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The primate order is a monophyletic group thought to have diverged from the Euarchonta

more than 65 million years ago (mya).1 Recent paleontological and molecular evolution

studies place the last common ancestor of primates even earlier (≥ 85 mya).2 More than 300

extant primate species are recognized today,3,4 clearly emphasizing their diversity and

success. Our understanding of the evolution of primates and the composition of their

genomes has been revolutionized within the last decade through the increasing availability

and analyses of sequenced genomes. However, several aspects of primate evolution have yet

to be resolved. DNA sequencing of a wider array of primate species now underway will

provide an opportunity to investigate and expand upon these questions in great detail. One of

the most surprising findings of the human (Homo sapiens) genome project was the high

content of repetitive sequences, in particular of mobile DNA.5 This finding has been

replicated in all available and analyzed primate draft genome sequences analyzed to date.5–7

In fact, transposable elements (TEs) contribute about 50% of the genome size of humans,5

chimpanzees (Pan troglodytes),6 and rhesus macaques (Macacca mulatta).7 The proportion

of TEs among the overall genome content is likely even higher due to the decay of older

mobile elements beyond recognition, rearrangements of genomes over the course of

evolution, and the challenge of sequencing and assembling repeat-rich regions of the

genome.8,9 Retrotransposons (see glossary) – in particular L1, long interspersed element 1

(LINE1), and Alu, a short interspersed element (SINE) – are prominent in primate genomes,

and have played a major role in genome evolution and architecture. The evolution and

success of the primate-specific LINE and SINE subfamilies (L1 and Alu in particular), their

application in phylogenetic studies, and their impact on the architecture of primate genomes

will be the focus of this review. In addition, we will briefly cover the emergence and impact

of SVA (SINE-R/VNTR/Alu) – a composite retrotransposon of relatively recent origin – and

of other SINEs that are not common to all primates.
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LINE AND SINE BIOLOGY

The evolution of retrotransposons has been impacted not only by commonly considered

aspects such as population genetics and genetic selection, but also by their amplification

mode and insertion mechanism. Consequently, it is important to have some general

understanding about the unique features and biology of retrotransposons. We discuss this

briefly in the following sections. For further details we refer to other recent reviews.10–14

Occasionally, LINEs and SINEs are referred to as retrotransposons and retroposons,

respectively. In this review, we use the term retrotransposon for all non-LTR (Long

Terminal Repeat) retroelements, if not otherwise indicated.

TEs are classified into different groups on the basis of their transposition mechanism and

family-specific characteristics. Primate-specific non-LTR retrotransposons, such as L1, Alu,

and SVA (see Text Box and Fig. A) belong to the group of Class I elements and propagate

via a “copy and paste” mechanism using an RNA intermediate.13,15 Newly integrated

retrotransposon insertions are usually flanked by a short stretch (6–20bp) of duplicated

unique host DNA called target site duplications (TSDs) (see glossary, Box 1).16,17 In

primates, L1 appears to be the only currently active autonomous retrotransposon.

Autonomous retrotransposons encode the required enzymatic machinery to copy

themselves.18 L1 shows a strong cis preference in vitro, meaning that the L1 RNA recruits

its own translated proteins during retrotransposition.19–21 However, the enzymatic

machinery of L1 is also known to insert non-autonomous retrotransposons such as Alu

elements into the genome.13,22 The vast majority of retrotransposon insertions in primate

genomes are believed to insert into a genome via target-primed reverse transcription (TPRT;

Fig. 1, see also glossary).23,24 However, non-classical insertion pathways have also been

identified that are far less frequently utilized.25–27

L1 AND Alu ARE DRIVERS OF GENOME EXPANSION

With the availability of completed genome sequences, our understanding of the evolution

and impact of retrotransposons upon primate genomes has been revolutionized. However,

even a fully sequenced genome reveals only selective information and allows – at best – a

narrow window into the current state of a genome. Most recently integrated “young”

elements are subject to neutral selection strongly suggesting that the vast majority of

retrotransposon insertions are neutral residents in primate genomes.28 Under neutral

selection, only 1/(2Ne) new insertions (with Ne being the effective population size) reach

fixation in a population.10 Consequently, a large fraction of novel retrotransposon insertions

are lost over the course of evolution. At present, three primate genomes – H. sapiens, P.

troglodytes, and M. mulatta – have been sequenced and analyzed. An assembled draft

genome sequence derived from an orangutan of Sumatran origin (Pongo abelii) is already

available and expected to join the analyzed genomes in the near future. In addition, several

smaller scale retrotransposon studies using more diverged primate species have provided

insights into retrotransposon evolution and amplification patterns.29–32 The overall physical

expansion of primate genomes is driven by repeats, with L1 and Alu elements being the

major contributors.31 Retrotransposons accumulate in primate genomes, due to the

imbalance between their insertion and removal rates such as ectopic recombination.
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Accordingly, the retrotransposon composition of primate genomes is composed of both old

and new elements.

