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Abstract

Scientists are assembling sequence data sets from increasing numbers of species and genes to build comprehensive
timetrees. However, data are often unavailable for some species and gene combinations, and the proportion of missing
data is often large for data sets containing many genes and species. Surprisingly, there has not been a systematic analysis
of the effect of the degree of sparseness of the species–gene matrix on the accuracy of divergence time estimates. Here, we
present results from computer simulations and empirical data analyses to quantify the impact of missing gene data on
divergence time estimation in large phylogenies. We found that estimates of divergence times were robust even when
sequences from a majority of genes for most of the species were absent. From the analysis of such extremely sparse data
sets, we found that the most egregious errors occurred for nodes in the tree that had no common genes for any pair of
species in the immediate descendant clades of the node in question. These problematic nodes can be easily detected prior
to computational analyses based only on the input sequence alignment and the tree topology. We conclude that it is best
to use larger alignments, because adding both genes and species to the alignment augments the number of genes
available for estimating divergence events deep in the tree and improves their time estimates.
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Introduction
Estimating species divergence times is important to under-
standing the history of life. Because of the ease of sequence
data acquisition and our ability to statistically model the evo-
lutionary patterns of change, molecular sequences have
become most widely used for this purpose (Kumar and
Hedges 1998; Cracraft and Donoghue 2004; Kumar 2005;
Douzery et al. 2006). Several programs and methods have
been developed using varying underlying models of evolution
(including patterns of evolutionary rate variation) to analyze
such data sets, which have been applied to all major groups of
organisms (Sanderson 1997; Rambaut and Bromham 1998;
Kishino et al. 2001; Sanderson 2002; Thorne and Kishino 2002;
Rutschmann 2006; Drummond and Rambaut 2007; Hedges
and Kumar 2009; Battistuzzi et al. 2010; Brown and Yang 2011;
Tamura et al. 2012). Most molecular sequence data sets avail-
able for building timetrees are rapidly growing in terms of
both genes and species represented. However, they are fre-
quently sparse; that is, the sequences from orthologous genes
and genomic segments are not available for all the species
included (Yoder and Yang 2004; Sanderson et al. 2010). This is

primarily due to sampling bias but also may be caused by
gene loss and gain in some lineages. We refer to such data sets
as having incomplete coverage.

Interestingly, systematic assessment of the impact of miss-
ing data on divergence time estimation remains to be studied,
even though the effects of such missing data on the accuracy
of inference of evolutionary tree topology and branch lengths
have been extensively studied for over a decade with mixed
results (Philippe et al. 2004; Lemmon et al. 2009; Wiens and
Morrill 2011; Wiens et al. 2012; Roure et al. 2013). If the neg-
ative effects of missing data on divergence time estimation are
substantial, then it would be necessary to devise criteria to
select subsets of species and genes for inclusion in the data set
so as to reduce data sparseness (fraction of missing data in the
gene-by-species matrix) and achieve higher accuracy of time
estimation. In contrast, if the accuracy of time estimates is not
adversely affected by the missing data for many genes in dif-
ferent species, then the prospects of building very large trees
encompassing thousands of species, even those that have not
been extensively sequenced.

Therefore, we conducted computer simulations to esti-
mate the change in the accuracy of divergence time estimates
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produced by the RelTime method (Tamura et al. 2012) when
the sequence data set becomes progressively smaller, either
because of sparseness of the data matrix or the availability of
fewer numbers of genes. This was done for simulated data sets
that contain genes exhibiting extensive evolutionary rate dif-
ferences among lineages (randomly varying rates [RRs] as well
as autocorrelated rates [ARs]). We have augmented these
analyses by using an empirical sequence data set to evaluate
the applicability of simulation results to real data sets. Our
results point to brighter prospects for inferring large timetrees
than intuitively anticipated, as even extremely sparse data sets
containing many genes often allowed robust divergence time
estimation.

