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Summary

In 2007, there were 33.2 million people around the world living with HIV/AIDS (UNAIDS/WHO,

2007). In May 2003, the U.S. President announced a global program, known as the President’s

Emergency Plan for AIDS Relief (PEPFAR), to address this epidemic. We seek to estimate patient

mortality in PEPFAR in an effort to monitor and evaluate this program. This effort, however, is

hampered by loss to follow-up that occurs at very high rates. As a consequence, standard survival

data and analysis on observed nondropout data are generally biased, and provide no objective

evidence to correct the potential bias. In this article, we apply double-sampling designs and

methodology to PEPFAR data, and we obtain substantially different and more plausible estimates

compared with standard methods (1-year mortality estimate of 9.6% compared to 1.7%). The

results indicate that a double-sampling design is critical in providing objective evidence of

possible nonignorable dropout and, thus, in obtaining accurate data in PEPFAR. Moreover, we

show the need for appropriate analysis methods coupled with double-sampling designs.
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1. Introduction

According to the Joint United Nations Programme on HIV/AIDS (UNAIDS) and World

Health Organization (WHO) statistics, in 2007 there were 33.2 million people around the

world living with HIV/AIDS (UNAIDS/WHO, 2007). Almost 23 million of these live in

sub-Saharan Africa. In May 2003, the U.S. President announced a global program, known as

the United States President’s Emergency Plan for AIDS Relief (PEPFAR), to address this

epidemic, primarily in Africa. In response to this initiative, the U.S. Congress passed the

United States Leadership Against HIV/AIDS, Tuberculosis, and Malaria Act of 2003. Under
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this act, $15 billion were allocated over 5 years (2004–2008). The act calls for an evaluation

of the PEPFAR program, which screens, treats, and follows HIV patients over time.

A key component of the evaluation of the impact of PEPFAR-supported programs on the

HIV epidemic is the estimation of survival for patients under their care. As these are usually

outpatient care and treatment programs that monitor mortality passively, a major obstacle for

their appropriate monitoring and evaluation is patient loss to follow-up, which occurs at

rates as high as 59% (van Oosterhout et al., 2005). Moreover, there is some evidence that

standard analytic methods produce biased results in the sense that the individuals lost to

follow-up (“dropouts”) are generally sicker than those who stay in the study (Touloumi et

al., 2002; Wu, 2007). Thus, estimates derived from passively monitored programs may

seriously underestimate patient mortality (Antiretroviral Therapy in Lower Income

Countries Collaboration and ART Cohort Collaboration groups, 2006) even after adjusting

for covariates measured prior to dropout.

Of course, methods based solely on such passive monitoring can be enriched through

sensitivity analysis (e.g., Rosenbaum and Rubin, 1984; Scharfstein et al., 2001), or joint

parametric modeling of survival and dropout (e.g., De Gruttola and Tu, 1994). Such

methods, however, cannot provide additional objective evidence of nonignorable dropout

(i.e., different survival between dropouts and nondropouts) after conditioning on the

observed (possibly longitudinal) covariates (for an analogous argument, see, e.g.,

Scharfstein et al., 2001, points (b) and (c), p. 406). The important role of double sampling is

that it does provide such objective evidence (e.g., Glynn, Laird, and Rubin, 1993; Hirano,

Imbens, and Rubin, 2001; Scharfstein et al., 2001), although the way to extract this evidence

can be challenging with survival data (Frangakis and Rubin, 2001, FR01 henceforth).

“Double sampling” is a design-based method first introduced in survey research (Neyman,

1938). It aims to address this issue of nonignorable dropout by allocating resources to

intensively pursue and find a sample of observed dropouts. Baker, Wax, and Patterson

(1993) and FR01 both addressed analysis of double sampling in the context of survival data.

In particular, FR01 showed that a bias arises when standard double-sampling methods are

used with survival data; FR01 also derived the empirical maximum likelihood estimator

(MLE) based on minimal data requirements without covariates.

In this article, we apply the double-sampling design to survival data from one of the

PEPFAR-funded sites in western Kenya, with appropriate extensions to allow for covariates

in the design and analysis. We show that we obtain substantially different and more

plausible estimates of patient mortality rates when using the double-sampled data

appropriately. The results indicate that a double-sampling design is critical for accurate data

in PEPFAR and providing objective evidence for possible nonignorable dropout, and that

special methods are critical for appropriate analyses of such data to monitor and evaluate

PEPFAR.

