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Purpose. To achieve rapid automated delineation of gross target volume (GTV) and to quantify changes in volume/position of
the target for radiotherapy planning using four-dimensional (4D) CT. Methods and Materials. Novel morphological processing
and successive localization (MPSL) algorithms were designed and implemented for achieving autosegmentation. Contours
automatically generated usingMPSLmethodwere comparedwith contours generated using state-of-the-art deformable registration
methods (using Elastix© andMIMVista software).Metrics such as the Dice similarity coefficient, sensitivity, and positive predictive
value (PPV) were analyzed.The target motion tracked using the centroid of the GTV estimated usingMPSLmethod was compared
with motion tracked using deformable registration methods. Results. MPSL algorithm segmented the GTV in 4DCT images in
27.0±11.1 seconds per phase (512×512 resolution) as compared to 142.3±11.3 seconds per phase for deformable registration based
methods in 9 cases. Dice coefficients between MPSL generated GTV contours and manual contours (considered as ground-truth)
were 0.865±0.037. In comparison, theDice coefficients between ground-truth and contours generated using deformable registration
based methods were 0.909 ± 0.051. Conclusions. The MPSL method achieved similar segmentation accuracy as compared to
state-of-the-art deformable registration based segmentation methods, but with significant reduction in time required for GTV
segmentation.

1. Introduction

In the practice of radiation therapy better local control and
survival are often associated with increased delivered dose
[1]. The greatest limitation to increasing treatment dose
is induced by normal lung toxicity. Due to nonperiodic
breathing pattern in patients, the planned dose is very often
not delivered as intended. Interfractional target motion con-
siderably deteriorates the geometric accuracy of the delivery
process. In the recent past, systems and methodologies such
as TomoTherapy [2, 3] and cone-beam computer tomography
(CBCT) [4, 5] were developed and used in clinical practice

to improve treatment planning and delivery. A quick and
accurate method of contouring structures would be useful to
improve the efficacy of these systems. Manual segmentation
is too time-consuming,making rapid imaging and automated
target delineation very attractive for motion management in
radiation therapy.

A typical four-dimensional (4D) data for radiation treat-
ment planning in lung cancer includes 10 phases (separated
by 10% difference from 0 to 100% of the breathing cycle)
and approximately 100 images per phase. To estimate target
volume and motion, contours for the gross target volume
(GTV) are required on all the phases of the 4D data.
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Manual contouring often used for contouring GTV suffers
from being very time consuming and subject to intra- and
interobserver variability [6]. Reproducibility of the results
with manual contouring is challenging due to variations in
the experience and training of radiation oncologists. The
problem of segmentation is accentuated by the complexity
of tumor geometry and by the relatively similar intensity
of the tumors as compared to the surrounding tissues or
organs. Importantly, manual segmentation is prone to bias
and error and is not suitable for rapid, adaptive treatment
planning. The use of autocontouring algorithms is very
attractive for introducing dynamic assessment of target
shape, volume, and position.This work focuses on the design
and implementation of computationally efficient automated
image segmentation algorithms for rapid assessment of the
shape, volume, and position of the target for radiotherapy
planning using 4DCT.

Accurate delineation of the GTV is crucial in treatment
planning because the construction of both the clinical target
volume (CTV) and the planning target tumor volume (PTV)
is based on the GTV. During the radiotherapy process, tumor
regression often occurs, and when the change is beyond
some threshold, the contours should be adapted to the new
GTV. Similarly, accurate delineation of the tumor volume
during the different phases of breathing cycle is crucial to
reduce margins added around the clinical tumor volume.
Further reduction inmarginwould be anticipated to decrease
integral radiation dose, mitigating potential acute and late
side effects to organs at risk (OAR), and allowing further
dose escalation as indicated. The specific tumor trajectory
and position often changes from day to day and during the
delivery of radiation therapy treatment. When small margins
are used, such variability may be detrimental when the
treatment target is inmotion. Intrafraction tumormotion due
to the respiratory cycle and cardiac motion and interfraction
differences in the patient’s position, anatomy, tumor size, and
shape during the course of treatment often result in subopti-
mal delivery of the planned radiation dose. Often in practice,
an extended volume envelope is used to address the problem
of uncertainties due to motion. Unfortunately, this increase
in treatment volume limits the patient tolerance dose. Rapid
and automatic delineation can therefore improve clinical
workflow and efficiency, which can eventually improve the
therapeutic ratio.