In general, L1 and Alu elements appear to have remained active throughout primate

evolution.5–7,30,31,33,34 As L1 originated well before the origin of primates (at least 170

mya),35 primate genomes contain L1 insertions predating the origin of primates, as well as

more recent primate-specific insertions. In contrast, Alu elements are unique to primate

genomes. Despite their relatively recent origin, Alu elements have amplified to more than

one million copies and account for ~10% of the genome mass in all three sequenced primate

genomes.5–7 With ~17% of the overall genome content, L1 is arguably the most successful

and only currently known active autonomous retrotransposon in primates. L1 is responsible

not only for its own retrotransposition, but also for the insertion of non-autonomous

elements and processed pseudogenes.5,19,36 Consequently, about one third of the genome

mass of all primate genomes analyzed to date is derived from L1 retrotransposition related

events.37 In addition, in some primate species (e.g., human) L1 is at present the only active

driver of retrotransposition, due to the lack of LTR retrotransposon activity (i.e. endogenous

retroviruses).12

NUCLEOTIDE SUBSTITUTIONS AND CONCEPT OF RETROTRANSPOSON

SUBFAMILIES

Retrotransposons have evolved continuously throughout primate evolution

Sequence alterations of retrotransposons are caused by random mutations at a neutral

substitution rate upon insertion and/or nucleotide substitutions after insertion.28

Consequently, older retrotransposons contain on average more substitutions than younger

insertions. Thus, the average substitution rate can be utilized to estimate the age of

retrotransposon insertions in primate lineages. To estimate the age of retrotransposon

insertions, it is crucial to distinguish between CpG (see glossary) and non-CpG bases

because CpG sites have a higher mutation rate.38–42 This is of particular interest for Alu

elements, as 30% of all CpG sites reside within them.43 Altogether, more than 40% of CpG

dinucleotides are found within TEs in primate genomes.5

Nucleotide substitutions can alter the ability of retrotransposons to mobilize and create new

copies. It has been proposed that host selective pressure (e.g. host defense mechanisms)

against retrotransposons is a driver of retrotransposon evolution.44 This scenario, similar in

nature to infectious disease host interactions, creates a constant loop of repression and

escape. Host factors evolve constantly to keep retrotransposons in check, and selection

pressure drives the evolution of retrotransposons and the creation of new subfamilies. The

concept of subfamilies within a retrotransposon family was first suggested after the

identification of species-specific substitutions.45,46 Subfamilies can be constructed through

the identification of diagnostic mutations, which are shared by more retrotransposons than

expected through random mutations.8 Reconstruction of retrotransposon subfamily

interrelationships indicates hierarchical characteristics, with the youngest subfamilies

containing the most, and oldest subfamilies the least, diagnostic mutations.13 Some

subfamilies have been identified that likely arose through gene conversion (e.g. in some
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platyrrhines),30 a mechanism that had been suggested previously.47,48 Considering the

average random substitution rate within each subfamily and the range of divergence from

the consensus sequence between members of a particular subfamily, we are able to

reconstruct its reproductive history. Network phylogenetic analyses seem beneficial for the

reconstruction of retrotransposon relationships as they allow for persisting nodes, leading to

multiple branching events commonly observed in retrotransposon phylogenies, in particular

with Alu elements.49,50

EVOLUTION OF ALU AND L1 SUBFAMILIES IN PRIMATE GENOMES

The identification of subfamily structure has led to a better understanding of the relationship

between retrotransposon and primate genome evolution. Alu elements are specific to

primates. (The origin of Alu elements is for instance reviewed in detail in Roy-Engel et

al.)51 Alu subfamilies have been grouped together into three major subfamilies. The oldest

subfamilies belong to AluJ; intermediates are members of AluS; and the youngest insertions

belong to AluY (Fig. 2).13,52,53 AluJ subfamilies were actively amplifying early in primate

evolution and can be detected in all primates. The deepest primate divergence falls into the

period when the AluJ subfamilies were expanding.29,34 The Alu lineage in the Tarsiiformes,

a sister group to anthropoid primates, might also have been derived from AluJ.54–56 Prior to

the divergence of platyrrhines and catarrhines, AluS derived from AluJ and successively took

over amplification approximately 55 mya. More recently, AluY evolved from AluS

subfamily members and succeeded in the catarrhine lineage.57,58 Detailed reconstruction of

Alu subfamilies shows parallel retrotransposition activity of several different subfamilies in

any given primate species.13,49,50,59 Some of these subfamilies can be short- or long-lived,

with or without generation of new subfamilies. Consequently, the parallel evolution of

several Alu subfamilies and lineages throughout primate evolution has created a diverged,

“bush-like” picture with several branches and sub-branches, and each primate lineage

possessing its own unique network of Alu subfamilies (Fig. 2).

