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Diffusion in a comb-like structure, formed by a main cylindrical tube with identical periodic dead
ends of cylindrical shape, occurs slower than that in the same system without dead ends. The reason
is that the particle, entering a dead end, interrupts its propagation along the tube axis. The slowdown
becomes stronger and stronger as the dead end length increases, since the particle spends more and
more time in the dead ends. In the limiting case of infinitely long dead ends, diffusion becomes
anomalous with the exponent equal to 1/2. We develop a formalism which allows us to study the
mean square displacement of the particle along the tube axis in such systems. The formalism is
applicable for an arbitrary dead end length, including the case of anomalous diffusion in a tube with
infinitely long dead ends. In particular, we demonstrate how intermediate anomalous diffusion arises
when the dead ends are long enough. [http://dx.doi.org/10.1063/1.4891566]

I. INTRODUCTION

The model of a particle diffusing in a tube with dead ends
is widely used in studies of linear porous media.1–3 Examples
of transport in such systems include transport in dendrites,4

extra-cellular diffusion in brain tissue,5 diffusion of water and
other substances in muscles,6 etc. An analytical theory of dif-
fusion in tubes with periodic dead ends formed by identical
cavities connected to the main tube by narrow necks has been
developed in Ref. 3(a)). The focus of the present study is on
a special case of such a tube, where the dead ends are peri-
odic thin cylinders. This is the so-called comb-like structure
schematically shown in Fig. 1. The mean square displacement
〈x2(t)〉 of a particle diffusing in such a structure has qualita-
tively different long-time behavior depending on whether the
dead end length is finite or infinite. When the length is finite
〈x2(t)〉|t→∞ ∝ t, while when the length is infinite 〈x2(t)〉|t→∞
∝ t1/2. Thus, at a finite dead end length we deal with normal
effective diffusion, whereas when this length is infinite, the
diffusion is anomalous.7–10

When the dead ends are long enough, the particle is
“unaware” of their finiteness at intermediate times. As a re-
sult, anomalous-like diffusion naturally arises during the tran-
sient behavior to the effective normal diffusion at long times.
Such transient behavior can be misinterpreted as anomalous
diffusion.11 Intermediate anomalous diffusion in cells and
other complex environments has been discussed recently.7–11

Diffusion and random walk in comb-like structures have
been studied by many authors (see, for example, the books
by Weiss12 and Redner13 and references therein). A distinc-
tive feature of the present study is that we develop a formal-
ism which allows us to derive an expression for the Laplace

a)Permanent address: Physics Department, Universidad Autonoma
Metropolitana-Iztapalapa, 09340 Mexico City, Mexico.

transform of the mean square displacement 〈x2(t)〉, which is
applicable for an arbitrary comb tooth length. This is done in
Sec. II. Inverting this transform numerically, one can obtain
the mean square displacement over the entire range of time.
In Sec. III, we use this transform to analyze the behavior of
〈x2(t)〉 at short and long times. In addition, we demonstrate
intermediate anomalous subdiffusion, 〈x2(t)〉 ∝ t1/2, during
the transition to the effective normal diffusion at long times.
The obtained results are summarized and some concluding re-
marks are made in Sec. IV.

II. GENERAL THEORY

Consider a point particle diffusing in a comb-like struc-
ture schematically shown in Fig. 1. The structure is formed by
a main cylindrical tube of radius R and periodic thin cylindri-
cal dead ends of radius a and length L, separated by distance l.
The cylinders are thin in the sense that their radius a is much
smaller than both the period l and the main tube radius R,
a � l, R. The dead end length L can be arbitrary, L ≥ 0. The
case of L = 0 corresponds to a purely cylindrical tube with no
dead ends. The particle propagates along the tube axis only
when it is in the main tube. Entering a dead end, the particle
interrupts its propagation. Later it returns, and the propaga-
tion continues. Particle transitions between the main tube and
the dead ends can be described as transitions between mobile
(m) and immobile (de) states by the kinetic scheme

m →← de. (2.1)