The state of the art for obtaining CT contours particularly
in a 4DCT is deformable registration [7–9] based segmen-
tation. These algorithms use manually created contours on
one phase of 4D data to automatically segment the target
volume(s) in the other phases of 4D data [10]. Deformable
image registration delineatesmotion of any internal structure
aswell as deformation from the reference phase to each phase.
This registration procedure outputs deformation maps, that
is, voxel-to-voxel displacement between the reference image
and each phase image. One limitation of deformable registra-
tion approach for application in adaptive treatment planning
is that, before the deformable registration method can be
used to determine target motion profiles, there is a need to
manually segment one phase of the 4DCT data. Another
limitation of deformable registration is that it is generally

computationally complex. In this work we design and imple-
ment novel computationally efficient automated segmenta-
tion algorithms that do not require manual contouring on
one phase of 4DCT data. We apply these autocontouring
algorithms to quantify changes in volume/position of the
target during free breathing.

2. Methods and Materials

Nine lung cancer patients were imaged using 4DCT protocol
under free-breathing condition with a GE Discovery Light-
Speed CT Scanner (GE Healthcare Waukesha, WI) under
the request of a physician interested in target motion. An
appropriate institutional review board (IRB) approved the
study. The imaging parameters include slice thickness of
2.5mm, an energy of 120 kVp, and a tube current of 100mA.
Varian Real-time Position Management (RPM) system was
used for acquiring the respiratory waveform for retrospective
binning. The raw data was retrospectively binned using
Advantage 4D software to divide the data into ten breathing
phases.

2.1. Automated Image Segmentation Using Morphological
Processing and Successive Localization. Novel and compu-
tationally efficient morphological processing and successive
localization (MPSL) algorithmswere developed for achieving
automated segmentation of the body, lung, and the tumors
[11, 12]. Morphological operations such as dilation and ero-
sion are computationally efficient. If 𝐴 and 𝐵 are two subsets
in a N-dimensional space, then the morphological operation
such as dilation and erosion on subset 𝐴 with a structuring
element 𝐵 is mathematically represented as

Dilation : 𝐴 ⊕ 𝐵

= {𝑐 ∈ 𝑍
𝑁
| 𝑐 = 𝑎 + 𝑏 for some 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} ,

Erosion : 𝐴Θ𝐵 = {𝑥 ∈ 𝑍𝑁 | 𝑥 + 𝑏 ∈ 𝐴 for every 𝑏 ∈ B} .
(1)

The following sections describe the utilization of these
operations to achieve automated segmentation.

2.1.1. Segmenting the Tumors. Initially, the intensity range
for the tumors and the surrounding regions were defined.
In general, this a priori information required for automated
segmentation can be obtained using the images from a prior
CT scan. If there were no overlaps between the intensity
range for the tumors and the surrounding regions, then
a threshold on the maximum/minimum intensity would
segment the tumors. However, in general there will be an
overlap between the two intensity ranges. Therefore, a binary
mask that includes the regions with intensity values within
either of the two intensity ranges was generated.

The binarymask generated above was then eroded to pro-
duce disjoint regions.The amount of erosion was determined
empirically by performing the erosion operation in a popula-
tion of individuals. Each of the separate regions in the disjoint
region datawas then labeled and the volumeoccupied by each
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Figure 1: Morphological processing based automated segmentation approach for contouring the tumors. The center of geometry of the
segmented tumors is useful for quantifying tumor motion between different phases.

labeled region was determined; that is, after morphologically
separating the tumors using erosion, the different regions
were labeled (using the union-find algorithm [13]) and then
the morphologically connected regions and their volumes
were calculated.The labeled regions were analyzed to identify
the tumor region.This analysis process identifies regions with
volumes close to the range of typical tumor volumes; that is,
a limit on the maximum/minimum possible volume of the
tumors was used as a filter to isolate the tumors.This filtering
based on size removes nontumor regions. This identification
can be supplemented with tumor location data if known.

Themask obtained above was dilated by the same amount
as the prior erosion to obtain the tumor segmentation; that
is, the erosion is reversed through a dilation to restore the
tumors to their approximate original size.

