forcing the vertices to move helps escape local

optima [29]. We allow each vertex to move only once, and when all vertices have moved,

the states through which the system has passed are evaluated and the state with the highest
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objective score is used as a starting point for the next search iteration. When a full iteration

passes with no improvement in objective score, the algorithm exits.

Finally, as is usual with stochastic optimization techniques, the algorithm should be run

many times and the highest score from among these independent replicates selected. This

algorithm may be used equally well for the degree-corrected or uncorrected models.

III. COMPARISON OF THE BISBM AND SBM

Before demonstrating that the bipartite stochastic block model correctly extracts community

structure from bipartite network data, we first examine the relationship between the biSBM

and the SBM. Most SBM community detection methods can be naturally applied to bipartite

networks [5, 6, 20, 21], so it may not be clear why a specialized bipartite model is necessary.

In this section, we characterize the relationship between the biSBM and the SBM both

theoretically and in application, showing that the models are related but do not perform

equivalently. In particular, the SBM often overfits bipartite data by mixing vertices of

different types within communities and it is nearly always substantially less efficient.

A. Relationship to the non-bipartite stochastic block model

The derivation of the biSBM requires that there be no connections between any vertices of

the same type. We expressed this in Eqs. (1) and (2), and formulated the biSBM equations

accordingly. We now show that if these two constraints are applied a posteriori to the SBM

and degree-corrected SBM, the resulting equations will be numerically equal to the biSBM;

any network that is generated by the (degree-corrected) biSBM can be generated with equal

probability by the properly constrained (degree-corrected) SBM. Indeed, it is well known

that stochastic block models are capable of producing bipartite networks, in addition to

general multipartite networks [20, 21], and networks with more complicated rules about

which types of vertices may be connected to which other types, so this equivalence of

generative models comes as no surprise.

The biSBM and degree-corrected biSBM likelihood functions are numerically equivalent to

their non-bipartite counterparts, provided that (i) the partition g does not mix vertices of

different types in the same group, and (ii) there are no edges between vertices of the same

type. To see this, we reproduce the probability of generating a graph G with adjacency

matrix A using the SBM from Ref. [20]

(17)

If there are no edges between groups of the same type, then ωgigi = 0, so every term in the

second product is equal to one and may be disregarded. Moreover, ωgigj = 0 when i and j are

of the same type, so all terms of the remaining product equal one, except those for which ti ≠

tj, which reduces numerically to Eq. (3). However, these equations, while numerically

equivalent, are not identical due to their meanings and behaviors.
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The ability of the SBM to generate the same ensemble of bipartite networks as the biSBM

does not imply that they will find identical partitions when presented with real data. There

are two reasons for this, one principled and one algorithmic. The key to both is

understanding the way that each model makes use of the data presented to it. Eq. (2) means

that the lack of edges between vertices of the same type is uninformative to the biSBM

because it is taken as a given. On the other hand, to the SBM, the lack of edges between

vertices of the same type is informative to the model, which uses such information for

inference.

In other words, the likelihood function for both models is determined by the density of

observed edges between the communities of the partition, and this function is maximized

whenever the density parameter is close to 1 or 0. Thus, the SBM prefers to find either very

assortative or very disassortative groups, or some mixture thereof, while the biSBM can find

only disassortative groups, by definition. Thus, when applied to bipartite data, the SBM

must learn that all groups are in fact disassortative, while the biSBM does not.

The structure of the objective function produces a strong incentive for the SBM to find

disassortative structure in bipartite networks, but this incentive is not sufficient to always

find pure-type partitions in bipartite data. As we show below, for many simple bipartite

networks, a mixed-type partition in which vertices of different types are placed in the same

group yield a higher likelihood than pure-type (bipartite) partitions for the SBM. (After all,

the biSBM and SBM are nested models, and thus the SBM can always find a

parameterization at least as good as that of the biSBM.)

To illustrate this point, consider a simple network consisting of a ring of small “clumps,”

each of which is a perfectly bipartite structure (Fig. 1). Whenever K is odd, the SBM will

overfit by finding a partition that mixes vertex types but which also has a higher objective

score than the best bipartite partition under the biSBM. Whenever K is even, the SBM and

biSBM find identical partitions. While this illustrates the point that the maximum likelihood

partition under the SBM may be better than that under the biSBM, the SBM finds a bipartite

partition for as much of the network as possible until it is forced to break symmetry by the K

= 5 specification. These results hold for both degree-corrected and uncorrected models.