We assume that the particle starts in the main tube and
choose its starting position along the tube axis as the ori-
gin. Consider those realizations of the particle trajectory, for
which the cumulative time spent by the particle in the mobile
state is equal to tm, tm ≤ t, where t is the total observation
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FIG. 1. Schematic representation of a comb-like structure formed by a main
cylindrical tube of radius R and periodic narrow cylindrical dead ends of ra-
dius a and length L, separated by distance l.

time. The particle propagator due to such realizations is the
free propagator for time tm,

G0(x, tm) = 1√
4πD0tm

e−x2/(4D0tm), (2.2)

where D0 is the particle diffusivity in a cylindrical tube with
no dead ends. Time tm is a random variable. Denoting the
probability density for this time, conditional on that the to-
tal observation time is t, by ϕ(tm|t), we can write the parti-
cle propagator for time t, G(x, t), as the averaged propagator
G0(x, tm),

G(x, t) =
∫ t

0
G0(x, tm)ϕ(tm|t)dtm. (2.3)

Both propagators satisfy the same initial condition,

G(x, t = 0) = G0(x, tm = 0) = δ(x). (2.4)

We use the propagator in Eq. (2.3) to find the mean square
displacement of the particle,

〈x2(t)〉 =
∫ ∞

−∞
x2G(x, t)dx

=
∫ t

0

[∫ ∞

−∞
x2G0(x, tm)dx

]
ϕ(tm|t)dtm. (2.5)

Since ∫ ∞

−∞
x2G0(x, tm)dx = 2D0tm, (2.6)

we obtain

〈x2(t)〉 = 2D0〈tm(t)〉, (2.7)

where 〈tm(t)〉 is the mean cumulative time spent by the particle
in the mobile state

〈tm(t)〉 =
∫ t

0
tmϕ(tm|t)dtm. (2.8)

Introducing the fraction of time spent by the particle in the
mobile state, fm(t),

fm(t) = 〈tm(t)〉
t

, (2.9)

we can write the mean square displacement in Eq. (2.7) as

〈x2(t)〉 = 2D0 tfm(t). (2.10)

As t → ∞, fm(t) tends to its equilibrium value f
eq
m . If

f
eq
m �= 0, Eq. (2.10) leads to

〈x2(t)〉 = 2Deff t , t → ∞, (2.11)

where Deff is the effective diffusion coefficient given by

Deff = D0f
eq
m . (2.12)

It can be shown3(a) that

f
eq
m = Vm

Vm + Vde

, (2.13)

where Vm is the volume of the main tube per one dead end,
and Vde is the dead end volume,

Vm = πR2l , Vde = πa2L. (2.14)

Diffusion is normal when L is finite, and, as a conse-
quence, both f

eq
m and Deff are finite. The situation changes

dramatically when L is infinite, and hence Vde is infinite. In
this case, both f

eq
m and Deff vanish. If fm(t) tends to zero at

long times as 1/tβ , β < 1, Eq. (2.10) leads to 〈x2(t)〉|t → ∞ ∝
tα , where α = 1 − β < 1. Thus, in such a case we deal with
anomalous subdiffusion.

After the Laplace transformation (f (t) → f̂ (s)
= ∫ ∞

0 e−stf (t)dt , where f̂ (s) is the Laplace transform
of function f(t), and s is the Laplace parameter), Eq. (2.7)
takes the form

〈x̂2(s)〉 = 2D0〈t̂m(s)〉, (2.15)

where 〈t̂m(s)〉 is the Laplace transform of the mean cumulative
residence time 〈tm(t)〉,

〈t̂m(s)〉 =
∫ ∞

0
e−st 〈tm(t)〉dt. (2.16)

In our analysis, we exploit the fact that there is a simple rela-
tion between 〈t̂m(s)〉 and the double Laplace transform of the
conditional probability density ϕ(tm|t) defined by

ϕ̂(σ, s) =
∫ ∞

0
e−st dt

∫ t

0
e−σ t

mϕ(tm|t)dtm

=
∫ ∞

0

∫ ∞

0
e−σ t

m
−stϕ(tm|t)dtmdt. (2.17)

Taking advantage of the small-σ expansion of ϕ̂(σ, s), one can
check that the relation between 〈t̂m(s)〉 and ϕ̂(σ, s) is given by

〈t̂m(s)〉 = − ∂ϕ̂(σ, s)

∂σ

∣∣∣∣
σ=0

. (2.18)

As shown below, the double Laplace transform ϕ̂(σ, s) can
be easily found, and then used to obtain 〈t̂m(s)〉 by the above
equation.

