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Summary

Sjögren’s syndrome (SS) is a chronic autoimmune disease characterized by
salivary and lacrimal gland dysfunction. Clinical observations and results
from animal models of SS support the role of aberrant epithelial cell
apoptosis and immune homeostasis loss in the glands as triggering factors
for the autoimmune response. Vasoactive intestinal peptide (VIP) promotes
potent anti-inflammatory effects in several inflammatory and autoimmune
disease models, including the non-obese diabetic (NOD) mouse model of SS.
With the knowledge that VIP modulates monocyte function through vasoac-
tive intestinal peptide receptors (VPAC) and that immune homeostasis
maintenance depends strongly upon a rapid and immunosuppressant
apoptotic cell clearance by monocytes/macrophages, in this study we
explored VPAC expression on monocytes from primary SS (pSS) patients
and the ability of VIP to modulate apoptotic cell phagocytic function and
cytokine profile. Monocytes isolated from individual pSS patients showed an
increased expression of VPAC2 subtype of VIP receptors, absent in
monocytes from control subjects, with no changes in VPAC1 expression.
VPAC2 receptor expression could be induced further with
lipopolysaccharide (LPS) in pSS monocytes and VIP inhibited the effect.
Moreover, monocytes from pSS patients showed an impaired phagocytosis of
apoptotic epithelial cells, as evidenced by reduced engulfment ability and the
failure to promote an immunosuppressant cytokine profile. However, VIP
neither modulated monocyte/macrophage phagocytic function nor did it
reverse their inflammatory profile. We conclude that monocytes from pSS
patients express high levels of VPAC2 and display a deficient clearance of
apoptotic cells that is not modulated by VIP.
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Introduction

Sjögren’s syndrome (SS) is a chronic autoimmune disorder
that affects 0·5–1% of the adult population, with a high eco-
nomic impact in health care. The disease hallmark is a
salivary and lacrimal gland dysfunction, although
co-morbidities are found depending upon genetic back-
ground, hormones and environmental triggers [1–5]. Clini-
cal observations and results from patient cell approaches
and animal models of SS point to the loss of salivary gland
homeostasis as a triggering factor for the autoimmune

response which would, in turn, promote further damage to
the gland [6–11]. In line with this, evidence of aberrant
expression of inflammatory and apoptosis mediators in sali-
vary gland epithelial cells from pSS patients and murine
models was reported [12–17]. Immune homeostasis
depends strongly upon a rapid and immunosuppressant
apoptotic cell clearance by monocytes/macrophages to
prevent an inflammatory response and self-tolerance break-
down [18–21]. Consistently, evidence on an impaired or
delayed clearance of apoptotic cells by macrophages was
reported in systemic lupus erythematosus (SLE) patients,
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although its direct aetiopathogenic role is still unclear [22–
24]. Regarding SS, a deficient phagocytosis of apoptotic cells
was described in the non-obese diabetic (NOD) mouse
model of the disease [25–27]. In particular, macrophages
isolated from NOD mice at the SS-like stage expressed a
predominant M1 inflammatory activation profile and pre-
sented a defective engulfment of apoptotic acinar cells [26].

Vasoactive intestinal peptide is a prosecretory and
vasodilating neuropeptide with potent immunomodulatory
effects through the activation of vasoactive intestinal
peptide receptor VPAC1 and VPAC2 receptors on
monocytes, macrophages and T cells [28–32]. VIP promotes
anti-inflammatory and tolerogenic effects in several inflam-
matory and autoimmune disease models [30,33–37]. Par-
ticularly in the NOD mouse model of SS, a local gene
therapy with an adenoviral construct encoding VIP restored
salivary secretion and reduced autoimmune markers [38].
Also, a predominant M2 alternative activation profile was
promoted by VIP in NOD mice macrophages at the SS-like
stage [26,27,39].

In this study we analysed Sjögren syndrome individual
patients’ monocytes to explore their VPAC receptor expres-
sion profile and function, particularly the effect of VIP on
the phagocytosis of epithelial apoptotic cells. We observed
that monocytes from pSS patients showed increased expres-
sion of VPAC2 that was absent in normal subjects’
monocytes, and that this effect paralleled an impaired
phagocytosis of apoptotic cells, with reduced engulfment
and failure to express an immunosuppressant cytokine
profile that was not restored by VIP.