The inputs needed for this algorithm are the minimum
and maximum intensity threshold values for the tumor
and surrounding regions (for generating a mask), the min-
imum and maximum limits for tumor volume, and the
erosion/dilation radius (for morphological processing). The
optimal input values for erosion/dilation radii and threshold
rangeswere empirically chosen.The algorithmwas developed
to work at both 2 and 3 dimensions.

Figure 1 shows the flowchart for the above described seg-
mentation procedure in a specific example. The empirically
chosen threshold ranges create a binary image, including
the tumor and surrounding tissue with a direct connec-
tion between them. Image erosion (shown in Figure 1(b))
removes the connection between the tumor and the lung
wall. The result is a postmorphologically processed image
with separated tumors. All independent regions (noncon-
nected volumes) are labeled (Figure 1(c)) and the volume of
each disconnected region was calculated (Figure 1(d)). The
expected range of tumor volume provided as input allows for
localizing the tumor among the labeled regions (Figure 1(e)).
Morphological dilation restores tumors to the original size
after tumor identification (Figure 1(f)).

2.1.2. Phantom Validation. The MPSL algorithm was vali-
dated using a phantom experiment.The LUNGMAN anthro-
pomorphic chest phantom (Figure 2) was used for the val-
idation. A 6-cm diameter sphere of virtual water was used
to simulate the GTV. TheWashington University 4D Motion
system [14] generated realistic motion profiles, while 4DCT
scans were acquired. Figure 2 shows the experimental setup.
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Figure 2: Experimental setup for validating MPSL-based motion and volume quantification using anthropomorphic chest phantom and the
Washington University 4D motion system.

2.2. Ground-Truth Generation via Manual Contouring. The
GTV contours generated by the MPSL algorithm were com-
pared with the contours manually drawn on the different
phases of the 4D data, considering the manual contours as
“ground-truth.” ITK-SNAP [15] was used to generate manual
contours. Manual contours took 1–5 minutes per phase to
complete depending on the size of the GTV. The manual
contours were generated by one of the investigators (DS).
Interobserver variation in generation of manual contours is
expected, as shown in other studies [16, 17].

2.3. Deformable Registration Based GTV Segmentation.
Deformable image registration (DIR) based GTV contours
were generated using Elastix© software (a toolbox for
deformable image registration) and MIMVista software for
comparisonwith the results fromour algorithm.Manual con-
tours were drawn on the first phase of 4DCT data and were
then propagated to the other phases usingDIR. Elastix© used
a b-spline transformation basedDIR algorithmwith amutual
information similarity metric and rigid penalty described by
Staring in 2007 [18]. MIMVista used intensity-based free-
form VoxAlign Deformation Engine, previously used in the
literature, for propagating manually drawn contours on one
phase to the remaining phases in the dynamic study [19, 20].

2.4. Motion Estimation. The target volumes as well as the
center of geometry (COG) positions were recorded by com-
puting theGTVcontour statistics.TheCOGof the segmented
targetwas used as ameasurement of theGTVposition, so that

GTV trajectory can be estimated. The GTV trajectory (the
trajectory of theCOGof theGTV)was estimated usingMPSL
method and was compared with the trajectory generated
using MIMVista.

When using MIMVista the GTV in one phase was
contoured in a semiautomated manner and the GTV in the
remaining phases was segmented using deformable registra-
tion. The semiautomated segmentation of the GTV on one
phase was performed as follows. A threshold of −83 HU
was initially used, allowing voxels with intensity values above
that threshold to be included in the contours for the GTV.
Next, manual adjustments were made to fill in holes that
were erroneously excluded from the GTV and to delete parts
of normal anatomy that were included. Then, MIMVista’s
4DCT adaptive recontouring tool was used to propagate the
contours to the other phases.

2.5. Statistics. The comparison between GTV contours gen-
erated using MPSL and deformable registration based seg-
mentationwere comparedwith ground-truth usingDice sim-
ilarity coefficient. Sensitivity, positive-predictive value (PPV)
and accuracy in volume quantification were also compared
for the contouring methods. The sensitivity measured the
fraction of the voxels in the ground-truth that the automatic
contour (MPSL/DIR based) included.The PPVmeasured the
fraction of voxels inside the automatic (MPSL/DIR based)
contour that were “true positives” (points in the ground-truth
contour).