B. Performance relative to SBM

Since we have just established that it is possible for the SBM to find higher likelihood

partitions than the biSBM without providing t, the vertex type information, one might prefer

community detection using the SBM because it requires less information and is more

flexible. However, we now demonstrate that for even moderate N or K, the biSBM finds

better solutions, faster. This occurs because the biSBM simultaneously solves two smaller

problems, one for each vertex type, and because the ruggedness of the likelihood surface

presents the SBM with many more local optima in which it can become lodged.

We compare our biSBM algorithm with the SBM algorithm on which it was based, provided

by Karrer and Newman [20]. They describe the change in likelihood Δ  of moving a vertex

i from community r to community s, and explain that this quantity can be evaluated for the

degree-corrected model in time (K + 〈k〉) per vertex on average, where 〈k〉 is the mean
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degree. Thus, finding the community s that is the very best move for vertex i takes [K(K +

〈k〉)] time. Overall, the time complexity of the SBM is

(18)

The biSBM algorithm separates N searches over K communities into Na searches over Ka

communities and Nb searches over Kb communities. The time complexity of each biSBM

iteration is therefore roughly

(19)

By using K = Ka + Kb, and N = Na + Nb, and the fact that (x + y)2 ≥ x2 + y2 for x, y ≥ 0, one

can show that the biSBM is always faster than the SBM, in large part because the biSBM’s

search space is pre-divided by vertex type into two smaller problems.

Applying the degree-corrected SBM and biSBM algorithms to a dataset from the genes of

the malaria parasite (described in detail in Sec. IV B 2), we plot the final log-likelihood

scores for each of 2000 iterations as histograms for each method in Fig. 2. The results show

that the biSBM tends to find better partitions than the SBM in each iteration, and the SBM

rarely finds pure-type partitions (8 of 2000 replicates). Moreover, we find that the biSBM

converges 3.25 times faster than the SBM, which took 5.33 seconds per replicate.

The difference in times arises from Eqs. (18) and (19), while the difference in outcomes is

due to the high-dimensional ruggedness in the SBM’s likelihood function. On this function,

most random initializations lie within the basin of attraction of a local optimum

corresponding to a mixed-type partition with a lower log-likelihood. In contrast, by

eliminating all mixed-type partitions, the biSBM restricts the search and guides the

optimization to generally higher-quality solutions. We note that the popular modularity

score Q for assortative community detection exhibits a qualitatively similar rugged structure,

with many local optima and a complex distribution of basins of attraction [30].

As a final test, we examined the stability of biSBM partitions under the SBM algorithm to

determine whether the SBM’s additional flexibility in parameter space would allow for an

improved partition. In all cases considered, when initialized at a partition found by the

biSBM, this partition was also a local optimum for the SBM. This behavior suggests that the

biSBM’s smaller parameter space provides a significant speed advantage over the SBM,

without any tradeoff in partition quality, i.e., good optima of the biSBM are also good

optima of the SBM.

IV. RESULTS

In this section, we show that the biSBM can recover the correct partition in synthetic

networks with known planted structure and then apply the biSBM to study three empirical

networks. For the synthetic networks, we consider two forms, an easy and a hard case,

which illustrate the biSBM’s performance under different general conditions and against

alternative techniques. Of the empirical data sets, the first is the Southern Women network
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[31], which consists of 18 women who attended 14 social events. This network is commonly

used as a benchmark for bipartite network community detection algorithms, much like the

Zachary karate club for unipartite community detection algorithms. Past work in this

direction, while agreeing broadly on a partition of the women [15, 32], says little about a

partition of events (except [16]). The biSBM provides both. The second is the malaria

network, which consists of genetic sequences from the malaria parasite P. falciparum [4,

33]. Its vertices correspond to 297 genes and their 806 shared amino acid substrings, and

projections of similar networks have been previously analyzed [4, 34]. The third network is

a subset of the Internet Movie Database (IMDb) network of actors and movies, consisting of

53, 158 actors and the 39, 768 movies in which they appear.