2. Design and Data

Data were assembled by one of us (CY, Principal Investigator of the Regional Data Center

in East Africa1) for a study cohort of 8977 adults who entered the PEPFAR program in
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western Kenya between January 1, 2005 and January 31, 2007. The care and treatment

program and the patient double-sampling (“outreach”) efforts are described in detail

elsewhere (Wools-Kaloustian et al., 2006; Einterz et al., 2007).

The design of our study has two possible “phases” of follow-up for each individual, each

phase corresponding to different intensities of follow-up effort. Figure 1 depicts these two

phases: the diagonal line of the triangle allows visualization of the different entry date of

each individual; and the vertical line represents the common date of analysis, which we label

“study end date. “ For an individual who enters the study, the follow-up effort in the first

phase is at a regular level, meaning we record data from either regularly scheduled follow-

up visits or from finding the alive status with relatively simple effort (e.g., a relative calling

in). In this phase, an individual is either observed to die (individual 1 in Figure 1), or

observed to remain alive until the end of study (individual 3), or else observed to drop out

(lost to follow-up) before death or end of study (individual 2).

In the second phase, we consider the observed dropouts from the first phase. From among

these dropouts, the design selects a subset to be double sampled (individuals 2b and 2c in

Figure 1). This selection can be based on stratification variables. The individuals double

sampled in the second phase are then pursued intensively (e.g., including tracking them even

to their house at remote regions of the country using maps) and are observed either to die

(individual 2b) or to remain alive until the end of the study (individual 2c).

The study in Kenya follows a protocol of deciding when to double sample patients lost to

follow-up according to antiretroviral treatment (ART) start status. If the patient has been on

ART for less than 3 months, then double-sampling efforts start 1 day past the missed visit.

For patients on ART more than 3 months, double sampling begins 7 days past a missed visit.

Finally, for patients not on ART, double sampling begins 28 days past a missed visit. The

team conducting the double sampling consists of HIV-infected patients. This team first tries

to contact the person by telephone and, if necessary, performs a home visit often in remote

areas. In this manner, the patient’s vital status is ascertained. Best attempts were made to

follow this protocol schedule for all patients, although due to a variety of reasons, deviations

from protocol were inevitable. Main reasons included: distance—some patients travel far

from their homes to seek care because of the stigma surrounding the disease; self-return—

some patients returned to the clinic before attempts at double sampling were started; and no

locator information—for some patients, no locator information was available either due to

patient refusal or due to logistical issues. We adjust for covariates predictive of dropout, as

described in Section 4.3. Within levels of the covariates, we assume double sampling is

random. This assumption cannot be checked with the observed data.

3. Framework, Goals, and Assumptions

Here we describe the general framework and goal of our study. To best address the problem,

it is important to consider two types of data—observed data and potentially observable data.

Observed data are those that we actually measure in our study design. Potential data

1Under the auspices of the International Epidemiologic Databases for Evaluation of AIDS (IeDEA) Consortium.

An et al. Page 3

Biometrics. Author manuscript; available in PMC 2014 August 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(Neyman, 1923; Rubin, 1974, 1978) are those that would be observed under different

designs, and the collection of such data describes inherent characteristics of an individual.

Potential Data

Ti = survival time

Ri = potential dropout status if the study were to continue indefinitely under phase 1

follow-up (=1 if no dropout)

Li = potential time to dropout if the study were to continue indefinitely under phase 1

follow-up (<Ti for Ri = 0; defined to equal Ti for Ri = 1),

We assume the study individuals are a random sample from a larger cohort.

Goal

Our target estimand is the survival function for the entire larger cohort, S(t) = P(T > t).