Materials and methods

Patients

Blood samples were collected from patients that fulfilled the
American–European Consensus Group Criteria for pSS
[40] (n = 38), followed-up at the Rheumatology Unit,
Department of Medicine of the CEMIC, Buenos Aires,
Argentina, and from healthy volunteers as the control group
(n = 16). All the participants were women who signed an

informed consent to participate in this study, approved by
the Argentine Society of Clinical Investigation Review
Board and Ethical Committee. The age range, disease dura-
tion, extraglandular manifestations and systemic treatments
are indicated in Table 1. All patients were positive for
anti-Ro (SSA) serum antibodies, and 12 patients received
only local symptomatic management.

Peripheral blood mononuclear cells (PBMC)

PBMC from patients and controls were isolated from
heparinized peripheral blood by density gradient centrifu-
gation on Ficoll-Hypaque (Amersham Pharmacia Biotech,
Uppsala, Sweden). Monocytes were purified by attachment
to a culture plate for 2 h and washed three times with warm
phosphate-buffered saline (PBS) to remove non-adherent
cells, and adherent monocytes were recovered with a cell
scraper. Cell population purity was checked by fluorescence
activated cell sorter (FACS) analysis using anti-
CD14 monoclonal antibody (mAb) and was found to be
> 85% for each set of experiments. In some experiments
CD14+ cells were separated by performing positive selection
with CD14+ micro-magnetic beads, according to the manu-
facturer’s instructions (Miltenyi Biotec, Bergisch Gladbach,
Germany), with a purity of 95%. CD14+ cells from each
patient or control sample were used separately for VPAC
determination, plated for phagocytosis experiments or
incubated with 1 μg/ml lipopolysaccharide (LPS) in the
presence or absence of 100 nM VIP for 24 h before being
homogenized for reverse transcription–quantitative poly-
merase chain reaction (RT–qPCR) determinations.

Epithelial cell apoptosis induction

The human salivary gland (HSG) epithelial cell line was
kindly provided by Dr Bruce Baum (NICDH-NIH,
Bethesda, MD, USA) and cultured in 24-well flat-bottomed
polystyrene plates (Becton Dickinson, Franklin Lakes, NJ,
USA) in complete Dulbecco’s modified Eagle’s medium
(DMEM) 10% fetal calf serum (FCS) (Gibco, Invitrogen,
Buenos Aires, Argentina). HSG cells displayed secretory

Table 1. Characteristics of primary Sjögren’s syndrome (pSS) patients and healthy volunteers (control).

Participants Age (mean ± s.d.)

Extraglandular manifestations

(number of patients)

Disease duration

(mean ± s.d.)

Systemic treatment

(number of patients)

pSS Patients

n = 38

29–79 years (55·9 ± 11·9) Autoimmune thyroid disease (7);

synovitis (2); cutaneous vasculitis

(4); Raynaud phenomenon (2)

2–33 years (12·2 ± 9·8) Hydroxicloroquine (19),

levothyroxine (6), prednisone (3),

pilocarpine (1)

Control

n = 16

24–61 years (42·2 ± 13·2) n.a. n.a. n.a.

Patients fulfilled the American–European Consensus Group Criteria for pSS and all of them were positive for anti-Ro (SSA) serum antibodies as

described in Material and methods. Drug prescription to pSS patients is indicated, except for 12 patients who only received local symptomatic man-

agement. Control subjects received no drug treatment. All the participants were women. s.d. = standard deviation; n.a. = not applicable.

VIP/VPAC system altered in SS monocytes

663© 2014 British Society for Immunology, Clinical and Experimental Immunology, 177: 662–670



properties and markers according to their salivary gland
epithelial phenotype [41]. Apoptotic HSG cell suspension
was obtained by incubating HSG cells at 70% confluence
during 24 h with 50 nM staurosporine (Sigma Chemical
Co, St Louis, MO, USA). The frequency of apoptotic HSG
cells was assessed by propidium iodide (PI) and fluorescein
isothiocyanate (FITC)-annexin V staining following the
manufacturer’s recommendations (BD Biosciences, San
José, CA, USA) and analysed by flow cytometry (FACS)
using WinMDI software®.