A. Synthetic Networks

We examine the ability of the algorithm to extract planted structure ωplanted that has been

obscured by various levels of uniformly random noise. Empirically observed networks are

often noisy, with missing or spurious edges, and a good community detection algorithm

must be able to extract structure despite such a noisy background.

We describe two forms of synthetic networks, each of which illustrates a different aspect of

community detection in bipartite networks. The first form is easy, because it consists of four

equally sized, unambiguous, and non-overlapping components, each made up of one type a

and one type b community. In this case, community structure is obvious in both the bipartite

network and its one-mode projection. The second form is difficult because, in addition to Ka

≠ Kb, its degrees and community sizes are heterogeneous. Moreover, its one-mode

projection is ambiguous and difficult to resolve, even in the absence of noise. Here, only the

degree-corrected biSBM corrected finds the planted community structure. These two forms

are not exhaustive but rather illustrate the practical behavior of the biSBM.

To vary the amount of noise, we specify g and ωplanted but create networks using g and ω =

λωplanted+(1−λ)ωrandom, letting the mixing parameter λ take values between 0 (all noise) and

1 (all planted structure). The construction of ωrandom depends on whether we use the degree-

corrected or uncorrected model. In the uncorrected model, we preserve the expected number

of edges in the network, but remove all structure, and thus , where m is

the total number of edges in the network. In the degree-corrected model, we preserve both

the expected number of edges in the network and the expected degrees of the vertices θ, and

thus .

To further illustrate the point that one-mode projections induce practical issues for

community detection in bipartite networks, we also compare partitions of one-mode

projections of our synthetic networks with the performance of the biSBM. There are two

types of such projections. An unweighted projection of a bipartite network onto its type a

vertices is obtained by letting two type a vertices i and j be connected if they share any type

b neighbor k. Each edge of a weighted projection has weight equal to the number of such

shared neighbors. Given an adjacency matrix A, the weighted projection matrix P is given

by
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(20)

where the diagonal blocks of size Na × Na and Nb × Nb correspond to the projections onto

types a and b vertices, respectively. The matrix P is equivalent to a “two-step” adjacency

matrix, with each entry weighted by the number of length two paths between each pair of

vertices.

In our experiments, performance is evaluated by specifying parameters to the biSBM,

drawing network instances from that ensemble, and then testing a method’s ability to

recover the correct partition of type b vertices. This allows a direct comparison of the

biSBM (which partitions all vertices) and the SBM (which partitions only type b vertices).

Accuracy is measured by the normalized mutual information between the inferred and

correct partitions [35]. We treat each partition as a random variable X. Since the only

information we have about X is what we observe, let Pr(X = r) = Nr/N, the fraction of

vertices observed in group r. Similarly, let the joint distribution of two partitions X and Y be

defined as Pr(X = r, Y = s) = Nrs/N, the fraction of vertices that we observe in group r of the

first partition and group s of the second partition. Then, the normalized mutual information

of the partitions is Inorm(X, Y ) = 2I(X, Y )/[H(X) + H(Y )], where H(X) is the Shannon

entropy of X, and I(X, Y ) is the mutual information. As the name implies, Inorm takes on

values between 0 and 1, with Inorm(X, Y ) = 1 if and only if X = Y, and Inorm = 0 when X and

Y are uncorrelated. Intuitively, Inorm(X, Y ) measures the degree to which knowledge of one

partition allows us to predict the other partition.

1. An easy case—In this easy case, we define the mixing matrix to have easily

identifiable community structure

(21)

where the variables α, β, γ, δ are positive constants. This produces a network with four

components, each consisting of a pair of communities. We let N = 1000 for each type and

divide these vertices evenly across the four components. Finally, we do not specify vertex

degrees θ, and thus create networks using ωrandom for the uncorrected SBM.

For this test, we compare the performance of the biSBM on bipartite data to the performance

of the SBM on both weighted and unweighted one-mode projections, which simulates the

common practice of converting bipartite data into a form amenable to standard unipartite

detection methods. Figure 3A shows the normalized mutual information between the

inferred partitions of type a vertices and the correct partition of type a vertices. The biSBM
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always extracts the correct communities when λ = 1, with performance falling off sharply as

the network approaches the detectability limit [21] where no algorithm can recover the

planted structure. In this case, because the structure is unambiguous, projection methods also

work well.