Observed Data

Ei = entry date

Emax = study end date (common across individuals i)

Ci = time between study entry and end, namely, administrative censoring time (Emax −

Ei)

Zi = a function of covariates (gender, baseline CD4 count, baseline WHO stage,

indicator of urban versus rural clinic, and ART start status)

, observed dropout status (=1 if observed nondropout)

Si = indicator for being selected for and recovered (or found) by double sampling (if

)

Xi = min{Ti, Ci} (if , or  and Si = 1)

Δi = indicator for whether survival time is shorter than the administrative censoring time

(if  , or  and Si = 1)

It is important to note that the observed nondropouts from the first phase ( ) are

actually a mixture of true dropouts (Ri = 1) and true nondropouts (Ri = 0). Referring to

Figure 2, within our observed study period, both individuals 3a and 3b represent observed

nondropouts. However, if we had continued phase 1 follow-up beyond the study end date,

we would have seen individual 3a dropping out eventually before dying (Ri = 0), whereas

individual 3b would have died on-study without dropping out (Ri = 1).

More generally, the potential dropout behavior expressed by R and L, although missing for

those who are administratively censored, is central for characterizing the objective dropout

behavior of individuals, that is, separately from the effects that a particular length of phase 1

follow-up has on observed data.
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Having such an objective characterization of dropout behavior, we now consider two

plausible assumptions that allow estimation of the cohort survival function.

Assumption A1—Conditional on the set of observed covariates, entry time (and

equivalently, administrative censoring time) is independent of survival time and of potential

dropout status. We can express this as: Ci ⊥ (Ti, Ri, Li) | Zi, because entry times Ei = Emax −

Ci.

We note that Assumption A1 includes the typical conditional independence assumption from

survival analysis, Ci ⊥ Ti |Zi. Moreover, Assumption A1 is plausible if, conditional on

observed covariates such as gender, baseline CD4 count, baseline WHO stage, clinic type,

and treatment status, we assume no secular trends in survival or true dropout behavior

during the study period. Such an assumption could not be expressed in terms of observed

data, because the observed dropout status depends not only on individual characteristics but

also on when the individual entered the study and when the study ends.

Assumption A2—Among observed dropouts, the observed covariates Zi include the

variables involved in the selection and successful recovery of those to be double sampled.

We can express this by stating that, among observed dropouts and after we condition on Zi,

selection for and recovery by double sampling is independent of survival and entry times, or

equivalently, , because entry times Ei = Emax − Ci.

Because the typical survival data (Xi, Δi) are functions of (Ti, Ci), it is an immediate

implication of A2 that, conditional on the observed covariates, selection for and recovery by

double sampling is independent of (Xi, Δi): .

4. Methods

4.1 Based on the Design Principles

Consider first the case where Assumptions A1 and A2 are plausible with no covariates.

After double sampling, we observe the typical survival data (Xi, Δi) for the nondropouts

( ), and for the double-sampled dropouts (Si = 1). For these data, the only remaining

reason for missing Ti is due to administrative censoring Ci. It is thus tempting to estimate the

two Kaplan–Meier curves (Kaplan and Meier, 1958) separately within strata defined by

 and Si = 1, and combine their estimates to obtain the cohort survival function. Such

an approach, however, is generally biased because, as FR01 showed, under A1 and A2, a

dependence is induced between administrative censoring Ci and survival times Ti when one

conditions on the observed stratum of nondropouts or on the observed stratum of double-

sampled dropouts. This dependence arises because the observed nondropouts are a mixture

of true dropouts and true nondropouts as discussed in Section 3. Nevertheless, FR01 showed

that one can use even the reduced data  to produce a

nonparametric MLE that, under A1 and A2, is consistent for the cohort survival function.

This MLE is obtained by first estimating the stratified crude hazard functions separately for

nondropouts and double-sampled dropouts, and then synthesizing these estimators to the

hazard function of the original cohort.
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In our study, we have measured covariates predictive of dropout and thus wish to

incorporate them to make Assumptions A1 and A2 more plausible. For the analysis, we

consider the reduced data

and their likelihood function conditionally on the covariate Zi:

(1)

In the above, θ is the vector of parameters governing the inherent characteristics of the

population of interest, that is, the joint distribution of (T, L, R, E, Z). Then, based on (1) and

Assumptions A1 and A2, we obtain the MLE for the full cohort survival function S(t), which

is a consistent and robust estimator for the cohort survival function S(t) = P(T > t).