Phagocytosis of apoptotic HSG cells by
patients’ monocytes

Phagocytosis of apoptotic HSG cells by monocytes was
determined by FACS. HSG cells were induced to apoptosis
during 24 h with 50 nM staurosporine and stained with
carboxyfluorescein succinimidyl ester (CFSE; eBioscience,
San Diego, CA, USA). Apoptotic HSG cell suspension was
added to each well of the 24-well plate containing adherent
monocyte monolayers from individual patients or control
subjects for 60, 90 or 120 min at 37°C at a 1:1 or 3:1 rela-
tionship (apoptotic HSG : monocyte cells) in the presence
or absence of 100 nM VIP (Polypeptide Group, Strasbourg,
France). Non-ingested cells were washed out and
monocytes detached by addition of Tryple® (Gibco, Grand
Island, NY, USA). The monocyte population was stained
with phycoerythrin (PE)-conjugated anti-CD14 mAb (BD
Biosciences) and the percentage of phagocytosis was deter-
mined as CD14/CFSE double-stained cells by FACS. Ten
thousand events were acquired in a FACSAria II® cytometer
and results were analysed using the WinMDI software®.
Samples were incubated in parallel with a non-relevant,
isotype-matched CD14 antibody as a background control.

Cytokine production

To assess tumour necrosis factor (TNF)-α, interleukin
(IL)-10 and IL-6 production by monocytes after
phagocytosis experiments, cells were incubated further for
24 h and supernatants collected for cytokine determination
by enzyme-linked immunosorbent assay (ELISA)
(e-Bioscience).

RT–PCR and RT–qPCR

Total RNA isolation was performed using TRIzol
(Invitrogen, Carlsbad, CA, USA) and cDNA were generated
from 1 μg of RNA using a Moloney murine leukaemia virus
(MMLV) reverse transcriptase, RNAsin RNAse inhibitor
and oligo dT kit (Promega-Biodynamics, Buenos Aires,
Argentina). Each cDNA was then amplified using specific
primers for VPAC1, VPAC2, VIP and glyceraldehyde
3-phosphate dehydrogenase (GAPDH) or CD14 antigen
were used as housekeeping genes (Table 2). PCR products
and DNA size markers were fractionated on 2% agarose
gels, visualized with ethidium bromide staining, and band
density was expressed in arbitrary units (AU) normalized to
GAPDH. Bands were semi-quantified with ImageJ® and
intensity expressed in AU relative to GAPDH. qPCR was
performed using Mezcla Real (Biodynamics, Buenos Aires,
Argentina), according to the manufacturer’s instructions.

Statistical analysis

The significance of the results was analysed by Student’s
t-test and Mann–Whitney U-test for non-parametric
samples. When multiple comparisons were necessary, the
Student–Newman–Keuls test was used after analysis of vari-
ance. Differences between groups were considered signifi-
cant at P < 0·05 using the GraphPad Prism4 software
(GraphPad, San Diego, CA, USA).

Results

VPAC2 is highly expressed in pSS monocytes

We first analysed the expression of both subtypes of VIP
receptors, VPAC1 and VPAC2, on monocytes isolated from
pSS patients and control subjects. Figure 1a shows that pSS
monocytes express the VPAC2 subtype of VIP receptors,
which were absent in monocytes from normal subjects. The
expression of VPAC2 in pSS monocytes was similarly high,
regardless of whether the housekeeping gene used was
GAPDH or CD14 as a monocyte specific marker (Fig. 1b).
In contrast, VPAC1 subtype was expressed in both patient
and control CD14+ cells at similar levels (Fig. 1c). We could

Table 2. Primers used in this study. Oligonucleotide primers were designed using the online tool Primer3® (Whitehead Institute for Biomedical

Research).

Gene Forward Reverse

Vpac1 CCCCTGGGTCAGTCTGGTG GAGACCTAGCATTCGCTGGTG

Vpac2 CCAGATGTCGGCGGCAACG GCTGATGGGAAACACGGCAAAC

Vip CAGTAACAGCCAACCCTTAGCC TGAGAAGAGTCAGGAGCACAAGG

Gapdh TGATGACATCAAGAAGGTGGTGAAG TCCTTGGAGGCCATGTAGGCCAT

Cd14 CAAGTGTGAAGCCTGGAAGCCG AGCAGCAACAAGCAGGACGC
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not detect VIP expression in the monocyte population of
any of the patients’ or control subjects’ blood samples
tested (not shown).