To find ϕ̂(σ, s), we introduce the probability densities
for the particle lifetimes in the mobile state and in the dead
ends, wi(t), and corresponding survival probabilities in the
two states, Si(t), i = m, de,

Si(t) =
∫ ∞

t

wi(t
′)dt ′ = 1 −

∫ t

0
wi(t

′)dt ′, i = m, de.

(2.19)



054907-3 Berezhkovskii, Dagdug, and Bezrukov J. Chem. Phys. 141, 054907 (2014)

We use these survival probabilities and probability densities to
write a linear integral equation for the conditional probability
density ϕ(tm|t),
ϕ(tm|t) = Sm(t)δ(tm − t) + wm(tm)Sde(t − tm)

+
∫ t

0
wm(t ′)dt ′

∫ t−t ′

0
wde(t ′′)ϕ(tm−t ′|t−t ′−t ′′)dt ′′.

(2.20)

The first term on the right-hand side of this equation repre-
sents those realizations of the particle trajectory, which do not
enter a dead end and spend all the time in the main tube. For
such trajectories we have tm = t. The second term represents
trajectories which spend time tm in the main tube, then enter a
dead end, and never return to the main tube. The third term is
due to realizations that escape from the main tube and come
back at least once.

After the double Laplace transformation, Eq. (2.20) takes
the form

ϕ̂(σ, s) = Ŝm(s + σ ) + ŵm(s + σ )Ŝde(s)

+ ŵm(s + σ )ŵde(s)ϕ̂(σ, s). (2.21)

Solving this equation we obtain

ϕ̂(σ, s) = Ŝm(s + σ ) + ŵm(s + σ )Ŝde(s)

1 − ŵm(s + σ )ŵde(s)
. (2.22)

Finally, we take advantage of the relation between Ŝi(s) and
ŵi(s), which follow from Eq. (2.19),

Ŝi(s) = 1

s
(1 − ŵi(s)), i = m, de. (2.23)

This allows us to write Eq. (2.22) as

ϕ̂(σ, s)= s(1−ŵm(s+σ )ŵde(s))+σŵm(s+σ )(1−ŵde(s))

s(s+σ )(1−ŵm(s+σ )ŵde(s))
.

(2.24)
Substituting this expression for ϕ̂(σ, s) into Eq. (2.18), we ar-
rive at

〈t̂m(s)〉 = 1 − ŵm(s)

s2(1 − ŵm(s)ŵde(s))
. (2.25)

To finish the derivation, it remains to specify the proba-
bility densities of the particle lifetimes in the two states, wm(t)
and wde(t). We begin with the former. For a particle diffusing
in the main tube, entry into a dead end may be considered
as trapping by the dead end entrance. Then, for the particle
in the main tube, the boundary conditions on the tube wall
are non-uniform: absorbing on the disks of radius a forming
the dead end entrances and reflecting on the rest of the tube
wall. One can approximately describe trapping by such non-
uniform boundary using boundary homogenization, which is
the replacement of the initial non-uniform boundary by an
effective uniformly absorbing boundary with correctly cho-
sen effective trapping rate. (One can learn more about bound-
ary homogenization in papers cited in Ref. 14, and references
therein.) Since the disk surface fraction is small, a2/(Rl) � 1,
the effective trapping rate of the boundary, κ , is given by14

κ = 4D0a

2πRl
= 2D0a

πRl
. (2.26)

This is in fact a linearized version of the Berg-Purcell-Shoup-
Szabo formula15, 16 for the effective trapping rate by a patchy
surface.

