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Objective(s): To investigate the effects of local mild hypothermia on the expression of Fas, FasL and 
MMP-3 after cerebral ischemia-reperfusion in rats. 
Materials and Methods: Male Wistar rats were divided into sham-operated group (Sham), 
normothermia group (NT), and hypothermia group (HT). MCAO/R model was established by 
Longa’s method, and reperfusion was allowed after 2 hr occlusion. Mild hypothermia (33±0.5℃) 
for 6 hr was initiated at the start of reperfusion. Immunohistochemistry was performed to 
determine expression Fas, FasL, and MMP-3. 
Results: Infarct volume was reduced in the hypothermia group (18.43±4.23%) compared with the 
normothermia group (24.76±5.76%) (P<0.05). In mild hypothermia group, numbers of Fas-
positive and MMP-3 positive cells were significantly less than those of normothermia group 
(P<0.05). Neurological functional scores of mild hypothermia were significantly improved 
(P<0.05). 
Conclusion: Mild hypothermia decreases infarct volume after cerebral ischemia-reperfusion, 
reduces Fas and MMP-3 expression, but increases FasL in cerebral ischemia-reperfusion rats. 
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Introduction 
Cerebral ischemia/reperfusion caused by stroke 

contributes to worsened neurological outcomes and 
poor prognosis. Ischemia/reperfusion injury is 
triggered by a concert of pathological events, leading 
to inflammation, brain-blood barrier disruption, and 
neuronal cell death. Current therapeutic strategies 
for ischemic stroke include pharmacological 
approaches and neuroprotective modalities (1, 2). 
Therapeutic hypothermia has been considered a 
robust neuroprotectant in stroke therapy. The 
mechanisms underlying neuroprotective action of 
hypothermia are thought to be multifunctional. 
Preclinical studies have demonstrated that 
hypothermia effectively targets a multitude of 
ischemia-induced pathways including energy 
depletion, ion shifts, free radical formation, EAA 
release, and inflammation (3–5). Brain cooling 
accelerates restoration of ionic homeostasis and 
inhibits ischemia-induced EAA release (6–8). 
Moreover, free radical formation and inflammatory 
responses are suppressed upon hypothermia 

procedures (7). Hypothermia intervenes in multiple 
steps of cell death pathway to reduce the ischemic 
progression following acute stroke (9, 10). 

Death receptor-mediated apoptosis plays a 
critical role in neuronal death following ischemic 
stroke. Fas (APO-1/CD95) belongs to the tumor 
necrosis factor receptor (TNFR) superfamily of cell-
surface death receptors and is expressed in the 
nervous system. Fas has been reported to trigger 
caspase-dependent apoptosis in neuron cells. 

Expression of Fas and its ligand have been 
documented in the brain following ischemia (11), 
and neutralizing FasL with antibody treatment has 
been demonstrated to be neuroprotective in 
experimental in vivo models (12, 13). Furthermore, 
Fas knockout animals have smaller infarct areas than 
wild-type ones (14, 15). Matrix metalloproteinases 
(MMPs) can modulate Fas activation by causing 
proteolytic shedding of FasL from the cell surface 
(16–18). Several studies have demonstrated that 
therapeutic hypothermia altered MMP expression in
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stroke (19–21). Moreover, release of soluble Fas ligand 
(sFasL) has been reported to be reduced in response to 
hypothermia treatment (22). Although several lines of 
evidence suggest that hypothermia reduces neuron 
death through alteration of apoptosis pathway, the 
mechanism underlying neuroprotective effect of mild 
hypothermia treatment for ischemic stroke remains 
sketchy. 

We hypothesized that mild hypothermia applied 
during ischemia modulates death receptor-mediated 
apoptosis and investigated the molecular mechanism 
in the ischemic brain. In the present study, we 
examined the neuroprotective effects of mild 
hypothemia on infarction, neurological deficits, and 
apoptosis in a rat MCAO model. 