The evolution of L1 in diverse primates is altogether less well characterized than that of Alu,

with most of our understanding derived from detailed analyses of the three sequenced

genomes – in particular the human genome. While the existence of more than one L1

subfamily within a species is common, most studies point toward the propagation of a single

L1 lineage with a linear evolution pattern in mammalian genomes over prolonged time

periods.60–65 However, the coexistence of two or more L1 lineages over prolonged periods

of time has been reported in some primates.8 Early in primate evolution as many as three L1

lineages – L1MA4-1, L1PB3-1, and L1PA17-1 – have been active in parallel for up to 30

million years (myrs, Fig. 3).60 Intriguingly, the 5’UTRs (untranslated regions) of these three

lineages were clearly distinct and the overall combined retrotransposition rate was not

exceedingly high, indicating that these L1 lineages might have competed for host factors.60

L1PA succeeded and has remained active within the anthropoid lineage leading to human

(Fig. 3).8

An analysis of orthologous L1 sites through the lens of the human genome has indicated the

absence of L1PA5 insertions in baboon, and activity of L1PA7 before and after the

divergence of the Cercopithecidae (Old World monkeys, OWMs) from the hominoid
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lineage.60 However, a subsequent analysis of the M. mulatta genome revealed that L1PA5

gave rise to the OWM-specific L1 lineage.7,59 The origin of lineage-specific L1 insertions in

the OWM lineage may have occurred early in L1PA5 evolution, causing mostly lineage-

specific insertions in both OWMs and hominoids. This illustrates, conclusions extrapolated

from the perspective of one genome onto another need to be regarded with caution.

RETROTRANSPOSITION INSERTION RATE VARIATION DURING PRIMATE

EVOLUTION

The propagation of lineage-specific retrotransposon subfamilies and the accumulation of

their respective copy numbers in different primate taxa vary greatly over the evolution of

primates. Retrotransposition rates have varied widely over the last 65 myrs of primate

evolution, with periods of low and high activity.8,53,60,66 Moreover, the retrotransposition

rate varied greatly between different lineages. For example, the Lemur catta (ringtailed

lemur) genome appears to contain the lowest Alu density yet identified in primates whereas

the Callithrix jacchus (common marmoset) genome shows evidence for the highest Alu

density.32,34 A burst of both L1 and Alu insertions occurred ~35–40 mya in anthropoid

primates.60,66 Since then, overall the collective retrotransposition rate seems to have

decelerated in anthropoids. The propagation rate of both L1 and Alu appears to be higher in

OWMs compared to human and chimpanzee; and in humans, the retrotransposition rate of

Alu elements appears to be higher than that of chimpanzee.6,31,34,67,68

Many factors can impact the viability of actively mobilizing retrotransposons and their

propagation rates. Highly active retrotransposons are very susceptible to loss or saturation

during speciation events or population bottlenecks (see glossary), as they are commonly

polymorphic within a population.10,69 Consequently, the number of active retrotransposons

can vary greatly and affect the amplification rate (increase, decrease, or no change) after

speciation or a bottleneck. In addition, it has been proposed that interaction of host factor(s)

with the enzymatic L1 machinery could cause periods of high and low activity.60,70 For

example, members of the ABOBEC family (see glossary) have been found to inhibit L1 and

Alu.71–73 Conceivably, environmental stress factors could alter the retrotransposition rate.74

Different factors may have contributed to retrotransposition rate variations during primate

evolution.

RETROTRANSPOSON AMPLICATION MODEL IN PRIMATE GENOMES

The previous sections describing the dynamics of retrotransposons have provided the

framework to address these primary questions: How do we distinguish active from inactive

retrotransposons? How can this be utilized to study primate evolution? Based on the typical

distribution pattern of SINEs and LINEs observed in primate genomes, we know that only a

small fraction of retrotransposons are capable of retrotransposition at any given time. This is

best characterized by a modified “master-gene” model.49,50,75 In this model, “master”

elements of a subfamily create copies over a prolonged time period with a few offspring

elements that generate the bulk of de novo insertions.75,76 These highly active elements are

usually relatively short-lived due to their highly deleterious nature to their host.75
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The identification of potentially active L1s is relatively straightforward, as only full-length

elements with intact open reading frames (ORFs, see glossary) are capable of

retrotransposing themselves. In primate genomes, only a small number of L1 insertions

satisfy these requirements as the majority of L1s are truncated upon insertion and/or have

accumulated random mutations. For example, in the human diploid genome, only about 80–

100 L1s are considered retrotranspositionally competent on the basis of their nucleotide

sequence.77 This number appears even lower for the chimpanzee and rhesus macaque

genomes with five and nine intact elements, respectively.59,78 Consequently, only a limited

number of L1s – in particular, members of the youngest subfamilies – are active, and an

even smaller number of L1s contribute to the bulk of novel insertions.