The trapping rate in Eq. (2.26) is very low in the sense
that the radial relaxation time, τ rel, is much shorter than the
trapping time, τ tr, found assuming uniform distribution of the
particle over the main tube cross section. To show this, we
note that τ rel ∝ R2/D0, while τ−1

tr = 2κ/R ∝ D0a/(R2l). So,
the ratio of the two times is

τrel

τtr

∝ a

l
� 1. (2.27)

Since τ rel � τ tr, the particle survival probability in the mobile
state decays as a single exponential, Sm(t) = e−k

m
t , where the

rate constant km is given by

km = 1

τtr

= 2κ

R
= 4D0a

Vm

. (2.28)

Respectively, the probability density for the particle lifetime
in the main cylindrical part of the tube is

wm(t) = −dSm(t)

dt
= kme−k

m
t . (2.29)

The Laplace transform of wm(t) has the form

ŵm(s) = km

s + km

. (2.30)

Substituting this transform into Eq. (2.25), we arrive at

〈t̂m(s)〉 = 1

s[s + km(1 − ŵde(s))]
. (2.31)

Finally, the Laplace transform of the probability density
of the particle lifetime in the dead end can be found using the
results obtained in Ref. 3(a)), where the escape from a dead
end of a more general shape is considered. For a cylindrical
dead end of length L and radius a, ŵde(s) is given by

ŵde(s) = κde

κde + √
sDde tanh(L

√
s/Dde)

, (2.32)

where Dde is the particle diffusivity in the dead end, which
may differ from the diffusivity D0 in the main tube, and pa-
rameter κde is17

κde = 4D0

πa
. (2.33)

The case of L = 0 corresponds to the tube without dead ends.
In this case, according to Eq. (2.32), we have ŵde(s) = 1.
Substituting this into Eq. (2.31), we obtain 〈t̂m(s)〉 = 1/s2. In-
verting this Laplace transform we find that 〈tm(t)〉 = t, as it
must be in the absence of dead ends, since the particle spends
all time in the mobile state. For infinitely long dead ends,
Eq. (2.32) simplifies and takes the form

ŵde(s)|L=∞ = κde

κde + √
sDde

. (2.34)

The expressions in Eqs. (2.15), (2.31), and (2.32) allow
us to find the Laplace transform of the mean square dis-
placement, 〈x̂2(s)〉, at arbitrary length L of the dead ends. In
Sec. III, we use these expressions to study the long-time be-
havior of 〈x2(t)〉 as a function of L.
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III. APPLICATION OF THE THEORY

Having in hand the Laplace transform 〈x̂2(s)〉, one can
obtain the mean square displacement over the entire range of
time by inverting the transform numerically. In addition, one
can use asymptotic behavior of 〈x̂2(s)〉 at large and small val-
ues of the Laplace parameter to find the short- and long-time
behavior of 〈x2(t)〉, respectively. As s → ∞, ŵde(s) → 0, and
Eq. (2.31) reduces to

〈t̂m(s)〉 ≈ 1

s2
− km

s3
, s → ∞. (3.1)

Inverting this Laplace transform we find the short-time behav-
ior of 〈tm(t)〉,

〈tm(t)〉 ≈ t − km

t2

2
, t → 0. (3.2)

Then the fraction of time spent by the particle in the main
tube, Eq. (2.9), and the mean square displacement, Eq. (2.10),
at short times, respectively, are

fm(t) ≈ 1 − 1

2
kmt , t → 0, (3.3)

〈x2(t)〉 ≈ 2D0t − D0kmt2 , t → 0. (3.4)

The relations in Eqs. (3.2)–(3.4) are universal in the sense
that they are independent of the dead end length L, assuming
that L �= 0. This is quite natural since the particle, starting
in the main tube, is unaware of the dead end length at short
times. However, the long-time behaviors of 〈tm(t)〉, fm(t), and
〈x2(t)〉 are not universal. Moreover, they are qualitatively dif-
ferent depending on whether the dead ends are of finite or in-
finite length. Therefore, below we analyze the two cases sep-
arately starting with the latter one.