2. A difficult case—In this difficult case, we define the mixing matrix to have less easily

identifiable community structure by creating partially overlapping communities, Ka ≠ Kb,

and a broad degree distribution. Moreover, we illustrate this in a network whose one-mode

projection is relatively uninformative about its community structure

(22)

In this construction, the third type a community connects equally with both type b

communities. When the network is projected onto its type b vertices, this equality masks

much of the structure created by the other, non-overlapping type a communities, making the

projection difficult to partition, even when γ ~ ε. We make this test even more difficult for

the biSBM by choosing different sizes for the communities [36, 37], with 300 type a

vertices, divided {100, 150, 50}, and 700 type b vertices divided evenly {350, 350}. Finally,

we impose heterogeneous degrees by giving half the vertices in each community twice the

preferred degree θ of the others [38]. As such, we use ωplanted corresponding to a random

network with fixed degree sequence. To clearly illustrate the planted structure of the

bipartite adjacency matrix, we plot one such matrix for λ = 1 in Fig. 4, and show its type b

projection.

Figure 3B shows the normalized mutual information between the inferred partitions of type

b vertices alone. The degree-corrected biSBM exhibits the classic detectability phase

transition [21], with a critical point at λ ≈ 0.33. In contrast, the uncorrected biSBM finds the

planted structure only for λ ≈ 1, but as shown by the 10% and 90% quantiles (shaded

regions), its partitions are either extremely accurate or extremely inaccurate.

When using either weighted or unweighted projections, the SBM (with or without degree

correction) is unable to find any community structure. Ordering the adjacency matrix by the

planted partition, however, shows clear community structure (Fig. 4), which the SBM

algorithm is unable to find. Initializing the SBM algorithm with the correct partition does

lead to better performance (Fig. 3C) for the degree-corrected SBM, which remains near the

correct partition when λ ≈ 1, while the uncorrected SBM fails completely. This indicates

that the correct partition of the projection is not a local optimum under the uncorrected

SBM.

Corroborating a result for bipartite modularity maximization [15], the weighted projection

outperforms the unweighted projection in this experiment. Figure 3C also shows that fast

modularity maximization [47] is able to partially extract structure from the projection, but
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with high variability. This suggests that the projection’s communities for λ > 0.5 are not

below the detectability limit [21], but that they are nevertheless very difficult to find,

highlighting a case in which applications of community detection to projections are

outperformed by the biSBM.

While this bipartite network was designed to produce a relatively uninformative projection,

it represents a common type of bipartite network in which some vertices have a very high

degree. Such networks arise in document classification, when words are connected to the

documents in which they are found, because some words, such as up, again, and which,

appear frequently, and without any correlation to topics. Bipartite co-clustering methods

have been shown to succeed even when such “stop words” are included [2], but projection-

based methods require removal of these words because they effectively mask the true

structure in uncorrelated noise [3]. Bipartite methods will therefore be particularly useful in

contexts where the list of stop words is not known a priori.

B. Empirical Networks

1. The Southern Women Dataset—Our first empirical network is the Southern Women

dataset, a common benchmark for bipartite community detection algorithms [15, 16]. It

reflects attendance of 14 social events by 18 women in Natchez, Mississippi, USA in the

1930s, and the data were collected by ethnographers to examine the roles of race and class in

dictating social interactions [31, 32].

The biSBM and degree-corrected biSBM identified the same partition, shown in Fig. 5. The

partition of women perfectly matched the literature consensus [32] and Guimera et al. [15].

The partition of events found by Guimera et al., shown as the dashed line in Fig. 5, split

events into two groups, largely matching the three group partition that we show. Barber’s

modularity was maximized with four mixed-type communities [16], though the consensus

partition noted above has only a slightly worse modularity. Our partition is listed explicitly

in Appendix B.

In this example, the biSBM performs well and is able to find the literature consensus

partition of the women while simultaneously partitioning events. However, this dataset

serves as a minimal benchmark: though 21 different methods were reviewed in Ref. [32], a

majority produced identical partitions, with many of the others differing by a single vertex

label. Therefore, in the next section, we present the biSBM with a more challenging

empirical network.