The identification of Alu source elements13,79 (see glossary) is far more demanding than for

L1, as they do not contain coding sequence and are highly similar to each other. Recent

research efforts have identified several factors that alter the retrotransposition activity of Alu

elements. These include polyA-tail length, nucleotide substitutions within the polyA-tail,

distance of the polymerase III TTTT termination signal from the end of an Alu element,

sequence variation from the consensus sequence of an active subfamily, interaction ability of

SRP9/14 (see glossary) to build RNA/protein complexes, and 5’flanking sequence.14,80–84

In addition, while not required, ORF1p increases the retrotransposition rate of Alu

elements.85 The interplay of the different factors has not yet been studied in detail, and

conceivably not all factors are required simultaneously for source drivers. The combination

of varying mobilization rates of source elements and their continued evolution has shaped

each primate genome uniquely. Retrotransposons that have reached fixation can be utilized

for phylogenetic studies to denote branching events, whereas polymorphic insertions within

a species can be used to study the population genetic structure.

RETROTRANSPOSONS AS PHYLOGENETIC AND POPULATION GENETIC

MARKERS

Phylogenetics reconstructs evolutionary relationships between various species. It has been

shown that retrotransposons represent highly valuable genetic systems to infer the

relationships of different species.86–88 Consequently, these markers – in particular Alu

elements and (to a lesser extent) L1 – are now commonly used to investigate phylogenetic

and population genetic relationships within the order of primates.29,30,55,88–97 Alu elements

are used more commonly, as they are relatively easy to genotype with a single PCR reaction

due to their relatively small size (~300bp). In contrast, the insertion size of L1 varies widely,

from about 50bp up to larger than 6kb.5,98 Accordingly, more than one PCR reaction is

often required to genotype larger L1 insertions. This makes them less convenient than Alu

elements; but they provide equal phylogenetic value, and can be used in conjunction with or

as alternatives to Alu elements.

Retrotransposons are compelling genetic markers, with unique properties relative to other

commonly used systems (e.g. single nucleotide polymorphisms, microsatellites, and

restriction fragment length polymorphisms). Retrotransposons insert quasi-randomly into the

host genome and create unique TSDs specific to the insertion site. Consequently, parallel

insertions (see glossary) of two independent retrotransposons within the amplicon represent
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uncommon events. About 0.4% of more than 11,000 primate-specific retrotransposon

insertions were identified as parallel insertions, with all but five insertions caused by so-

called near-parallel insertion events (see glossary).95 No parallel L1 insertions have been

identified to date, likely due to the size variability of L1 insertions, resulting from their

frequent 5’ truncation.92,99,100 Consequently, in contrast to many other DNA markers,

retrotransposon insertions can be considered as nearly homoplasy free markers.13,89,95–97,99

A shared retrotransposon insertion between two species (or two individuals) more than

likely indicates a common ancestor. Thus, in contrast to most other commonly used marker

systems, retrotransposon markers indicate identity by descent as opposed to identity by state

(as reviewed in13,95,100). In general, precise deletions of retrotransposons represent very rare

and unlikely events.91,95,101 Consequently, the ancestral state is marked by absence of the

retrotransposon.13,96 This is in contrast to other commonly used marker systems within

which the ancestral state cannot be unambiguously predicted. Like other markers,

polymorphic retrotransposon insertions are not immune to incomplete lineage sorting.

Different scenarios can commonly result in incomplete lineage sorting. Examples include

two species with a prolonged divergence time over several million years due to, for instance,

a large ancestral population size; recurrent re-introduction of populations to the gene pool;

or divergence of several species over a very short time period. In primates, incomplete

lineage sorting has been described, but altogether it appears to be a minor problem.95,102 In

general, the use of several markers for each branch is recommended to determine lineage

sorting events.

RETROTRANSPOSON-BASED PRIMATE PHYLOGENETIC STUDIES

In this review we have outlined the evolutionary mechanisms by which different primate

taxa accumulate a unique pattern of retrotransposon insertions, with some shared by other

closely related taxa and others specific to that lineage. This hierarchical accumulation of

“identical by descent” retrotransposon markers allows researchers to target subfamilies that

were active during the evolutionary period of interest to identify candidate loci with

phylogenetic value. On the basis of these retrotransposon insertion patterns (presence/

absence among different species) numerous phylogenetic relationships have been

successfully reconstructed across almost the entire order of primates (reviewed in91). Figure

4 illustrates the to-date use of retrotransposon markers to infer primate phylogeny.