Radiology Research and Practice 5

Table 1: Dice similarity coefficients, sensitivity, and PPV between GTV contours generated with the proposed MPSL method and DIR based
segmentation.

Case number
Dice Sensitivity PPV

MPSL
versus
manual

DIR versus
manual

MPSL
versus DIR

MPSL
versus
manual

DIR versus
manual

MPSL
versus DIR

MPSL
versus
manual

DIR versus
manual

MPSL
versus DIR

1 0.882 0.984 0.885 0.836 0.979 0.843 0.933 0.988 0.931
2 0.872 0.914 0.856 0.805 0.907 0.796 0.950 0.921 0.925
3 0.860 0.915 0.877 0.801 0.878 0.850 0.929 0.955 0.906
4 0.941 0.941 0.914 0.901 0.956 0.863 0.984 0.927 0.971
5 0.825 0.949 0.823 0.723 0.963 0.711 0.962 0.935 0.975
6 0.845 0.841 0.792 0.876 0.945 0.737 0.816 0.758 0.855
7 0.854 0.929 0.830 0.775 0.926 0.755 0.951 0.931 0.921
8 0.887 0.885 0.828 0.899 0.954 0.781 0.875 0.825 0.880
9 0.819 0.826 0.785 0.830 0.932 0.713 0.809 0.742 0.873
Average 0.865 0.909 0.843 0.827 0.938 0.783 0.912 0.887 0.915
St. dev. 0.037 0.051 0.043 0.059 0.031 0.059 0.064 0.089 0.042

(a) (b)

Figure 3: Comparison of automated contouring methods with ground-truth in case 1. (a) Manual contour (red) compared with MPSL
(turquoise) based segmentation of GTV. (b) Manual contour (red) compared with DIR based contour (turquoise).

3. Results

3.1. Accuracy Comparison. In the phantom experiment, the
volume and COG motion profiles estimated by the MPSL
algorithm were within 5% error of the known ground-truth
values.

The accuracy of the contours generated using MPSL
and DIR based segmentation in patients was estimated by
calculating the Dice similarity coefficient, as well as the
sensitivity and PPV in comparison to the ground-truth.

Table 1 shows the results for the nine cases. The two-
sided paired 𝑡-test for statistical difference between the Dice
coefficients ofMPSL andDIRmethods resulted in a𝑃 value of
0.024. Similarly, the𝑃 values for statistical difference between

MPSL and DIR based methods for Sensitivity and PPV were
0.006 and 0.104, respectively.

Figures 3, 4, and 5 shows the GTV segmentation using
MPSL algorithm and DIR based segmentation for three
representative cases.

Segmentation methods based on thresholding and
region-growing would fail in the case shown in Figure 3 due
to large connection between GTV and the rest of the body.

3.2. Time Performance Comparison. The time for the auto-
matic segmentation of the GTV using MPSL in the 9 cases
considered in this study was 24.2 ± 6.1 seconds per phase.
In the case of DIR based segmentation of GTV, the manual
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(a) (b)

Figure 4: Comparison of automated contouring methods with ground-truth in case 2. (a) Manual contour (red) compared with MPSL
(turquoise) based segmentation of GTV. (b) Manual contour (red) compared with DIR based contour (turquoise).

(a) (b)

Figure 5: Comparison of automated contouring methods with ground-truth in case 3. (a) Manual contour (red) compared with MPSL
(turquoise) based segmentation of GTV. (b) Manual contour (red) compared with DIR based contour (turquoise). Notice that diaphragm
with similar intensity as that of the GTV was not included in the contour by the MPSL algorithm.

contouring on the first phase using ITK-SNAP took 153.4 ±
153.2 seconds (note that the large standard deviation in the
time formanual contouringwas due to one outlier case which
had GTV spanning over many slices and it took 538 seconds
to manually contour the GTV).The DIR based segmentation
using Elastix© software took 142.3±11.3 seconds to calculate
the deformation map and then transform the contour from
the first phase to one another phase.