VPAC2 expression in pSS monocytes is increased by
LPS and inhibited by VIP

Because the VPAC2 receptor subtype was up-regulated in
mouse peritoneal macrophages as well as in a murine
macrophage cell line after stimulation through Toll-like
receptors (TLRs) [28,42], we explored whether this recep-
tor could be induced through TLR-4 in monocytes from
pSS patients. Thus, we incubated pSS monocytes with
1 μg/ml LPS for 24 h in vitro. A more than threefold
increase in VPAC2 expression over basal levels (incubated
in the absence of LPS) was observed only in pSS
monocytes (Fig. 2, right panel). In contrast, VPAC2 recep-
tors, absent in normal monocytes, could not be induced
further by LPS treatment in our experimental conditions
(Fig. 2, left panel). Interestingly, VIP inhibited the effect of
LPS on VPAC2 expression on pSS monocytes (Fig. 2, right
panel).
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Impaired phagocytosis of apoptotic cells by pSS
monocytes is not restored by VIP

Sjögren’s syndrome is associated with an increased
apoptosis of salivary gland epithelial cells and loss of gland
immune homeostasis. Considering that apoptotic cell clear-
ance by phagocytic cells in a suppressant manner is essential
for tissue homeostasis maintenance, we next explored the
phagocytosis of apoptotic epithelial HSG cells by pSS
patients’ and control subjects’ monocytes and the effect of
VIP. Figure 3a shows an impaired phagocytic function of
pSS monocytes at 90-min incubation time, as determined
by FACS compared with monocytes from normal subjects.
Representative cytometry plots in Fig. 3b show the percent-
age of phagocytosis of HSG apoptotic cells by control and

pSS monocytes at 90 min. A microphotograph of CFSE-
stained HSG apoptotic cell body ingested by pSS monocytes
is shown in Fig. 3c. The impairment in apoptotic cell
phagocytosis observed in CD14+ cells from pSS patients was
assessed at two different monocyte : apoptotic cell relation-
ships (Fig. 3d). As shown in Fig. 3e, 100 nM VIP had no
effect on phagocytosis of apoptotic cells by pSS monocytes
at a 1:1 relationship and 90-min incubation setting. As
expected for normal monocytes/macrophages, phagocytosis
of apoptotic cells induced a suppressant cytokine profile
with lower levels of the proinflammatory cytokine TNF-α
and increased levels of IL-10 only in normal subjects’
monocytes (Fig. 4a,b). In contrast, TNF-α production
increased in pSS CD14+ cells, whereas IL-10 did not, sup-
porting an impaired apoptotic cell clearance (Fig. 4a,b).
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IL-6 levels also increased when pSS patients’ CD14+ cells
engulfed apoptotic HSG cells (data not shown). We next
investigated if VIP could reverse the proinflammatory
profile of monocytes after apoptotic cell phagocytosis.
Figure 4c,d shows that 100 nM VIP, the same concentration
that limited LPS-induced VPAC2 expression (Fig. 2), could
not reduce TNF-α or increase IL-10 production by pSS
monocytes.

Discussion

In this study we present data to indicate that pSS patients’
monocytes display a high expression of VPAC2 which can
be modulated by LPS and VIP. Conversely, we showed that
pSS patients’ monocytes exhibit an impaired phagocytosis
of apoptotic epithelial cells that could not be restored by
VIP treatment in vitro. To our knowledge, there are no pre-
vious reports on apoptotic epithelial cell clearance defects
by pSS patients’ monocytes. Accordingly, our results indi-
cate that TNF-α and IL-6 were released only by pSS
monocytes when they phagocytized apoptotic HSG cells,
consistent with a proinflammatory non-silent defective
process. However, VIP did not improve phagocytosis of
HSG apoptotic cells by pSS monocytes, nor did it contrib-
ute to a suppressant microenvironment by down-regulating
TNF-α, IL-6 or enhancing IL-10.