Results
We assessed the absolute and comparative accuracy of diver-
gence time estimates by means of computer-simulated align-
ments that contained data from a realistic binary

phylogenetic tree of 446 taxa (Tamura et al. 2012). Here,
substitution parameters obtained from a natural sequence
set were used. We considered three evolutionary rate scenar-
ios: Constant rate (CR) among lineages, stochastically varying
ARs among lineages, and uncorrelated RR. (See fig. 1 and
Materials and Methods for more details.) The resulting align-
ments (CR, AR, and RR) were analyzed using the RelTime
software (Tamura et al. 2012), which can rapidly infer time-
trees for data sets containing hundreds of species when com-
pared with other approaches (Thorne and Kishino 2002;
Drummond and Rambaut 2007) requiring prohibitively
large computational time (Tamura et al. 2012). When multi-
ple genes were used, sequences from the genes were conca-
tenated together into a supergene and subjected to RelTime
analysis.

As the initial benchmark, we considered the simplest situ-
ation, where we had multiple independent genes, with each
one evolving at an expected CR (which differed from gene to

FIG. 1. Model tree and substitution patterns. (A) A 446-taxa phylogeny used for computer simulations. (B) Distribution of node divergence times (solid
line) in the tree. The dashed line represents the distribution of elapsed time along branches of the tree. (C) Distribution of simulated gene alignment
length, based on empirically observed gene lengths. (D) Rates were varied in the simulations to span a variety of models and evolutionary patterns.
Because we generally do not have knowledge of actual rate variation patterns in real situations, we used three types of simulated evolutionary rate
variation: As a baseline, a CR scenario, one in which the rate variation among branches was autocorrelated (AR), and one in which the (expected)
evolutionary rates varied independently on each branch based on a uniform distribution, as described in Materials and Methods. A histogram is shown
of the distribution of simulated rates in each case, with the nominal rate set equal to 1.0. In the CR case, the length distribution would be represented by
a single bin at x = 1.0.
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gene) and with each gene having sequences available for all
the species. This is the case of zero sparseness and CR evolu-
tion. When multiple genes are used together in RelTime, the
percent estimation error (averaged over all internal nodes in
the tree) decreased with the number of genes, flattening out
as more genes were added (fig. 2A). A negative power curve
relates the number of genes to the average percent error. Use
of a single gene produced an average error of less than 5%,
whereas the addition of more genes resulted in a gradual
reduction of error rate with a diminished rate of improve-
ment after ten genes at which point the average estimation
error was approximately 2%.

We then evaluated the error of time estimates under the
other two rate models. Although AR and RR showed trends
similar to CR, the average estimation errors for the AR and RR
data sets were considerably greater (fig. 2A–C). The maximum
error was over three times as large compared with the CR case
and the slope was shallower. The presence of rate variation
among lineages had a dramatic effect on the number of genes
needed for more accurate time estimates, as AR and RR rate

variation models did not achieve an overall average error rate
of 5% even with 40 genes. It is important to note that the
number of genes needed for reliable time estimates will vary
from study to study. Although we have mentioned the aver-
age numbers of genes needed to achieve specified levels of
accuracy, and used a large and realistic phylogenetic tree and
genes with empirical evolutionary parameters, other particu-
lar data sets will have unique features and the same numbers
may not apply. In such cases, though, the RelTime method is
efficient enough to allow a succession of test runs with in-
creasing numbers of genes to be done until time estimates are
observed to stabilize.

In addition to the average overall error in the timetree, we
also examined the distribution of errors observed for individ-
ual nodes for varying numbers of genes (fig. 2D–F). In CR
simulations, we found that a large majority of nodes were
timed with less than 5% error when three or more genes are
used, none having more than 20% error. Therefore, a greater
number of genes appear to be not required. In the variable-
rate cases, however, there was still a strong central tendency,