3.3. Motion Quantification. Figures 6 and 7 show the quan-
tification of GTV motion in 𝑥, 𝑦, and 𝑧 directions using

MPSL for two representative cases. The MPSL based motion
estimation was compared with motion estimation performed
using ground-truth. In the result shown Figure 6 the ground-
truth in all the different phase volumes was manually
contoured, whereas, in Figure 7, the tumor in the volume
corresponding to 40%phase wasmanually contoured and the
contours were propagated to other phases using deformable
registration.The figures show thatMPSL segmentation based
tumor position and volume quantification results are strongly
correlated with the quantification results derived using
MIMVista.
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Figure 6: Good agreement of MPSL based estimation of GTV position and volume quantification with MIMVista based estimation for
different phases of the 4DCT scan shown in a patient with 15cc GTV.

4. Discussion

MPSL-based segmentationwas developed for rapid and accu-
rate contouring of the GTV in different phases of 4DCT data.
High Dice similarity (0.865 ± 0.037) with ground-truth and
processing time of less than half a minute show the potential
of MPSL for improving workflow in radiotherapy planning.
MPSL method also achieved high sensitivity (0.827 ± 0.059)
and PPV (0.912±0.064).TheMPSL algorithm achieved rapid
segmentation in time scales shorter than the state-of-the-art
deformable image registration based segmentation methods.
In the case of a single 512 × 512 image, MPSL segmentation
was achieved in time scale of a tenth of a second. For a 3D
volume with in-plane resolution of 512 × 512 and 80–100
slices segmentation was achieved in less than 30 seconds.
Furthermore, MPSL does not require manual contouring
on one phase for propagating to other phases, facilitating
efficient use without need for previous segmentation. The
method is also less subjective.Therefore, the algorithm could
be used in scenarios where fast contouring of the GTV is
needed.

The paired 𝑡-test showed statistically significant differ-
ence for Dice coefficients and sensitivity between DIR and
MPSL based segmentationmethods. However, both had high

values for Dice and sensitivity. DIR based segmentation was
statistically closer to ground-truth as compared to MPSL
based segmentation, but with nearly sixfold increase in the
processing time. Furthermore, the cases with the greatest
difference in the Dice similarity coefficient between MPSL
and DIR based methods were the cases where a large region
of the GTV was attached to the wall of the lung. In such
cases, delineation of GTV in the “ground-truth” tends to
be subjective. Hence, if the manual GTV contours on first
phase are registered using deformable registration, higher
agreement with ground-truth is expected as compared to
MPSL because of the subjectivity propagated to the other
phases. In those cases, the automatic segmentation algorithm
makes morphological conclusion as to where the boundary
will be, where the manual segmentation is bound to be
subjective. In our data there were two such cases out of the
nine. Omitting those two cases in the paired 𝑡-test analysis
showed no statistical difference (𝑃 value of 0.09) between
the Dice similarity coefficients from MPSL and DIR based
methods.

In this work we have not used user-input to find the
location of the GTV, which is attractive for ease and repro-
ducibility. However, the algorithm could be modified to
use input information regarding the location of GTV to
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Figure 7: Good agreement of MPSL based estimation of GTV position and volume quantification with MIMVista based estimation for
different phases of the 4DCT scan shown in a patient with 6cc GTV.

further improve the speed and accuracy. Hence, a tool has
been implemented in the software for the user to provide a
“click” inside the tumor as a starting point, which allows the
algorithm the parallel ability to use the local neighborhood
intensity values as a range for thresholding. Similarly, if
preexisting GTV contours on earlier scans do exist, a rigid
registration, which is much faster than DIR, could be applied
to get input information about the target location.

The computation complexity ofMPSLwas comparedwith
DIR based segmentation algorithms available in Elastix© and
MIMVista software. There are other nonrigid registration
algorithms such as diffeomorphic symmetric normalization
(DSN). Comparison of DSN methods is beyond the scope of
this work. Parallel processing and multithreaded approaches
could be used to reduce the computational tim But we have
not explored those approaches. The algorithms developed in
this work are applicable to MR data and CBCT in addition to
4DCT data used in this work. Future work would explore the
use ofMPSL approach for real-time segmentation of GTV on
MR and CBCT data.

5. Conclusion

Automated and rapid generation of GTV contours using
the MPSL algorithm may be advantageous for a number

of scenarios including adaptive radiotherapy planning. The
MPSL method achieved similar segmentation accuracy as
compared to state-of-the-art deformable registration based
segmentation methods, but with significant reduction in the
computation time.
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