A. Infinitely long dead ends

When the dead ends are infinitely long, we find the
Laplace transform of 〈tm(t)〉 by substituting into Eq. (2.31)
the expression for ŵde(s)|L=∞ given in Eq. (2.34). This leads
to

〈t̂m(s)〉 = κde + √
Ddes

s
(
km

√
Ddes + κdes + √

Dde s3/2
) . (3.5)

The leading term of the small-s asymptotic behavior of 〈t̂m(s)〉
is

〈t̂m(s)〉 ≈ κde

km

√
Dde s3/2

, s → 0. (3.6)

Inverting this Laplace transform we find the long-time behav-
ior of 〈tm(t)〉,

〈tm(t)〉 ≈ 2κde√
πDde km

√
t , t → ∞. (3.7)

The long-time behavior of fm(t) and 〈x2(t)〉 can be re-
spectively found by substituting 〈tm(t)〉 given in Eq. (3.7) into
Eqs. (2.9) and (2.10). The results are

fm(t) ≈ 2κde

km

√
πDdet

, t → ∞ (3.8)

and

〈x2(t)〉 ≈ 2D0κde√
πDde km

√
t , t → ∞. (3.9)

Using Eqs. (2.28) and (2.33), we can write the long-time
behaviors of fm(t) and 〈x2(t)〉 given in Eqs. (3.8) and (3.9)
in terms of the geometric parameters of the system, volume
Vm = πR2l and the area of the dead end entrance, Ade = πa2,

fm(t) ≈ 2Vm

Ade

√
πDdet

, t → ∞ (3.10)

and

〈x2(t)〉 ≈ 2D0Vm

Ade

√
t

πDde

, t → ∞. (3.11)

The expressions in Eqs. (3.9) and (3.11) show that in
comb-like structures with infinitely long dead ends diffusion
is anomalous with the exponent α = 1/2. This is a conse-
quence of the fact that the fraction of time spent by the parti-
cle in the main tube (mobile state) tends to zero at long times
as 1/t1/2, Eqs. (3.8) and (3.10). Thus, in comb-like structures
with infinitely long teeth the exponents α and β are equal to
each other, α = β = 1/2. The range of applicability of the
asymptotic results discussed above is given by

t � κ2
de

k2
mDde

= V 2
m

A2
deDde

. (3.12)

This inequality follows from the requirement that the small-
s expansion of the Laplace transform of 〈tm(t)〉, Eq. (3.5), is
determined by its leading term, Eq. (3.6).

Finally, we define function α(t), which can be interpreted
as a time-dependent analog of the exponent α,

α(t) = d ln〈x2(t)〉
d ln t

= 1 + d ln fm(t)

d ln t
, (3.13)

where the second equality follows from the first one and
Eq. (2.10). According to Eq. (3.3), and Eqs. (3.8) and (3.10)
liming values of this function are

α(t) ≈
{

1, t → 0

1/2, t → ∞
. (3.14)

Solid lines in Fig. 2 show the time dependences fm(t),
〈x2(t)〉, and α(t) obtained by numerically inverting the Laplace
transforms 〈t̂m(s)〉, Eq. (3.5), and s〈t̂m(s)〉. The curves were
drawn assuming that R = l = 1, a = 0.1, and D0 = Dde =
1. In the rest of this section, we discuss how the dependences
fm(t), 〈x2(t)〉, and α(t) are modified when the dead ends are of
finite length, and how they are affected by the difference in
the diffusivities D0 and Dde.

B. Dead ends of finite length

When the dead end length is finite, the Laplace transform
of the probability density of the particle lifetime in the dead
end is given by Eq. (2.32). Substituting this transform into
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FIG. 2. The time dependences of the fraction of time spent by the particle in the main tube, fm(t), panel (a), the mean square displacement, 〈x2(t)〉, panel (b),
and function α(t), panel (c), defined in Eqs. (2.7), (2.9), and (3.13), respectively. Solid curves show the dependences for the tube with infinitely long dead ends,
L = ∞, while the dashed lines show these dependences for tubes with dead ends of a finite length L. The values of L are given near the curves. The dependences
are obtained by numerically inverting the Laplace transforms 〈t̂

m
(s)〉 and s〈t̂

m
(s)〉, where 〈t̂

m
(s)〉 is given by Eq. (3.5) for L = ∞, and by Eq. (3.15) for L �= ∞,

assuming that the other parameters are R = l = 1, a = 0.1, and D0 = Dde = 1.