FIG. 2. Error of divergence time estimates with increasing number of genes. Error (�NT) is measured as 100� (HEST�HTRUE)/HTRUE, where HTRUE and
HEST are the true and estimated node heights (divergence times), respectively. (A–C) The mean estimation error for the entire tree by number of genes
used for the different rate variation models. Error bars correspond to the standard deviation estimated from five replicates, each from a different sample
of genes and rate assignments. In the CR case, only two genes are needed to achieve an average error of less than 5%. We used two additional, variable-
rate models for sequence generation, RR and AR. In both of these cases, over 40 genes are needed to achieve a maximum average error of less than 5%,
but only around 15 to bring error below 10%. (D–F) Distributions of the signed percentage divergence time estimation error of nodes for 1-, 3-, 10-, and
20-gene alignments. When more genes are used, the variance decreases, but a strong central tendency persists. In the CR and RR cases, there is little
difference to be seen in the distributions between the 10- and 20-gene cases.
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but the error distribution had more spread (up to a 40% error
rate for a few nodes in the three-gene case). So, clearly a larger
number of genes is necessary to obtain reliable estimates.

To explore the effect of missing data on divergence time
estimation, we deleted a specified fraction of sequences ran-
domly selected from each gene in the alignment. The per-
centage of sequences deleted is referred to as the sparseness
in the data set, and its complement as the coverage in the
data set. Figure 3A–C shows the effect of 20% and 60% sparse-
ness on the mean error for data sets containing 2–40 genes.
The effect of 20% sparseness on the average error was almost
negligible, which is consistent with results from previous stud-
ies where the deletion of 25% of the data introduced, on
average, less than 3% additional error (Douzery et al. 2004),
see also Wiens and Morrill (2011), Wiens et al. (2012), and
Roure et al. (2013). However, 60% sparseness had a consider-
able impact on the total error, which was substantially greater
along the length of the curve and dropped near to the level of

the 20% missing case only after 40 genes were used. In each
case, the estimation error increased steadily with missing data
for the given number of genes in CR, AR, and RR.

We also examined whether the properties of time estima-
tion for empirical data are similar to that observed for simu-
lated data by using a mammalian data set consisting of amino
acid sequences from 162 taxa and 21 proteins (Meredith et al.
2011). In the original data set, sequences were available from
each gene for each species (0% missing genes). In this case, we
compared the estimates obtained using all the data with es-
timates using incomplete data (60% sparseness). Consistent
with the computer simulated data, the results obtained with
this sparse data were remarkably similar to those obtained
using all available data (fig. 4A).

For the mammalian data, we also performed a more sys-
tematic form of sampling, because data availability for genes
is sometimes highly variable among clades. In this case, we
retained one randomly selected “backbone” gene with

FIG. 3. Effect of data sparseness on error. TE refers to time elapsed on a branch. (A–C) For each rate variation model and three different sparseness levels,
the decline in error as more genes are added. In the CR case, there is virtually no difference between full data and 20% sparseness. 60% sparseness has
considerably more error for fewer than ten genes, but as the number of genes increases, the error also converges to the full data levels. The RR situation
is very similar but with error generally elevated over the CR case. AR shows a somewhat more pronounced difference between the full data and the 60%
sparseness cases. (D–F) In these panels, we show the distributions of time estimate errors not for nodes, but for branches, in two cases, four genes with
full data, and ten genes with 60% sparseness. In each case, there is the same number of sequences and taxa. We see that the distributions are virtually
identical within each rate class, except for the left tail (�100% error case). These are cases in which the estimated branch lengths are zero. These are
branches associated with nodes with zero data coverage (no genes with species in common to both child clades of the node). Such nodes have a
substantial effect on mean error, but they can be easily detected a priori.
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sequences for all species but sampled sequences from the
remaining gene in such a way that no pair of genes had
more than one mammalian order in common (see
Materials and Methods for more detail). The resulting data
set had approximately 90% sparseness, and multiple such
data sets were generated. For this extreme case of missing
data for 20 mammalian genes combined with one backbone
gene, the time estimates showed a linear relationship with the
times obtained from the fully sampled data set (fig. 4D). The
overall accuracy with backbone was much better than the
case where no backbone was used (fig. 4C). In the latter case,