The availability of sequenced primate genomes – in particular the human genome – has

revolutionized the field of phylogenetics. Over the last decade or so, several heavily debated

questions have been successfully resolved with retrotransposon markers in the primate

order. For example, a phylogenetic study using Alu elements unequivocally resolved the

human-chimpanzee-gorilla trichotomy.103 Three separate studies, confirmed monophyly of

platyrrhines and determined the branching order of various families of platyrrhine

primates.30,104,105 This work was recently confirmed and expanded upon by Osterholz et

al.106 using a total of 128 retrotransposon integrations from across all platyrrhine genera. In

addition, several studies have used Alu elements extensively to refine the branching pattern

of OWMs.59,102,107,108 Xing et al.107 reported a mobile element based phylogeny of OWMs

using 285 novel Alu insertions. This work was further refined within subfamily
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Cercopithecinae (tribe Cercopithecini) using 151 novel Alu insertion loci from 11 species.108

Recently, Li et al. identified 298 new Alu insertion loci from the genus Macaca within

OWMs and reported a comprehensive and robust resolution of macaque phylogeny with

higher statistical support than previous studies.102 Roos et al.29 used SINE insertions to

construct a strongly supported phylogenetic tree representing 20 strepsirrhine species. This

work is supported by Herke et al.109 in a comprehensive SINE-based dichotomous key for

the identification of primates. In this study, a total of 443 Alu loci (81 of which were novel)

were evaluated to characterize some of the deepest nodes of the primate phylogenetic tree

and to refine a number of previously unresolved terminal branches.109 Moreover, this

dichotomous key is highly valuable to confirm a species and/or to identify an unknown

species.

Retrotransposons have also been used to exclude species from the primate order. Schmitz

and colleagues110,111 presented clear evidence separating dermopterans (colugos or flying

lemurs) from primates. In this case, the absence of Alu elements universal to all primates

from the Cynocephalus variegatus (flying lemur) genome placed the flying lemur outside

the primate order.91,110 The complete relationship among Primates, Scandentia and

Dermoptera, (also known as the “primate-tree shrew-colugo trichotomy”) has yet to be

satisfactorily resolved. The Tu Type I and Type II families of SINEs identified in the tree

shrew (Tupaia belangeri) derived from 7SL RNA, as are Alu SINEs in primates and B1

SINEs in rodents, but as yet there is no conclusive evidence placing tree shrews either closer

to primates or to rodents.112 The CYN-SINE family identified in the C. variegatus genome

is specific to Dermoptera and thus uninformative for resolving the phylogeny of Dermoptera

in relation to Scandentia, Primates, and Rodentia.111 As more sequencing data become

available, future studies may identify phylogenetically-informative retrotransposon markers

that were active during this evolutionary time period.

RETROTRANSPOSONS IN PRIMATE POPULATION GENETIC STUDIES

The same properties of retrotransposons that make them useful phylogenetic markers

(homoplasy free and identical by descent characters) also make them ideal for population

genetic studies. However, instead of targeting fixed insertions, population studies focus on

recently integrated insertions that are still polymorphic and belong to subfamilies with a low

divergence from their respective subfamily consensus sequences. Individuals within a

species remain polymorphic for insertion presence/absence and create discrete differences

within the gene pool. This can be used to reconstruct the population structure of that species.

Detailed knowledge about population dynamics is of great interest for understanding the

diversity within a species, complexity of intra-species relationships, and for conservation

efforts (e.g. re-introduction of a species in the wild).

Retrotransposons have been commonly used to infer the population structure of humans as

well as non-human primates and to determine human geographic origins for

forensics.7,89,91,96,97,113–116 The population structure of human populations and their

history, in addition to the population architecture of the human population worldwide has

been investigated intensively with the sole use of Alu retrotransposon markers or in

combination with other markers.115–117 Most population structure research has focused on

Konkel et al. Page 8

Evol Anthropol. Author manuscript; available in PMC 2014 August 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



humans due to the broad geographic distribution of the species and the abundant available

genetic information for humans. However, retrotransposons have proven successful across

the mammalian lineage to infer the population structure of marsupials (i.e., Monodelphis

domestica, opossum)118 and monotremes (i.e., Ornithorhynchus anatinus, platypus)119. The

only non-human primate population genetic study using retrotransposon markers (Alu and

L1) published to date investigated the population structure of rhesus macaques.7 In this

study, Chinese rhesus macaques could be clearly distinguished from Indian rhesus

macaques.7

To infer the population structure, the use of more than 50 (better 75 to 100) polymorphic

retrotransposon loci is required.116,120 The minimal number of insertions necessary to

reliably analyze the population structure depends on the level of genetic similarity of the

populations (reviewed in91). Fewer loci are required to infer the population structure of two

distinct (often geographically more removed) populations than for populations with more

similar gene pools. The success of retrotransposon based population genetic studies, the

unique characteristics of retrotransposon markers, and the relative ease of use make them an

attractive marker system to investigate the population structure of other primate species.

LINEAGE-SPECIFIC NON-AUTONOMOUS RETROTRANSPOSONS

In this section, we will briefly discuss the emergence of two less common primate SINEs as

well as SVA elements (SINE-R/VNTR/Alu) – a composite retrotransposon of relatively

recent origin. One SINE, first discovered in Galago crassicaudatus, is termed Type III and

is a monomeric element derived from tRNA.121 Type III elements have been shown by

Southern blot analyses to be present in galagos and lorises but absent from lemur species29

indicating lineage-specificity and origin after the divergence of Lorisiformes and

Lemuriformes.29,122 The second SINE recognized in the galago genome, a Type II element,

represents a chimeric SINE most likely created by the integration of a Type III element into

the center of an Alu element.121 Both retrotransposons contain typical hallmarks of SINEs:

TSDs flanking the insertion, an A-rich 3’ terminus, and a split intragenic RNA polymerase

III promoter.122 Type II elements appear to have been highly active in galagos (G.

crassicaudatus and Galago senegalensis).122 To our knowledge, there is no further

information available about the distribution of Type II elements in other closely related

species.