2. Malaria Dataset—Our second empirical network comes from the malaria parasite P.

falciparum. The parasite evades the human immune system via a protein camouflage, which

is encoded in var genes [40]. In order to create novel camouflages, var genes frequently

recombine, which amounts to the constrained splicing and shuffling of genetic substrings,

giving rise to community structures naturally [4, 34]. Vertex types correspond to genes and

their constituent substrings, and each substring connects to every gene in which it is present.

The network, consisting of 297 genes and 806 substrings, is somewhat like a set of

documents and words, but with partially overlapping words, and covers a subset of the
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known var genes. Degree distributions for both types of vertices are broad which makes it

an exemplar for the degree-corrected biSBM.

Sample partitions using Ka = 3, Kb = 3 are shown in a force-directed layout in Fig. 6. The

degree-corrected biSBM recovers communities of different sizes, as shown in the plotted

adjacency matrix, Fig. 7. One group of genes corresponds nearly exclusively to one group of

substrings, while the other two groups of genes and substrings are partially overlapping.

Community sizes and degrees vary by community but are easily accommodated by the

degree-corrected biSBM. A superset of these data were analyzed previously [4], finding a

similar partition of the genes, but no partition of the substrings. See Appendix A for data and

partition.

To illustrate the difference between degree-corrected and uncorrected models, we also

applied the uncorrected biSBM to the malaria dataset, and found that connected vertices

tended to group by degree, corroborating analogous findings for the non-bipartite SBM [20].

Moreover, the maximum likelihood partition, which we plot in Fig. A1, does not correspond

well to biological classifications of the genes [4]. As with the synthetic networks in the

previous subsection, when networks have broad or heterogeneous degree distributions, the

degree corrected model is able to find the correct partition while the uncorrected model is

not.

3. IMDb Dataset—Our third empirical network comes from the Internet Movie Database

(IMDb), from which we built a bipartite network of actors and the movies in which they

acted. Data were downloaded directly from IMDb [41] and parsed into a network in which

an edge exists between an actor and a movie if the actor was in the movie in any role. We

removed all serial television shows included in the database, restricted the network to

movies released between 1995 and 2000, and then removed any actor or movie with degree

equal to one, as in other studies [5, 6]. From this, we extracted the largest connected

component, resulting in a single-component network of 53, 158 actors and 39, 768 movies.

Degree distributions for both vertex types were broad, with mean degrees of 7.6 and 5.7, and

maximum degrees of 120 and 552, for movies and actors, respectively.

In order to interpret the output of the biSBM, we downloaded genre and language

information from IMDb for each movie. This information, when compared with the partition

provided by the model, shows clearly that the existence of an edge is associated with a

match between the actor’s and the movie’s genre and language. Figure 8 shows the bipartite

network adjacency matrix B, sorted by a degree-corrected partition using Ka = 6, Kb = 6, and

labeled by defining characteristics of each group of movies. Groups 5 and 6 are

predominantly English movies, while groups 1, 2, and 3 are foreign films, separated by

language. Group 4 on the other hand, is defined not by language, but by genre, consisting of

Adult films across many languages. In the framework of generative models, this

correspondence between genre, language, and inferred blocks provides insight into the

multiple mechanisms responsible for the existence of edges.
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V. CONCLUSIONS

In this paper we have described a stochastic block model for bipartite networks and

demonstrated its ability to create and infer bipartite community structure in both degree-

corrected and uncorrected regimes. Moreover, we have shown that for bipartite network

data, the biSBM is able to find higher likelihood solutions more efficiently than the SBM.

Importantly, this bipartite community structure is found without reliance on one-mode

projections, and outperforms one-mode projections in all cases tested.

There are two problems with community detection in one-mode projections, both of which

are avoided by the biSBM. First, projections discard information, and second, they create

networks composed of overlapping cliques, which often violate the assumptions of the null

model underlying the detection method. Using a community detection model that is

misspecified for the type of data being analyzed is problematic. The method can fail, or

worse, produce a high-scoring partition under the misspecified model. Because methods

provide no warnings of either outcome, not only are their results then impossible to correctly

interpret, but they may also be misleading, suggesting the presence of strong community

structure where there is, in fact, none [30]. Whenever possible, the use of one-mode

projections should be avoided, with communities instead inferred directly from the original

bipartite data.