the error was 33% rather than 16%, and the correlation coef-
ficient between the fully sampled and the systematically sam-
pled data was reduced significantly (R2 change from 0.98 to
0.70). Overall, the inclusion of a backbone gene along with
many genes with systematic low coverage among clades pro-
duces results that appear to be quite similar to the case where
genes are missing randomly among species (fig. 4F). Therefore,
the average error in time estimation across the tree decreases
substantially by adding a backbone (fully sampled) gene in the
analysis of the sparse mammal data set. We found the de-
crease in error to be a function of the amount of information

FIG. 4. Results for amino acid divergence-time analyses of the 21-locus empirical data set of Meredith et al. (2011; see Materials and Methods for details).
NT refers to relative time estimates of node divergence times. (A) Time estimate scatter diagram for analysis using the full set of 21 genes with 60%
sparseness. In this case, because true divergence times are unknown, truth is taken to be the full-coverage case with all data. The R2 coefficient of
determination is 0.98. (B) Depiction of the mammalian clades used for the systematic sampling. Nineteen of the clades are marked by black diamonds,
and the 20th is taken to be all of the remaining taxa. Each gene contains sequences for exactly two orders, assigned so that for each gene g0, there exists
exactly one gene g1 and another gene g2 such that g0 shares exactly one clade with g1 and the other clade with g2. In this case, there is strictly limited
species overlap among genes. We then added one “backbone” gene with a sequence for each taxon. The phylogenetic tree in the figure is based on the
one that appears in Meredith et al. (2011). (C) Time estimate scatter diagram for analysis under the systematic sampling method described in the text,
but without inclusion of the universal “backbone” gene. Again, truth is taken to be the full-coverage case with all data. (D) Time estimate scatter
diagram for analysis under the systematic sampling method described in the text but in this case with the universal backbone gene. Resultant sparseness
(percentage gaps in the data matrix) is approximately 90%. As before, truth is taken to be the full-coverage case with all data. We see that the R2

coefficient (0.9) is much higher than in the case without backbone (0.7). (E) Effect of evolutionary rate of backbone gene on mean divergence time
estimation error. Our mammalian data set contained 21 genes, each of which was used in turn as a backbone gene (black markers in the graph). The x
axis represents the total number of substitutions observed for that gene and the y axis represents the total error of the resulting time tree. Gray markers
represent 20-gene data sets without the backbone gene for each case (x value). Regression lines are fit to both sets of results and have R2 values of 0.1
and 0.4 for the no-backbone and backbone case, respectively. We see that the use of the backbone gene is effective in reducing error and that faster-
evolving backbone genes tend to be more effective than slowly evolving ones. (F) Distribution of signed error in the 60% sparse case when compared
with the systematically sampled case with backbone. As we might expect from the fact that the systematic case is effectively 90% sparse, we see more
spread to higher error in that case.
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(substitutions) added by the backbone gene (fig. 4E), which is
reasonable because slowly evolving, short genes will add less
additional information when compared with faster evolving,
long genes in the mammalian data set analyzed. The figure
shows no significant relationship among the 21 replicates
without backbone (gray markers), but when backbones are
added, the error declines substantially, with the greatest re-
duction for the fastest evolving backbones.

Discussion
Using simulated sequence data based on realistic gene pa-
rameters and phylogenetic trees, we have found that the av-
erage divergence time estimation error declines with the
number of genes used, as expected. We have also demon-
strated that moderate amounts of missing data have a neg-
ligible effect on the accuracy of time estimates and that even
data sets with a majority of genes missing for each species can
yield good time estimates. We also found that the majority of
error in data matrices with a high proportion of missing se-
quences is primarily due to a much higher error in estimating
the time elapsed on some branches, many of which fall on the
left tail of the histograms in the sparse case (ten genes with
60% sparseness) when compared with the full-coverage case
of four genes with 0% sparseness (fig. 3D–F).