 
Materials and Methods 
Animals and ischemia model 

Adult male Wistar rats weighing 300±20 g were 
purchased from Vital River Laboratories                
(Beijing, China) and housed in animal centre of 
Harbin Medical University. Protocol was approved by 
the animal ethics committee of Harbin Medical 
University. A middle cerebral artery occlusion 
(MCAO) was performed as previously described (23). 
In brief, animals were initially anesthetized with 
10% chloral hydrate. Rectal temperature was 
maintained and monitored at 37°C with a heating 
blanket. The right common carotid artery, external 
carotid artery (ECA), and internal carotid artery 
were isolated. A nylon suture with its tip rounded by 
heating on flame was advanced from the ECA into the 
lumen of the internal carotid artery until it blocked 
the origin of the middle cerebral artery (MCA). 2 hr 
after MCAO, reperfusion was performed by removing 
the suture. MCAO rats were evaluated for 
neurological damages as previously described (23). 

A total of 78 rats were used and divided into 3 
groups: Sham-operated group (sham; n=6), 
normothermia treatment (37±0.5) (NT; n= 36), and 
hypothermia treatment (33±0.5) (HT; n=36). For 
sham group, rats were treated in the same manner as 
MCAO rats without ischemia. Hypothermia was 
performed as previously described (24). MCAO rats 
received cooling immediately after ischemia for 6 hr 
and were subsequently maintained in normal body 
temperature. For NT group, MACO rats were treated 
with the same procedures without cooling. Animals 
were sacrificed at 6 hr, 12 hr, 24 hr, 48 hr, 72 hr, and 
2 weeks post-ischemia. Brain tissues were harvested 
for subsequent experiments. 
 
Infarct volume analysis 

Rats were sacrificed by carbon dioxide overdose, 
followed by perfusion with cold normal saline 
immediately. The brain was removed, fixed with 4% 
para- formaldehyde and sectioned into 2mm thick 
slices. Slices were immersed in 2% 2,3,5-triphenyl 

tetrazolium chloride (TTC, Sigma) and incubated at 
37◦C for 20 min. TTC-stained slices were 
photographed and analyzed by Image-J analysis 
software (http://rsb.info.nih.gov/ij/). Total infarct 
volume was calculated by summing the clot area in 
each section and multiplying by the distance 
between sections. Lesion area was determined as the 
percentage of the contralateral hemispheric area. 
 
Neurobehavioral evaluation 

Neurological status of each rat was evaluated at 
indicated time points as previously described (25). 
Rats were suspended by the tail 1 m above the floor 
and slowly lowered while observing their posture. 
Rats were then placed on a flat surface and gently 
pushed from side to side. Deficits were scored as 
follows: 0, no deficit; 1, forelimb flexion while 
suspended by the tail; 2, decreased resistance to 
lateral push. Animals were also examined by the 
modified balance beam test (26). Animals were 
placed on a narrow beam to walk for 60 sec. Deficits 
were scored based on the scale: 0, steady posture 
with paws on top of beam; 1, paws on side of beam 
or wavering; 2, one or two limbs slip off beam; 3, 
three limbs slip off beam; 4, rat attempts to balance 
with paws on beam but falls; 5, rat drapes over beam 
and falls without attempt. 
 
Immunohistochemistry 

Brain samples were paraffin embedded and cut 
into 2 mm thick sections. After deparaffinization, 
sections were blocked in 1% bovine serum albumin 
in PBS and incubated with primary antibodies 
against Fas, FasL, and MMP-3 followed by treating 
with biotin-labeled anti-IgG secondary antibody. 
Antibody complexes were detected using the Vector 
ABC kit (Elite Vectastain ABC kit, Vector Labs) and 
colorized with 0.05% diaminobenzidine (DAB, 
Vector Labs). Negative controls were run in parallel 
using adjacent sections incubated with IgG instead of 
the primary antibody.  
 
Statistical analysis 

The data are expressed as mean ± S.D. Student's t-
test or Dunnett t-test were used to compare the 
differences between treated groups and control 
groups, and differences were considered significant 
at P< 0.05. 
 
Results 
Mild hyperthermia reduces infarct volume 

To evaluate the effects of mild hypothermia on 
ischemic stroke, MCAO rats were treated with 
different temperatures and analyzed by a set of 
histological tests. The mortality of sham, 
normothermia and hypothermia groups were 0%, 
21%, and 13%, respectively. Significant neurological 
damage was observed in the sham-operated MACO  
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Figure 1. Effect of mild hypothermia on infarct volume in MCAO 
rats. Infarct areas of sham, normothermia-treated and mild 
hypothermia were analyzed by TTC staining. (A) Infarct volume 
was expressed as percentage of infracted region in reference to 
contralateral hemisphere. (B) Representative image of each 
experimental group. *P<0.05, hypothermia group compared with 
normothermia group 
 
rats. The relative percent of infarct volume in 
normothermia-treated animals was 24.76±5.76%. 
Mild hypothermia treatment significantly reduced 
the infarct volume to 18.43±4.23%, compared with 
the normothermia-treated group (P< 0.01) (Figure 
1A). Neuronal damage in rats was evaluated after 
MCAO by the TTC staining method. Representative 
images of each experimental group were presented 
in Figure 1B. 
 