This point was most evident under our class of synthetic networks which were designed to

have ambiguous projections. In these numerical experiments, there existed a community of

type a vertices with a high probability of connection to all type b vertices, and the biSBM

substantially outperformed all projection-based methods (Fig. 3B). These results are likely

very general, in part because many real-world systems, e.g., a network of documents and the

words they contain, contain ubiquitous “stop” words that must be removed by hand or by

heuristic in order for existing methods to work well [3]. In contrast, the biSBM

automatically identifies and classifies such vertices, producing high-quality partitions

despite the ubiquitous connectivity of such vertices.

As a brief aside, one-mode projections may be problematic for more than just community

detection. For example, it is commonly known that social networks are assortative by degree

while most other networks are not, yet the social networks first used to demonstrate this

point were all implicitly one-mode projections, such as coauthorship networks [10].

Subsequently, social networks that were not projections were shown to be less assortative or

even disassortative [11]. This raises the questions of whether assortativity is due to

properties of social networks or due to implicitly projecting from bipartite data, and whether

other measures, such as centralities, may also be affected.

The biSBM, either in its degree-corrected or uncorrected form, is mathematically equivalent

to a constrained version of the SBM, which allowed for a direct comparison of the two

methods. The SBM is a more general model for community detection in networks, but this

increased flexibility comes at a cost: when applied to bipartite data, it must learn that these

data are bipartite, which causes it to be less efficient at inference, more prone to overfitting,

and more likely to produce mixed-type partitions. If the bipartite nature of the network is
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known ahead of time, this information can and should be utilized. Our results for the biSBM

demonstrate that using this information leads to substantially more efficient and more

accurate inference.

A subtle point when using the biSBM is the choice of the parameters Ka and Kb, which may

be chosen independently. This explicit selection of parameters is both an opportunity and a

burden, as the increased flexibility allows for modeling imbalanced bipartite networks in

which Ka ≠ Kb, but also requires these parameters to be specified. The choice of these values

can be framed as a question of model selection, which compares the likelihoods for different

choices while controlling for the added flexibility associated with extra parameters. For

SBM-type models, this question is related to, but distinct from the question of choosing the

number of communities. (For instance, if K = Ka + Kb, the number of communities in the

SBM and biSBM is the same, but the number of free parameters is  for K >

2.) Techniques for model selection for generative network models like the SBM remain an

area of active research. The central difficulty is that the likelihood function’s ruggedness

makes the standard limiting assumptions inapplicable [42] and common approaches to

comparing models, e.g., AIC and BIC, can produce incorrect decisions. Recent work using

likelihood ratio statistics, however, shows promising results [43], and MDL-based

approaches have also been recently developed [5, 6, 22].

The biSBM, and generative models more broadly, fall into a growing set of models in which

the generative hypothesis is clear and principled. A strong advantage of such methods is the

interpretability of the inferred parameters, as the matrix ω is informative about hypothetical

mechanisms of the underlying processes that generated the data in the first place, e.g., Ref.

[4]. Mixed-membership stochastic block models [44, 45], which assign each vertex a

probability distribution over communities, have not yet been formulated for bipartite

networks but represent an interesting direction for future work, as do models of edge-

weighted networks [46] and non-overlapping edge types [24]. Similarly, hierarchical

methods [6, 39] could also be adapted to bipartite, k-partite, or more complex formulations.

Other models have explored structural regularities beyond community structure, where

additional model parameters capture inter-group centrality [22]. Given the ubiquity of

bipartite and other forms of structured networks, we look forward to the development of

more sophisticated generative models the naturally incorporate such auxiliary vertex and

edge information.
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APPENDIX A: CODE AND DATA AVAILABILITY

Implementations of the biSBM inference code, written by the authors, may be found at

danlarremore.com/bipartiteSBM. Southern Women and Malaria data sets are also available

at the same web address. IMDb data sets are also available [41].