We explored the characteristics of the sparse data for
nodes flanking these branches and found that these grossly
underestimated branches were connected with clades for
which the node data coverage was zero, that is, there were
no genes for which sequences were available from at least one
species from both of the child clades of the node (fig. 5). In
these cases, no sequence data exist to estimate the length of
such branches and the estimate of time elapsed on the asso-
ciated branch became zero, resulting in a 100% underestimate
(node with 0 in fig. 5). We refer to these nodes as having zero
data coverage and the large error in their estimation

contributes the great majority of the total error in the
sparse data sets. We confirmed this trend in another way.
Our simulation analysis of ten genes with 60% sparseness
yields time estimates for nodes with varying levels of data
coverage (0–10 genes). The error in the resulting estimates
can be compared directly with time estimates for the respec-
tive nodes obtained using results from simulated data sets of
one to ten genes with no missing data (0% sparseness). The
amount of error normalized by the true divergence time in
these two scenarios was very similar (fig. 6B–D), which means
that the primary difference in accuracy between extremely
sparse and complete data sets is caused by nodes with no (or
very little) data coverage. These zero data coverage nodes
tend to be at relatively shallow positions in the tree because
of small clade sizes (fig. 6A) but some exist deeper in the tree
because some deep nodes have one descendant with very few
species. Fortunately, we can identify zero and low data cov-
erage nodes based only on the sequence data and the tree
topology by scanning the input sequence alignments. We
recommend that the divergence times for such problematic
nodes be presented as ranges of times from ancestral and
descendant nodes with high data coverage. (Of course, the
best solution is to reduce the sparseness of the data matrix.)

It is not surprising that simply deleting data from the
matrix increases the mean error. A more interesting compar-
ison is made when two data sets have the same number of
sequences but are allocated differently in the data matrix. For
example, a ten-gene data set at 60% sparseness has as many
gene sequences as a four-gene data set with no missing data
(0% sparseness). The former incurs error rates of 7.5%, 19.0%,
and 20.5% for CR, RR, and AR, respectively, whereas the latter
has somewhat lower error rates of 3.5%, 17.7%, and 15.2%. So,
there was some, but relatively little, added penalty for sparse-
ness per se. We dissected these differences further by exam-
ining the distribution of the errors in the estimate of time
elapsed on individual branches in the phylogenetic tree
(fig. 3D–F). Interestingly, the error histograms were nearly
identical within each rate model, except that there was a
dramatic increase in the number of nodes with a 100% un-
derestimate of time. On the other hand, we did not find any
consistent trends of error differences between young versus
old nodes and nodes with different number of species in the
clade. For example, in an analysis averaging six
simulated timetrees (CR, AR, and RR, full and sparse), and
excluding nodes with zero data coverage, young (<40 Ma)
two-species nodes show an error rate of 16%, which is similar
to that of old (>190 Ma) two-species nodes (14%).
Species-rich nodes (ten taxa) showed similar error rates to
species-poor nodes (two taxa) (16% and 15%).

Although we have primarily discussed the influence of zero
data coverage on the accuracy of divergence time estimation,
we would expect our observations to apply to phylogenetic
tree reconstruction when using sparse data as well. Nodes
with zero data coverage will effectively lead to the zero-
length branch problem in the “realized” trees, where the
true phylogenetic partitions induced by such zero-length
branches (not related to data sparseness) contributed exten-
sively to the overall error, see Kumar (1996) and Kumar and

FIG. 5. Node data coverage. The data coverage for any node in the
phylogenetic tree is the number of genes that directly contribute to
the time estimation for that node. A gene is considered to contribute to
time estimation for a given node if it has sequences from at least one
species pair, one each from the two immediate descendant clades. The
figure shows a tree and corresponding data matrix, with genes g1 to g4

and species S1 to S5. Not all genes are available for each species. Available
sequences are designated by check marks and missing ones are indi-
cated by dashes in the matrix. Numbers in parentheses next to each
node of the tree give the data coverage for that node. We may expect
the time estimate for the node with zero data coverage to be very poor,
since there is no sequence data to estimate the relevant branch length
needed to estimate the divergence time. The best we can say is that it
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Gadagkar (2000). However, to our knowledge, our way of
dissecting the relationship of node-specific data coverage in
sparse data sets and the accuracy of topological inference has
not been presented in recent reports on the impact of missing
data on the topological accuracy. Therefore, we are currently
conducting computer simulations to investigate this phe-
nomenon for inferring phylogenetic trees as well.