Mild hypothermia improves neurobehavioral 
outcomes in rats 

To investigate the effect of mild hypothermia on 
neurobehavioral deficits in MACO rats, MACO rats 
were treated with cooling procedures and examined 
using two behavioral tests. Mild hypothermia 
treatment significantly improved neurological 
outcomes in MACO rats compared with that of the 
normothermia-treated animals. The scores of 
balance beam test in normothermia and 
hypothermia groups were 2.17±0.41 and 0.83±0.75, 
respectively (P<0.05). Using Berderson test, 
differences in neurological scores between 
normothermia (1.83±0.75) and hypothermia groups 
(0.67±0.52) were significant (P< 0.01) (Table 1). 

Table 1. The neurobehavioral deficit scores of normothermia and 
hypothermia groups 
 

Group Animal 
numbers 

Balance beam 
test 

Berderson 
test 

Normothermia 6 2.17±0.41 1.83±0.75 

Mild 
hypothermia 

6 0.83±0.75* 0.67±0.52* 
 

Results are shown as mean±SD, *P<0.05, Normothermia group 
compared with hypothermia group 
 
Table 2.  Percentage of Fas-positive cells in brain of MACO rat 
after reperfusion with different brain cooling processes 

Reperfusion 
time (min) 

Animal 
numbers 

Normothermia 
(°C) 

Mild hypothermia 
(°C) 

6 4 22.05±4.70 14.20±5.96* 
12 4 23.75±8.45 18.65±5.53* 
24 4 29.70±6.59 22.90±4.98* 
48 4 24.40±6.79 19.95±6.19* 
72 4 20.75±4.71 12.35±4.34* 
Results are shown as mean±SD, *P<0.05, Hypothermia group 
compared with normothermia group 
 
Mild hypothermia modulates expressions of Fas 
and FasL in MACO rats after reperfusion 

We further examined the effect of mild 
hypothermia on expression levels of Fas and FasL 
using immunohistochemistry. We observed the 
elevated expression of Fas in the brain of MACO rats 
after reperfusion. From the immunohistochemistry 
analysis, the number and intensity of Fas 
immunoreactivity were higher in normothermia 
group than in hypothermia group over the 
designated time frame (Table 2). In addition, 
ischemia- induced FasL level was significantly higher 
in hypothermia group than in normothermia group 
at 6 and 12 hr post reperfusion (P<0.05) (Table 3). 
Nevertheless, number and intensity of FasL-positive 
cells were higher in mild hypothermia group than in 
normothermia group over the designated time 
frame. 
 
Table 3. Percentage of FasL-positive cells in brain of MACO rat 
after reperfusion with different brain cooling processes 
 

Reperfusion 
time (min) 

Animal 
numbers 

Normothermia 
(°C) 

Mild hypothermia 
(°C) 

6 4 38.75±14.02 55.05±24.56* 
12 4 59.10±9.16 69.45±13.65* 
24 4 46.00±21.33 50.78±14.49 
48 4 36.10±8.84 40.78±18.36 
72 4 33.40±8.76 37.95±12.77 

Results are shown as mean±SD, *P<0.05, Hypothermia group 
compared with normothermia group 
 

Table 4. Percentage of MMP-3 positive cells in brain of MACO rat 
after reperfusion with different brain cooling processes 
 

Reperfusion 
time (min) 

Animal 
numbers 

Normothermia 
(°C) 

Mild hypothermia 
(°C) 

6 4 63.80±22.70 48.75±19.76* 
12 4 46.00±11.85 36.60±15.67* 
24 4 46.75±12.89 36.90±16.48* 
48 4 42.50±19.20 29.95±19.20* 
72 4 32.20±12.82 26.50±5.79 
Results are shown as mean±SD, *P<0.05, Hypothermia group 
compared with normothermia group 
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Mild hypothermia alters expressions of MMP-3 in 
brain of MACO rats after reperfusion 

As FasL level is associated with the activity of 
MMP-3, we next determined the expression of MMP-
3 in brain tissues of MACO rats after reperfusion 
undergoing different temperature treatments. 
Expression of MMP-3 was absent in sham group 
(data not shown). Level of MMP-3 was significantly 
increased in response to reperfusion with its peak at 
6 hr post-reperfusion (Table 4). Ischemia- induced 
MMP-3 expression was significantly lower in 
hypothermia group than in normothermia group at 
6, 12, 24, and 48 hr post reperfusion (P<0.05). 
 