Another example of lineage-specific non-autonomous retrotransposons is the SVA family of

elements, which are specific to the hominoid lineage and are most prevalent in their current

form in the great apes.123,124 However, precursors of SVA have been identified in OWMs,

indicating that SVA evolved over several million years before mobilizing in its current

state.59 In the public human genome, ~3000 insertions have been identified, indicating their

successful propagation in spite of their relatively recent origin.123 Quantitative PCR

analyses indicate a similar number of SVA insertions in the chimpanzee, gorilla, and human

genomes, a lower number in the orangutan (Pongo pygmaeus) (~1000 insertions), and near

absence in the siamang (Symphalangus syndactylus, ~40 insertions).123 There is clear

evidence of active SVA retrotransposition in the human genome, as de novo SVA insertions

have been identified as the underlying cause for some human diseases (reviewed
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in10,125,126). Whole genome analyses will prove useful in confirming these copy number

estimates, as it is conceivable that in more diverged species the copy number is

underestimated by quantitative PCR experiments that used human reference sequences.

Conceivably, even more lineage-specific retrotransposon families will be identified in the

future as more sequenced primate genomes become available, allowing for exhaustive

comparative genomics studies.

IMPACT ON GENOME ARCHITECTURE

Retrotransposons are major contributors to structural variation that has shaped the landscape

of primate genomes. Primates regularly experience de novo retrotransposon insertions,

occasionally resulting in disease (reviewed in10,125,126). For example, the latest estimates for

Alu, L1, and SVA insertions within the human species are one in 21, 212, and 916 live

births, respectively.127 This is in good agreement with previous estimates for Alu insertion

rates.28 Earlier estimates for de novo L1 insertion rates on the basis of transgenic mice

models indicated a roughly 4× higher activity rate.12,128 Occasionally, genomic deletions are

associated with retrotransposon insertions, potentially resulting in the loss of important

genetic information such as exons.129,130 Apart from insertional mutagenesis, which in itself

represents a major impact on primate genomes, the accumulation of very similar sequences

makes the genome more susceptible to non-allelic homologous recombination events that

can cause genome rearrangements including deletions and duplications.131–133 Other types

of recombination events, such as Alu-mediated gene conversion (see glossary), have been

shown to alter gene function (reviewed in14). An example of this is the Alu-mediated loss of

the agouti signaling protein gene in gibbons.134 Exonization (see glossary) of

retrotransposons is another mechanism retrotransposons contribute to structural variation

(e.g.,135, reviewed in14) and has taken place occasionally during the course of primate

evolution.136 Although exonization is not widespread, it is estimated that about 5% of

alternatively spiced exons in humans are derived from Alu elements.14 Occasionally,

molecular domestication (see glossary) of retrotransposons occurs as demonstrated for the

SETMAR gene.14,137 In addition, L1 and SVA have been identified in 3’ and 5’

transduction events that occasionally can give rise to a new functional gene.12,17,138

CONCLUSIONS

Retrotransposons have had a major influence on primate genomes, and have contributed to

the expansion of primate genome sizes. In addition, retrotransposons have shaped each

primate genome uniquely and have had a major influence on the genome architecture. Due

to their continuous insertion throughout primate evolution and their unique features,

retrotransposons serve as valuable markers for the investigation of phylogenetic, population

genetic, and forensic relationships. With some evidence of varying retrotransposition rates in

different primate lineages, the evolution of retrotransposons might vary considerably. As

more sequenced primate genomes become available we will be able to draw a more

complete picture of retrotransposon evolution in the whole primate lineage.
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Box 1 (with Fig. A)

A full-length L1 is ~6kb in length, contains an internal polymerase II promoter, two

ORFs, 3’ and 5’ UTRs, and terminates in a polyadenylation signal (indicated as pA in

Fig. A) followed by a polyA-tail (Fig. A). L1s are often 5’ truncated, inverted,

rearranged, and involved in transduction events.5–7,12,59 Most L1 insertions are severely

truncated upon insertion.5,93 Alu elements are dimeric, ~300bp long elements that do not

encode proteins, contain a polymerase III promoter, and end in a polyA-tail (Fig.