In conclusion, we have found that phylogenetic trees with
several hundred taxa can be analyzed using RelTime to infer
accurate estimates of many species-pair divergence times,
even when individual species lack sequences for most genes
in the matrix. When there are many missing sequences, it is
necessary to avoid estimating times for nodes with no data
coverage whatsoever, although times for other nodes may be
estimated with varying degrees of accuracy depending on the
number of genes contributing to the time estimate of each
node. As expected, nodes with the highest data coverage give
the most accurate estimates. We also found that when genes
tend to be clade specific, it is advantageous to have at least
one “backbone” gene with sequences for as many taxa as
possible. Although many of these conclusions, such as the
ones involving data coverage, seem method independent
and so to apply to other approaches, for example, to
BEAST (Drummond and Rambaut 2007), we were unable
to test this directly due to the high-computational demands
of some of these programs. It is best, therefore, to be cautious
and only apply detailed results to the RelTime (Tamura et al.
2012) method studied here. Also, the impact of the use of an
oversimplified (or incorrect) model of substitution, errors in
the tree topology, or the reliability of fossil calibrations will

likely have a substantial impact on the accuracy of times
estimates. Therefore, we have begun a full-scale assessment
of the degree of error introduced by such factors to better
understand the quantitative impact of various realities of
practical data analysis. However, we expect the observations
made here about the effect of missing data and the node data
coverage on time estimation to be qualitatively applicable in
general.

Materials and Methods

Computer Simulation

We conducted computer simulations to generate nucleotide
sequence alignments from a 446-taxon tree, which was de-
rived from the bony-vertebrate clade in the Timetree of Life
from which all polytomies were pruned (fig. 1A) (Tamura
et al. 2012). Figure 1 legend contains a descriptive summary
of characteristics of the data. The distribution of node diver-
gence times is shown in figure 1B (Tamura et al. 2012). Gene
lengths (fig. 1C) and other evolutionary parameters were
drawn from empirically derived data on the number of sites
(range 445–4,439 sites), nominal per-gene evolutionary rates
(range 1.35–2.60 substitutions/site per billion years), GC con-
tent (range 39–82%), and the transition/transversion ratio
(range 1.9–6.01) (Rosenberg and Kumar 2003). Independent
sets of sequence simulations, with five replicates each, were
performed using CR, AR, and RRs among lineages following
the procedures in Tamura et al. (2012). In brief, the actual
number of substitutions on a branch in the model tree was
determined according to a Poisson process with the mean