To derive this MLE, we note three key observations:

i. The “net” hazard function within a covariate stratum z, defined as

, equals the crude hazard

function in stratum z, defined as

, because administrative

censoring and survival times are assumed independent conditional on observed

covariates (Assumption A1).

ii. The crude hazard function  in stratum z can be expressed as the weighted

average , where  is the crude hazard within Robs = g, Z

= z, for g = 0, 1; and the weights wg|z(t) ≡ P(Robs = g |X ≥ t, Z = z) are the

proportions of individuals with observed dropout status g within the risk set X ≥ t

and stratum z. The above expression does not depend on Assumptions A1 and A2.

iii. The crude hazard function  for observed dropouts Robs = 0 within stratum z

equals the crude hazard function  of the double-sampled dropouts S = 1

within stratum z, by Assumption A2.

Using these relations, we obtain that, under A1 and A2, the nonparametric MLE of S(t) from

(1) is given by a weighted combination of the within-stratum estimated survival curves,

using

An et al. Page 6

Biometrics. Author manuscript; available in PMC 2014 August 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(2)

and where, in the last expression,  is the Nelson estimator of  based on

{(Xi, Δi): } from the non-dropouts;  is the Nelson estimator of 

based on {(Xi, Δi) : Si = 1} from the double-sampled dropouts, as allowed by observation

(iii); and ŵg|z(t) is the empirical estimator of wg|z(t) based on Dredu.

We have derived the standard errors for the above estimators, based on the theory of FR01

and the delta method, and have developed an R program for the computations that we can

provide to interested readers.

4.2 Comparison with Other Methods

We compared results obtained using the above method with other methods, which we

describe in this section. With each of these other methods, we calculate an overall survival

estimate as a weighted average of survival estimates within covariate strata. Below we

describe these methods as applied within covariate strata.

1. No double sampling. This method uses a Kaplan–Meier estimator (within

covariate strata) applied to the data observed from only the phase 1 follow-up,

without using the double-sampling data from phase 2. This method cannot

differentiate between dropout and administrative censoring (i.e., observed dropouts

are considered censored at the time of dropout), and reflects the analysis one could

conduct without the double-sampling design. Such an analysis is biased if there are

unmeasured reasons for dropout relating to health, and therefore to survival.

2. Ignoring distinction between nondropouts and double-sampled dropouts. This

method uses the Kaplan–Meier estimator (within covariate strata) applied to the

data (X, Δ) from the nondropouts in phase 1 plus from the double-sampled dropouts

from phase 2. However, this method makes no distinction between the two groups.

As discussed in FR01, such an analysis seems typical in implicit uses of double

sampling, but is not generally appropriate because only a subset of the observed

dropouts (Robs = 0) are double sampled.

3. Stratifying Kaplan–Meier estimators on observed dropout groups. This method

first obtains separate Kaplan–Meier estimators (within covariate strata) within the

observed nondropouts and within the double-sampled dropouts, and then combines

these estimates with weights according to the proportion of dropouts. Formally, the

estimator of this method is of the form (1 − pẑ)KM1,z + p̂zKM0,z, where p̂z are as in

(2), KM1,z is the Kaplan–Meier estimator among observed non-dropouts (Robs = 1)

in covariate stratum z, and KM0,z is the Kaplan–Meier estimator among double-

sampled dropouts (Robs = 0 and S = 1) in covariate stratum z. FR01 showed that
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under Assumptions A1 and A2, such an analysis is generally biased because of the

dependence that is induced between survival and administrative censoring times

when one stratifies on the observed dropout groups as discussed in Section 4.1.

4. Based on the design principles. This is the nonparametric MLE Ŝz(t) described in

Section 4.1, based on the explicit design principles of Section 3.

Each of the above methods is applied first within strata of covariates, and then the within-

strata estimators are combined to estimate the cohort survival function.

4.3 Stratification on Factors Predictive of Discontinuation

It is generally good practice, especially with standard methods that cannot otherwise

distinguish between dropout and administrative censoring, to first stratify on factors that are

predictive of discontinuation from follow-up (which we define here as the earlier of dropout

or administrative censoring). This practice attempts to make independence of such

discontinuation and survival times within covariate strata more plausible. In our analysis, we

first use a Cox proportional hazards model (Cox, 1972) to identify factors predictive of such

discontinuation. We include the following as predictive factors, Z*: gender, baseline CD4

count, baseline WHO stage, indicator of urban versus rural clinic, and ART start status.