APPENDIX B: SOUTHERN WOMEN

The bipartite SBM described in the text finds the following maximum likelihood partition of

the Southern Women network [31]: Group A (red): Mrs Evelyn Jefferson, Miss Laura

Mandeville, Miss Theresa Anderson, Miss Brenda Rogers, Miss Charlotte McDowd, Miss

Frances Anderson, Miss Eleanor Nye, Miss Pead Oglethorpe, Miss Ruth De-Sand. Group B
(blue): Miss Verne Sanderson, Miss Myra Liddell, Miss Katherine Rogers, Mrs Sylvia

Avondale, Mrs Nora Fayette, Mrs Helen Lloyd, Mrs Dorothy Muchison, Mrs Olivia

Carleton, Mrs Flora Price. Group X (orange): Jun10, Jan23, Apr07, Nov21, Aug03. Group
Y (purple): Mar15, Sep16, Apr08. Group Z (green): Jun27, Mar02, Apr12, Sep25, Feb25,

May19.
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FIG. A1.
Without degree correction, the biSBM tends to find groups that have a similar degree,

leading to unexpected and unintuitive partitions of networks with broad or heterogenous

degree distributions (as in [20]). The maximum likelihood partition without degree

correction is shown above for the Malaria network, with vertex sizes corresponding to

degree. The networks plotted in both panels are identical except for the type of vertices

highlighted. The degree-corrected partition is shown in Fig. 6.
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FIG. 1.
The global-maximum partitions of the biSBM and SBM are not necessarily the same. When

K is even, the SBM and biSBM find identical partitions, but when K is odd, the SBM finds a

higher likelihood partition by creating a mixed-type community. Log-likehoods are plotted,

and partitions are displayed as colors, with the mixed-type partition vertices (red) enlarged.
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FIG. 2.
The biSBM outperforms the SBM in speed, log-likelihood score, and the ability to find

partitions that do not mix vertices of different types (pure-type). The inset magnifies the

shaded region of the main plot which includes all 8 pure-type partitions (of 2000 total

replicates) found by the SBM. Times to convergence for each replicate were 5.33 and 1.64

seconds for the SBM and biSBM respectively. Tests were conducted using the malaria

dataset (see text) and Ka, Kb = 3, 3 and K = 6.
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FIG. 3.
As the level of noise is decreased (λ → 1), Inorm between inferred and correct partitions

varies by method. Each point shows the median of 100 replicates, and shaded regions show

10%–90% quantiles. (A) In the easy case, all methods are able to find the correct partition.

The degree-corrected SBM applied to projections performs slightly better for small λ and the

biSBM performs slightly better for moderate and large λ. (B) In the difficult case, only the

degree-corrected biSBM is able to reliably find the correct partition; SBM methods applied

to projections failed. (C) For the same projections as panel B, fast modularity maximization

is moderately accurate but inconsistent. When initialized at the correct partition, the degree-

corrected SBM remains nearby in parameter space for large λ but the uncorrected SBM does

not.
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FIG. 4.
(top) The bipartite adjacency matrix B for the planted structure Eq. (22). (bottom) The b-

mode projection exhibits visible community structure when correctly sorted, which is

undetectable by the SBM (see Fig. 3B).
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FIG. 5.
The bipartite SBM correctly classifies the women (circles) of the Southern Women data set

[31]. Vertex area is proportional to degree, and colors label the partition, with black outlines

corresponding to women and white outlines corresponding to events (squares). Degree

correction does not have an effect on the maximum likelihood partition for this network. The

dashed line corresponds to the two-community partition found in Ref. [15], which separately

partitioned women and events.
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FIG. 6.
The force-directed layout of the malaria bipartite network is shown twice, with gene-vertices

enlarged (left) and with substring-vertices enlarged (right). Numbers and colors indicate the

partition found by the degree-corrected biSBM for Ka = 3, Kb = 3. The paired communities

on the right side of the figures (3 and 6) are almost non-overlapping with the others, which

are partially overlapping. The corresponding bipartite adjacency matrix is shown in Fig. 7.
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FIG. 7.
The bipartite adjacency matrix B of the malaria network, sorted by the degree-corrected

biSBM partition, Ka = 3, Kb = 3. Numbers and colors on the matrix border correspond to

those in Fig. 6.
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FIG. 8.
The bipartite adjacency matrix B of the IMDb network [41], sorted by the degree-corrected

biSBM partition with Ka = 6, Kb = 6. Language labels indicate that over 90% of movies in

the indicated language are in that group. Group 4 is best characterized by the Adult genre,

and features a much larger number of movies per actor in the dense block than other groups.

Groups 5 and 6 showed similar language and genre profiles, but their separation suggests the

existence of an additional variable governing the probability of edge existence.
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