Eq. (2.31), we arrive at

〈t̂m(s)〉 = κde + √
Ddes tanh(L

√
s/Dde)

s
[
km

√
Ddes tanh(L

√
s/Dde) + κdes + √

Dde s3/2 tanh(L
√

s/Dde)
] . (3.15)

As s → 0, this Laplace transform reduces to

〈t̂m(s)〉 ≈ 1

s2
f

eq
m , s → 0, (3.16)

where f
eq
m = κde/(kmL + κde), which leads to the expression

in Eq. (2.13) after we substitute here the expressions for km
and κde given in Eqs. (2.28) and (2.33). Respectively, the
long-time asymptotic behavior of the mean cumulative resi-

dence time spent by the particle in the mobile state is

〈tm(t)〉 ≈ f
eq
m t, t → ∞. (3.17)

As discussed earlier this leads to the mean square displace-
ment in Eq. (2.11) with Deff in Eq. (2.12). It can be shown
that the range of applicability of the long-time behavior of
the expression for 〈tm(t)〉 in Eq. (3.17) is determined by the
inequality

t � [〈τde〉 + L2/(3Dde)
]
f

eq
m , (3.18)
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where 〈τ de〉 is the mean particle lifetime in the dead end3(a)

〈τde〉 = πaL

4D0

. (3.19)

According to Eqs. (2.11) and (3.4), function α(t), defined
in Eq. (3.13), is equal to unity in both limiting cases of t →
0 and t → ∞. In between, α(t) first decreases, reaches a min-
imum, and then increases coming back to unity. Initial de-
crease of α(t) is identical to that in the case of infinitely long
dead ends, since the particle is unaware of the finiteness of
the dead end length. The larger is the dead end length, the
longer function α(t) is close to its counterpart in the case of
infinitely long dead ends. For sufficiently long dead ends α(t)
reaches the limiting value 1/2 and stays at this value for some
time before it starts increasing to come back to unity at longer
times. This is an example of intermediate anomalous diffu-
sion which arises as a part of the transient regime to the effec-
tive normal diffusion. As follows from the inequalities given
in Eqs. (3.12) and (3.18), this happens when the characteristic
time in the right-hand side of the latter inequality significantly
exceeds its counterpart in the former inequality,(

〈τde〉 + L2

3Dde

)
f

eq
m � V 2

m

A2
deDde

. (3.20)

Using Eqs. (2.13), (2.14), and (3.19), it can be shown that the
above inequality is fulfilled when Vde � Vm.

We illustrate how the finiteness of the dead end length
affects the dependences fm(t) and α(t) in panels (a) and (c)
of Fig. 2 by showing these dependences for several values of
L (the dashed curves). The dependences 〈x2(t)〉 for some of
these values of L are shown in panel (b) of Fig. 2. One can
see that as the dead end length increases, f

eq
m and Deff de-

crease, while α(t) stays close to its counterpart for a tube with
infinitely long dead ends, α(t)|L = ∞, for longer and longer
times. For sufficiently long dead ends, α(t) approaches the
limiting value α = 1/2, corresponding to anomalous diffusion,
before it starts increasing to reach its long-time asymptotic
value α = 1. This is an example of the so-called intermediate
anomalous subdiffusion.7–11

Concluding this section, we discuss how the difference
between the diffusivities D0 and Dde affects the dependencies
fm(t), 〈x2(t)〉, and α(t). To do this, we consider these depen-
dences as functions of Dde at a fixed value of D0. First, we note
that the increase of Dde accelerates the transition of functions
fm(t) and α(t) to their long-time asymptotic behaviors, and di-
minishes the rate of growth of the mean square displacement,
〈x2(t)〉, with time. As Dde decreases, the transition to the long-
time behavior slows down. In the limiting case of Dde = 0, the
particle never enters the dead ends. Formally, it follows from
Eq. (2.32). Indeed, when Dde = 0, according to this equation
ŵde(s) = 1 and, hence, wde(t) = δ(t). As a consequence, in
this limiting case α(t) = fm(t) = 1 and 〈x2(t)〉 = 2D0t, as it
must be for a particle diffusing in a tube with no dead ends.