Discussion 

In the present study, we demonstrate that mild 
hypothermia ameliorates neurological deficits in rat 
undergoing MACO and reperfusion. The improvement 
is associated with a decrease in Fas expression                  
and elevated expression of FasL in comparison with 
those of normothermia treatment. Moreover, our 
results show that level of MMP-3 is relatively lower in 
ischemic/reperfusion rats treated with mild 
hypothermia compared with that of normothermia-
treated ones. According to clinical observations the 
window of thrombolytic therapy is considered to be 3 
hr; the experimental model was designed to have 
animals undergo ischemia for 2 hr followed by 
reperfusion (27). 

Ischemic stroke is associated with significantly high 
mortality and disability. Cerebral ischemic cascade is 
complex with spectrum of modulatory molecules, 
signaling pathways, and proteins that are involved in 
maintaining the micro-environment in aspect of fate of 
neuron cells. Despite reperfusion restoring blood flow, 
it also leads to secondary brain damages resulting from 
edema, inflammation and oxidative stress. Mild 
hypothermia has been demonstrated to be a robust 
treatment for cerebral ischemic injury, pre-clinically 
and clinically (2, 18). Brain cooling is thought to 
manipulate metabolic stores and decelerate biological 
and biochemical reactions responding to ischemia (28, 
29). Several studies have reported that therapeutic 
hypothermia inhibits ischemia-induced apoptosis with 
results of decreased apoptotic cells and biochemical 
events associated with the intrinsic and extrinsic 
pathways (30–34). In addition, hypothermia treatment 
leads to resistance of cell to apoptotic stimuli including 
Fas ligation (35, 36). 

Our findings are consistent with previous studies in 
which both Fas and FasL were found localized in 
neurons and astrocytes of peri-ischemic areas, whereas 
the expressions were absent in sham-operated animals 
(14, 22). It has been documented that Fas expression is 
increased in 30 min after ischemia and reaches a peak 
at 6 hr post ischemia (22, 37, 38). It has been reported 
that MMPs cleave FasL to form sFasL that binds to Fas 
triggering apoptosis (22, 39). Our data show that mild 

hypothermia upregulates FasL expression in response 
to ischemia/ reperfusion. Given ameliorated 
neurobehavioral outcomes, it is suggested that elevated 
FasL in animals undergoing mild hypothermia remain 
membrane bound. The finding is supported by further 
experiments focusing on MMPs expression in ischemic 
brain. 

MMPs have been documented to be upregulated in 
response to cerebral ischemia (40, 41). They are 
involved in neuroinflammation, cleavage, and activation 
of other MMPs and shedding of death receptors. 
Increasing evidence has shown that MMP-3 plays a 
critical role in modulating inflammation and cell death 
(42). MMP-3 initiates inflammatory procedures in a 
Parkinson’s model with production of TNF-α and other 
cytokines in microglial cells (43, 44). LPS-induced 
inflammation leads to increased IL1β stimulation and 
astrocyte expression of MMP-3 (45). A recent study has 
reported that MMP-3 is involved in neuron apoptosis 
after ischemia/reperfusion through FasL shedding (22). 
Our data demonstrate an increase in the expression of 
MMP-3 parallel with worsened neurobehavioral 
outcome in ischemia/reperfusion animals. In addition, 
the elevated MMP-3 expression was suppressed by 
mild hypothermia and resulted in improved neurologic 
deficits, suggesting the absence of MMP-3 may lead to 
an improvement in neuron death. 
 
Conclusion 

We demonstrate that mild hypothermia 
modulates expression of the Fas and FasL that are 
involved in apoptotic pathway. Mild hypothermia 
decreases MMP-3 activation leading to improved 
neurobehavioral outcomes due to less sFasL release. 
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