A).12,13,51 Full-length SVA elements are composite elements named after its main

components SINE, VNTR (variable number of tandem repeats), and Alu.140 They are

non-autonomous retrotransposons composed of five different segments (Fig. A). From 5’

to 3’, they contain a hexamer simple repeat region of variable length; an Alu homologous

region composed of two antisense Alu fragments, including additional sequence of

unknown origin; a VNTR region; a SINE region derived from the 3’end of the env-gene

and the 3’LTR-region of HERV-K10, an endogenous retrovirus; and a polyadenylation

signal followed by a polyA-tail.123,124 As a consequence of the VNTR region, full-length

SVA elements can vary greatly in size. Due to similar insertion characteristics SVA

elements are thought to use the L1 machinery for retrotransposition.123,124 At present,

SVA elements are not very well studied, and the concrete transcription mechanism (e.g.

polymerase preference) and promoter site are subject to debate.
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GLOSSARY

DNA desoxyribonucleic acid; two anti-parallel backbones comprised of

the sugar deoxyribose and phosphoric acid joined by

phosphodiester bonds; attached to each sugar is one of four

nucleotides (adenine (A), guanine (G), thymine (T), or cytosine

(C)). The nucleotides encode the genetic information.

mRNA messenger ribonucleic acid; similar to DNA but contains ribose

instead of deoxyribose, and uracil (U) instead of thymine (T).

CpG dinucleotide a 5’ cytosine (C) nucleotide followed 3’ by a guanine (G)

nucleotide within a linear DNA sequence. The cytosines of CpG

dinucleotides are targets of DNA methylation resulting in 5-

methylcytosine. Deamination of 5-methylcytosine results in

thymine. In general, CpG sites mutate ~10 times faster than other

dinucleotide combinations.38–41 For Alu insertions less than 50

myrs in age, the CpG mutation rate is ~6 times faster compared to

non-CpG sites.42

Homopolymeric
tract

stretch of DNA sequence containing identical nucleotides; simplest

form of a repetitive sequence.

PolyA-tail homopolymeric tract of adenosine nucleotides; here at the 3’ end

of non-LTR retrotransposons.

Retrotransposon Class I elements (including endogenous retroviruses and

retrotransposons) that move in a genome via a “copy and paste”

mechanism through an RNA intermediate and are reverse

transcribed into DNA by reverse transcriptase.

LTR
retrotransposon

retrotransposons with long terminal repeats; e.g. endogenous

retroviruses.

Non-LTR
retrotransposon

retrotransposons lacking LTRs; SINEs, LINEs, and SVAs.

Autonomous
element

element that provides its own machinery for amplification; e.g.

full-length LINEs with intact ORFs.

Non-autonomous
element

dependent on enzymatic machinery from autonomous elements;

e.g. Alu and SVA.

SINEs short interspersed elements; originally defined by their interspersed

nature and length (75–500bp), but also further characterized by

their RNA polymerase III transcription.
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LINEs Long interspersed elements; full-length elements are ~6kb in

length, contain an internal promoter for Polymerase II, two ORFs,

and end in a polyA-tail.

SVA composite elements named after its main components SINE,

variable number of tandem repeats (VNTR), and Alu.

TSD target site duplication; short stretch (generally 6–20bp in length) of

identical DNA generated at each end of a retrotransposon

integration event as a result of the staggered cut in the target site

DNA; TSDs are a hallmark of TPRT-mediated retrotransposition.

ORF open reading frame; a portion of a DNA sequence in which there

are no termination codons (stop codons) in at least one of the

possible reading frames; begins with a start codon (initiation

codon) and ends with a stop codon; ORFs potentially encode for

protein or polypeptide. L1 elements contain ORF1 and ORF2; the

product of ORF1 is an RNA-binding protein (ORF1p), and ORF2

encodes a protein (ORF2p) with endonuclease and reverse

transcriptase activities.

TPRT target-primed reverse transcription (Fig. 1); term for the integration

mechanism of non-LTR retrotransposons into the genome; the

bottom strand of chromosomal DNA is cut at a target site (5’-

TTTT/AA-3’) by an endonuclease encoded by L1, followed by

binding of non-LTR retrotransposon RNA at the DNA cleavage

site, and reverse transcription by L1-encoded reverse transcriptase.

Following steps, such as generation of second strand nick and

second-strand DNA synthesis, are not well understood.

SRP9/14 subunit of the human Signal Recognition Particle 9/14; SRP9 and

SRP14 proteins form a stable heterodimer (SRP9/14) that bind to

7SL RNA of Alu elements; impaired binding reduces Alu

mobilization.

APOBEC3 Apolipoprotein B mRNA Editing Complex 3; believed to inhibit

L1 and Alu retrotransposition.

Bottleneck substantial reduction in size of a population over a short period of

time; potentially results in radical changes of allele frequencies and

reduced genetic variation.

Source element element that is both transcriptionally and retrotranspositionally

active and able to generate copies.

Precise parallel
insertion

independent retrotransposon insertions at exactly the same target

site.

Near-parallel
insertion

independent retrotransposon insertions within the PCR amplicon or

genomic region, but not at identical insertion sites.
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Homoplasy shared genetic state or allele that is not inherited from a common

ancestor but rather is due to independent events.