Then we take the linear predictor (Z*β̂) from this model as a continuous score, and we let Z

be the quintiles of Z* β̂, with higher quintiles corresponding to increasing hazard of

discontinuation. We use these quintiles as our covariate strata for all of the above methods.

Here, we report standard errors based on (i) treating the transformation Z* β̂ as fixed and its

discretization to quintiles as a design choice; for this standard error, we reflect uncertainty

only in the estimation of quintile-specific survival curves, SZ(t); and (ii) 100 bootstraps of

the combined processes described in Sections 4.3 and 4.2.

5. Results

During the 2-year period from January 1, 2005 to January 31, 2007, we observed a total of

230 deaths, 124 of which were ascertained by double-sampling efforts. The cumulative

observed dropout rate was 39%. Of the 3528 dropouts, 1143 (32%) were pursued by double-

sampling efforts and 621 (18%) were recovered (or found) by double-sampling efforts. The

survival data (X, Δ) were obtained for these 621. Reasons for incomplete ascertainment via

double-sampling efforts are described in Section 2.

The most important predictors of discontinuation in the Cox proportional hazards model

were the baseline WHO stage with a hazard ratio of 1.03 (95% CI: 1.01, 1.06) and male

gender with a hazard ratio of 1.06 (95% CI: 1.02, 1.11).

Table 1 shows mortality (100% – survival) estimates at 1 year from study entry. The Q1–Q5

columns correspond to the quintiles of linear predictors from the Cox proportional hazards

model of time to discontinuation (dropout or administrative censoring) on gender, baseline

CD4 count, baseline WHO stage, urban clinic indicator, and ART start status as described in

Section 4.3. The column “overall” is a weighted average of the stratified survival estimates

for the different methods described in Section 4.
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Within each method, there is a general pattern of increasing mortality estimates for strata

with increasing hazard of discontinuation (Q1 → Q5). Furthermore, the overall estimates of

1-year mortality increase as we progress from method 1 (least appropriate) through method

4 (most appropriate). The method that uses no double-sampling data (method 1) gives an

overall mortality estimate of 1.7%, whereas the method that is explicitly developed based on

the design (method 4) provides an overall mortality estimate of 9.6%.

6. Discussion

The results suggest two important points, regarding the need for double-sampling data and

the analysis with such data. First note that the method that ignores the data obtained from

double sampling yields substantially lower estimates than the remaining three methods,

which do incorporate data obtained via double sampling. This relative ordering of the

methods implies that individuals who drop out are sicker than the others in dimensions and

degrees not measured by the covariates, but captured by the double sampling. The

magnitude of the implied bias of the first method is alarming and indicates that double

sampling is an essential design component for PEPFAR in providing objective evidence of

possible nonignorable dropout and accurate data. Second, even with double-sampling data,

the difference of results among the various methods of analysis suggests that using an

appropriate method is important for the accuracy of the results.

Also important is the observation that within each method, there exists a pattern of

increasing mortality estimates for increasing quintiles of predicted hazard for

discontinuation. Although this is a relationship described through the observed covariates,

the fact that this relationship does not level off at the higher quintiles suggests that there is

an underlying more fundamental relationship between discontinuation and survival. Such a

more fundamental relationship would expectedly extend to dimensions and degrees not

directly captured by the covariates. This is another, indirect, way of understanding the

severe bias of the method that does not use double-sampling data.

In this article, we have addressed the problem of loss to follow-up from a simple double-

sampling design that allocates the same efforts to find individuals selected for double

sampling. It will be important next to study prospectively properties of different double-

sampling designs: (1) how many individuals to double sample and (2) what profiles of

dropouts to double sample with higher probability.

In summary, this article provides evidence that double-sampling designs and methods are

critical for accurate and more objective monitoring of passive follow-up programs such as

PEPFAR.
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Figure 1.
The two phases of double sampling with survival data (X denotes death and O denotes

dropout).
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Figure 2.

Observed nondropouts ( ) are a mixture of true dropouts (Ri = 1) and true

nondropouts (Ri = 0) (X denotes death and O denotes dropout).
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