FIG. 6. (A) A comparison of estimated divergence times based on ten genes and 60% sparseness is shown (RR rate model, other rate models give similar
results). Nodes with zero data coverage are shown in black and have branch length time estimates of zero. These nodes are mostly shallow and have
only a few species with data below them. (B–D) Relation between mean absolute value node time error and node data coverage for sparse (ten genes,
60% sparseness) and full coverage (zero sparseness, number of genes = node data coverage) in the CR, RR, and AR cases. The x axis is the node support
and the y axis is the mean absolute value error for nodes with that amount of support. We see that, controlling for individual node support, there is very
little, if any, difference in error between nodes in a sparse-coverage data set and in the full-coverage context.
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equal to the expected number of substitutions (determined
by average rate and sequence length) in the CR case. In the AR
scenario, evolutionary rates among lineages were autocorre-
lated following Thorne and Kishino (2002) using autocorre-
lation parameter �= 1 (Kishino et al. 2001). The RR case was
simulated with the branch-specific evolutionary rate drawn
from a uniform distribution over the open interval 0�2r,
where r is the original nominal rate for the entire gene. No
within-sequence insertions or deletions were performed. We
used SeqGen (Rambaut and Grassly 1997) under the
Hasegawa–Kishino–Yano (HKY) model (Hasegawa et al.
1985) to generate the simulated sequences. Rate variation
was accomplished by using a special-purpose program to
modify branch lengths in the manner described above in
the trees given to SeqGen for simulation. For multigene anal-
yses, gene alignments were generated separately and conca-
tenated to form supergenes. When sparse matrices were
needed, the required number of individual sequences was
selected at random and corresponding sites were replaced
by missing data characters in the supergenes. Figure 1D
shows the resulting distributions of per-branch rates, where
the nominal rate for each gene is normalized to 1.0, so that
the values on the x axis are rate (speed-up or slow-down)
factors. On the same graph, the distribution for the CR case
would be a single spike at 1.0. The distributions show how the
factors vary over many branches in many trees but do not
show how the branch lengths are autocorrelated in the AR
case.

Molecular Dating Analyses

In all analyses of the simulated data sets, we used the correct
general model (HKY with five gamma rate-variation catego-
ries among sites) of nucleotide substitution and the correct
phylogeny. Time estimates were performed using the RelTime
feature of MEGA 6.0 with maximum-likelihood branch length
estimation and the “use all sites” data option (Tamura et al.
2013). RelTime is already known to perform well, does not
require knowledge of the distribution of the lineage rate var-
iation a priori, and does not require calibration times or their
associated distributions to obtain relative time estimates of
internal tree nodes, although these relative times can be con-
verted to actual times if one or more calibration points (from
fossil data or from other sources) are provided (Tamura et al.
2012, 2013). This means that RelTime produces relative times
of divergences for all nodes in the given phylogenetic tree,
which can be directly compared with the true relative times
that come from the model tree used to simulate the se-
quences. All comparisons of estimated and true times in-
volved relative (not absolute) values. Node heights were
normalized by dividing by the sum of all node heights in
the tree. We calculated the percent error (�E) between the
normalized true node height (T) and the normalized esti-
mated height (E) as �E = 100� (E–T)/T. All runs were
done on an Intel Xeon 2.4 GHz processor under Windows
Server 2012. RelTime run times for the 446-taxon analyses
ranged from 3 processor-minutes for single-gene analyses to

22 processor-hours for the longest concatenations (60 kb).
Runtimes were approximately linear on the number of genes.

Mammalian Data

We also examined whether the properties of time estimation
for simulated data are similar to that observed for empirical
data by using a mammalian data set consisting of amino acid
sequences from 162 taxa and 21 proteins (Meredith et al.
2011). With this data set, we performed two kinds of se-
quence sampling. In the first, we simply deleted at random,
as before, a specified proportion of sequences in the data
matrix, replacing those by sequences of indel characters in
the final supergenes given to RelTime. Second, we performed
a more systematic form of sampling in which we retained, for
each replicate, one randomly selected “backbone” gene with
sequences for all species, but sampled sequences from the
remaining genes in a clade-specific way. This was meant to
reflect the situation where scientists have one or a few widely
sequenced genes with full-species coverage and then some
more clade-specific genes. We implemented this by partition-
ing the set of species in the mammalian data set into 20
disjoint subsets, roughly corresponding to mammalian
orders (fig. 4B). Then, we selected a gene at random to
serve as “backbone” and randomly assigned clades to each
of the 20 remaining genes in such a way that 1) each nonback-
bone gene was associated with exactly two clades, 2) each
clade was associated with exactly two nonbackbone genes,
and 3) each nonbackbone gene shared exactly one clade with
one other nonbackbone gene and no clades with any of the
other nonbackbone genes. The complete sequence data from
the remaining gene was then added to the alignment. The
resulting data sets had approximately 90% sparseness.
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