IV. CONCLUDING REMARKS

This paper is devoted to diffusion of point particles in
three-dimensional comb-like structures (Fig. 1). We develop a
formalism that allows us to analyze the problem for the comb

teeth of an arbitrary length. A distinctive feature of the for-
malism is that it focuses on the cumulative time tm(t) spent by
a diffusing particle in the main tube conditional on that the
total observation time is t, tm ≤ t. This conditional cumulative
residence time is important because the particle propagates
along the tube axis only during this time.

The key relation in our analysis is the linear integral
equation for the conditional probability density of time tm(t),
ϕ(tm|t), Eq. (2.20). Solving this equation in the Laplace space,
we find the double Laplace transform of the conditional prob-
ability density, ϕ̂(σ, s), given in Eq. (2.24). This transform can
be used to find the Laplace transform of an arbitrary moment
of time tm(t),

〈
tnm(t)

〉 =
∫ t

0
tnmϕ(tm|t)dtm, n = 0, 1, 2, . . . . (4.1)

The relation between 〈t̂ nm(s)〉 and ϕ̂(σ, s) has the form

〈
t̂ nm(s)

〉 =
∫ ∞

0
e−st

〈
tnm(t)

〉
dt = (−1)n

∂nϕ̂(σ, s)

∂σn

∣∣∣∣
σ=0

, (4.2)

which is a generalization of the relation in Eq. (2.18) for the
first moment. Since our main quantity of interest is the mean
square displacement of the particle along the tube axis, we
need only the first moment 〈tm(t)〉, Eq. (2.7), whose Laplace
transform in its final form is given in Eq. (3.15).

The formalism is used to study the dependence of the
mean square displacement 〈x2(t)〉 on the tooth length L, as-
suming that the particle starts in the main tube. After some re-
laxation time, 〈x2(t)〉 approaches its asymptotic long-time be-
havior which is qualitatively different depending on whether
L is finite or infinite. When L is finite, the diffusion at long
times is normal and 〈x2(t)〉 is given by Eq. (2.11). However,
the situation is qualitatively different when L is infinite. Here
the diffusion at long times is anomalous with the exponent α

= 1/2, and 〈x2(t)〉 is given by Eq. (3.11).
The difference in the long-time behavior of 〈x2(t)〉 can be

rationalized using function fm(t) defined in Eq. (2.9), which is
the fraction of time spent by the particle in the mobile state.
When L is finite this fraction tends to a finite limit given in
Eq. (2.13), whereas when L is infinite, it tends to zero. For
sufficiently large L, the relaxation time, required for the frac-
tion to reach its long-time asymptotic value, may significantly
exceed the relaxation time to the asymptotic behavior of the
system with infinitely long teeth. In such a case, intermediate
anomalous diffusion is observed, as illustrated in Fig. 2(c).

Finally, we note that this paper supplements our recent
work11 in which we show that transient behavior to the normal
diffusion at long times can be misinterpreted as anomalous
diffusion. Here we demonstrate how intermediate anomalous
diffusion arises in comb-like structures when the comb teeth
are long enough.

In this paper, we consider diffusion of point particles, i.e.,
we assume that the particle radius is small enough and, there-
fore, can be neglected. Finiteness of the particle radius leads
to new effects. First of all, this is the exclude volume effect
due to the fact that the particle center cannot approach the
tube wall at a distance smaller than particle radius. As a con-
sequence, the volume available for the center of the particle
is smaller than the total volume of the system. Importantly, a
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particle of finite size “sees” a smaller dead end entrance than a
point particle. The particle does not enter dead ends, when its
radius exceeds that of the dead ends.3(b) In addition, a finite
size particle “feels” hydrodynamic interaction with the tube
walls. All these effects are beyond the scope of this paper that
focuses on diffusion of point particles. However, they may
play an important role when the particle radius is comparable
with that of the dead ends.3(b)
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