A defect of in-vitro apoptotic cell clearance was described
in systemic lupus erythematosus (SLE). Cultured
macrophages differentiated from monocytes or stem cells of

SLE patients displayed morphological abnormalities and
showed an impaired phagocytosis of apoptotic cells [22,23].
Macrophages from SLE and rheumatoid arthritis (RA)
patients were smaller, with less ability to differentiate and to
adhere to apoptotic Jurkat T cells than control cells [43].
However, only SLE macrophages showed reduced engulf-
ment of apoptotic cells, indicating that not only adherence
and differentiation but multiple signals were impaired in
the phagocytic process, similar to the results shown here for
pSS monocytes, where phagocytosis of apoptotic HSG cells
appears hampered at different levels. The observation that
engulfment ability was reduced but not completely abol-
ished in the short incubation time assayed here suggests
that a basal impairment can be compensated in vitro
through rapidly conveying monocyte signalling. Finally, our
results on defective apoptotic epithelial cell clearance by
macrophages is also consistent with previous observations
in patients’ glands and murine models of SS, where
increased apoptosis of epithelial cells and aberrant expres-
sion of apoptosis markers and inflammatory mediators
were proposed to have a role in the initiation and perpetua-
tion of SS [14].

Previous observations in the NOD mouse model of SS
indicated that VIP injected locally into NOD females at the
SS-like stage reduced proinflammatory cytokines and nor-
malized salivary secretory function [38]. Consistently, VIP
promoted an alternative activation profile in NOD mice
macrophages and favoured a suppressant apoptotic cell
clearance by NOD macrophages [26,27]. However, which
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biological circuits will be mediated preferentially by VIP in
vivo is not easily predictable, as was shown clearly by Abad
and coworkers in VIP knock-out mice that are resistant to
experimental autoimmune encephalitis and LPS-induced
endotoxaemia [44,45].

Monocytes from pSS patients but not those from control
subjects expressed VPAC2 receptors as revealed by qRT–
PCR, and the expression of this subtype receptor was
increased when the cells were stimulated in vitro with LPS.
VPAC1 is the unique subtype expressed in normal human
resting monocytes [46,47]. However, various stimuli are
known to modulate VPAC expression in immune cells. In
particular, the VPAC2 receptor subtype was up-regulated in
mouse peritoneal macrophages and macrophage cell lines
when they were primed in vitro with inflammatory stimuli
through TLR-4 [42]. Here we showed that the effect of LPS
on VPAC2 expression occurred only in pSS but not in
normal monocytes, and that it averaged a threefold
increase, in line with previous observations in murine
macrophages. Interestingly, a higher expression of VPAC2
was observed on fibroblast-like synovial cells from rheuma-
toid arthritis patients compared with osteoarthritis patients
[48], suggesting that receptor differential expression might
regulate VIP local effects in vivo. The increased expression
of VPAC2 receptors in resting pSS monocytes shown here
might reflect a compensating mechanism operating in vivo.

Of note, the higher expression of VPAC2 receptors in pSS
monocytes did not suffice to modulate their functional
profile in the presence of VIP ex vivo. In fact, this enhanced
VPAC2 expression, and even the expression of VPAC1 com-
parable to normal subjects’ monocytes, could not favour a
suppressant phagocytosis when the cells were treated with
VIP in vitro. This observation strongly supports a promi-
nent role for a deficient phagocytosis of apoptotic cells in
the pathogenesis of pSS that is refractory to the anti-
inflammatory effect of VIP. The observation also confirms
that the anti-inflammatory efficacy of VIP is more evident
when immune cells are primed in vitro with potent
proinflammatory stimuli. Certainly, in rheumatoid arthritis
and ostheoarthritis patients’ synovial cells, VIP potently
inhibited proinflammatory signals when cells were stimu-
lated in vitro with poli I : C [49]. Similarly, in the present
results, the inhibitory effect of VIP was stated only on
VPAC2 induction by LPS.

Our results indicate collectively that pSS patients’
monocytes highly express VPAC2 receptors and display an
impaired phagocytic function of apoptotic epithelial cells
that could not be modulated by VIP. The functional rel-
evance of the higher expression of VPAC2 receptors in pSS
monocytes and whether it is a compensatory mechanism or
just an epiphenomenon due to damage-associated molecu-
lar pattern (DAMP) ligand stimulation of pSS monocytes in
vivo is a matter of future studies. However, the consistency
of this observation in pSS patients, regardless of the disease
outcome and duration, and the absolute absence of VPAC2

expression in the control group monocytes with normal
apoptotic cell clearance, suggest its potential as a functional
biomarker in pSS.
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