Incomplete lineage
sorting

a marker (e.g. an Alu element) polymorphic at the time of the

divergence of several species gets randomly distributed in the

emerging taxa.

Gene conversion unequal non-reciprocal recombination of homologous sequence

(e.g. between Alu elements).

Exonization a transposable element residing in an intron is recruited into the

coding sequence and thus exonized. In particular Alu elements

have been commonly identified in alternatively spliced exons.139

Molecular
domestication

sequence of a transposable element is incorporated into a novel

function within a genome.
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Figure 1. Retrotransposition via target-primed reverse transcription (TPRT)
L1, SVA, and Alu elements are thought to insert into the genome through a mechanism

called target-primed reverse transcription (TPRT). (A) Shown is host DNA with a predicted

target site. (B) The L1 endonuclease encoded by the ORF2 loosely recognizes a target site

(5’-TTTTAA-3’) and nicks the bottom strand of the host DNA.16,141 (C) The polyA-tail of

an mRNA intermediate (grey line with As) of an L1, SVA, or Alu element binds

complementary to the cleaved TTTT overhang and (D) is reverse transcribed by the

enzymatic activity of ORF2 protein (D).142 (E) The following steps of second-strand DNA

cleavage and (F) second strand DNA synthesis are not well understood. (G) Illustration of

the integration of the new retrotransposon insertion (light grey) into the host DNA (black).

Medium grey are incomplete TSDs (H) The retrotransposon insertion is flanked by TSDs

(medium grey).
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Figure 2. Alu subfamily evolution in primates
The evolution of Alu elements in primate genomes is roughly illustrated. The left panel

shows the three major Alu subfamilies AluJ (green), S (blue), and Y (red). The range of their

activity and continuous evolution is indicated through a color gradient. The estimated sizes

of AluY, S, and J subfamilies, drawn from Wang et al.,143 are given at the bottom left. The

major Alu subfamily thought to be active at the time of divergence of each lineage is shown

at the base of each lineage branch. Lineage specific subfamilies are likely derived from that

subfamily. The color gradient within each lineage branch indicates that Alu subfamilies

continued to evolve in each lineage and created lineage-specific subfamilies. Each major

subfamily contains several subfamilies. Several different Alu subfamilies are commonly

active in parallel and often evolve, causing diverged Alu subfamily networks. On the right

the evolution of lineage specific Alu subfamilies in the Cercopithecoidea lineage leading to

rhesus macaque (M. mulatta) is exemplified. The network was reconstructed with Alu

subfamily data from Han et al. with permission from the original publisher (Science).59
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Figure 3. Evolution of L1 in primates
The evolution of L1 in primates on the basis of analyses of the human, chimpanzee, and

rhesus macaque genome sequences is loosely illustrated. Fading of the lines indicates that

the time span of subfamily activity is roughly estimated. In general, average age estimates of

the different subfamilies were taken from Khan et al.;60 the activity range of L1PA1-5 was

estimated on the basis of lineage-specific analyses.59,78,144 The L1PB and L1MA lineages

are not shown as separate subfamilies, and L1PA6-17 subfamilies have been combined.

Subfamilies L1PA1-5 are shown as separate lines to illustrate a typical pattern for the

evolution of L1 subfamilies. All lineages show a similar pattern of overlapping activity of

different subfamilies. The figure shows that L1PA1 is presently active in human;

chimpanzee-specific subfamilies are derived from L1PA2, with parallel evolution of two L1
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lineages over time (branched line); and L1PA5 was the founder for OWM-specific

subfamilies including rhesus macaque (shown).
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Figure 4. Primate retrotransposon-based phylogenetic Tree
Illustrated is a phylogenetic cladogram of primates that is supported by retrotransposon

markers. Where possible, we show resolution up to the species level. The core of the

cladogram (indicted in white) was reconstructed from a recent review in the Yearbook of

Physical Anthropology.91 More detailed information on the species level has been integrated

for Hominidae (green)109 and Cercopithecidae with Cercopithecinae and Colobinae

(yellow)107, Macaca (blue)102, and Cercopithecini (guenon, red).108 Three platyrrhine
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branching events (shown by an asterisk) were resolved by Osterholz et al.106 We followed

the nomenclature of Groves’ Primate Taxonomy.3
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Box 1, Figure A. Illustration of L1, Alu, and SVA
Full-length retrotransposons are not drawn to scale. The 5’ region of Alu elements contain an

internal RNA polymerase III promoter (A and B boxes). The internal polymerase II

promoter of L1s is located within the 3’UTR. The ORF1 of L1 elements encodes for an

RNA-binding protein (ORF1p), and ORF2 encodes a protein (ORF2p) with endonuclease

and reverse transcriptase activities. The SVA element represents a composite

retrotransposon without coding sequence. TSD means target site duplication, pA stands for

polyadenylation site.
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