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Abstract

Diagnosis of neurologic and neuropsychiatric disorders typically involves considerable assessment

including clinical observation, neuroimaging, and biological and neuropsychological

measurements. While it is reasonable to expect that the integration of neuroimaging data and

complementary non-imaging measures is likely to improve early diagnosis on individual basis,

due to technical challenges associated with the task of combining different data types, medical

image pattern recognition analysis has been largely focusing solely on neuroimaging evaluations.

In this paper, we explore the potential of integrating neuroimaging and clinical information within

a pattern classification framework, and propose that the multi-kernel learning (MKL) paradigm

may be suitable for building a multimodal classifier of a disorder, as well as for automatic

identification of the relevance of each information type. We apply our approach to the problem of

detecting cognitive decline in healthy older adults from single-visit evaluations, and show that the

performance of a classifier can be improved when nouroimaging and clinical evaluations are used

simultaneously within a MKL-based classification framework.
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1 Introduction

Image-based high-dimensional pattern classification has gained considerable attention, and

has begun to provide tests of high sensitivity and specificity on an individual patient basis,

in addition to characterizing group differences [7, 6, 11]. One of the major advantages of

pattern recognition methods is their ability to capture multivariate relationships among

various anatomical regions for more effective characterization of group differences.

Despite the advances of image-based pattern recognition, clinical observations still form the

basis for the diagnosis in neurologic and neuropsychiatric disorders. Moreover, besides

imaging evaluations, there are a number of non-imaging measures that are of significance in

a variety of studies. For example, the potential alternative markers associated with aging can

be biological [2, 12], genetic [10], or cognitive [5]. While the potential of a computational
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approach that would integrate disparate types of information (e.g., structural, functional,

clinical, genetic, etc.) is obvious, technical challenges associated with such an approach

often prevented joint use of the available alternative measures.

Several attempts have been made recently in the direction of integrating different types of

imaging or non-imaging information for pattern classification in the studies of aging. Zhang

et al. [20] integrate MRI, PET modalities with CSF markers via a weighted combination of

multiple kernels, which provided improvements in the problem of discriminating

Alzheimer’s disease (AD) (or Mild Cognitive Impairment (MCI)) and healthy controls. In a

similar problem of classifying AD and healthy subjects, Hinrichs et al. [9] employed a

multi-kernel learning (MKL) approach to integrate different imaging and non-imaging data.

In [4], a computational imaging marker of AD-like atrophy was combined with CSF to

predict MCI to AD conversion. At the same time, studies that would investigate possible

benefits of integrating imaging and clinical evaluations for prediction of cognitive decline in

healthy subjects are absent.

The prospect of finding potential treatments of AD makes it critical to identify biomarkers

for very early stages of cognitive decline. As the diagnosis of MCI and AD involves

comprehensive clinical observations, it is tempting to use cognitive evaluations when

predicting aging-related cognitive decline. There are, however, several challenges associated

with the reliability of cognitive measures. While cognitive measures may be significantly

different in cognitively declined populations as compared to healthy controls, these

measures may not be able to predict cognitive decline at baseline when the decline is not yet

evident. As the result of the low predictive power of cognitive measures at baseline, as well

as due to the associated significant noise, a number of followup evaluations are typically

needed to detect cognitive decline. Considering that brain structure may actually precede

reduction in cognitive function by at least several years [13], it is reasonable to expect that

single-visit imaging evaluations together with the respective cognitive measures can jointly

provide richer information for the detection of cognitive decline.

In this paper, we describe a general MKL-based framework that integrates imaging and

clinical information for classification. Our approach consists of an image processing

pipeline and a MKL component that combines disparate data for classification. The

application focus of this paper is in predicting cognitive decline in healthy older adults by

combining MRI and a cognitive assessment test, where our method allows inference about

longitudinal outcomes based on the analysis of single-visit imaging and cognitive

evaluations.

2 Background

Support Vector Machines (SVM) [19] have been shown to provide high classification

accuracy, and are among the most widely used classification algorithms in the brain MRI

classification studies [7, 11]. SVM project the data into a high-dimensional space, and find

the classification function as the separating hyperplane with the largest margin, where the

margin is the distance from the separating hyperplane to the closest training examples.
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Multi-Kernel Learning (MKL) [18] extends the theory of SVM by allowing different kernel

functions to represent subsets of features (e.g., MRI, cognitive evaluations). Given a set of

points χ = {x1,…,xn}, and their respective labels {y1,…, yn}, the MKL problem for K

kernels can be formulated as follows:

(1)

where the slack variables ξi are introduced to allow some amount of misclassification in the

case of non-separable classes, constant C implicitly controls the tolerable misclassification

error, the kernel functions φk(x) map the original data into a high-dimensional, possibly

infinitely-dimensional, space, and β = (β1,…,βK) are the subkernel weights. The sparsity of

the kernel combinations is controlled by a constraint on the subkernel weights, where the

commonly used sparse constraint is ‖β‖1 = 1, and the typical non-sparse constraint is ‖β‖2 =

1. The task of the MKL optimization problem is then to find subkernel weights while

simultaneously maximizing the margin for the training data.

3 Classification of Imaging and Clinical Evaluations

Figure 1 presents the diagram of our approach, and uses the task of integrating structural

MRI and cognitive evaluations as an example. The main components of our approach are:

(1) tissue density estimation; (2) ROI features extraction; and (3) integration of image

measurements and clinical evaluations via MKL.

Tissue density estimation

All MR images are preprocessed following a mass-preserving shape transformation

framework [3]. Gray matter (GM) and white matter (WM) tissues are segmented out from

each skull-stripped MR brain image by a brain tissue segmentation method [14]. Each

tissue-segmented brain image is then spatially normalized into a template space, by using a

high-dimensional image warping method [16]. The total tissue mass is preserved in each

region during the image warping, and tissue density maps are generated in the template

space. These tissue density maps give a quantitative representation of the spatial distribution

of tissue in a brain, with brightness being proportional to the amount of local tissue volume

before warping.

Extracting regional features

The original brain images, and the respective tissue density maps, have very high

dimensionality which makes it difficult to discover patterns in the resulting high-

dimensional space. By registering brain images to a common template with a predefined

number of labeled anatomical regions of interest (ROIs), and by calculating mean tissue

density at each ROI, the dimensionality of the original data can be reduced to a manageable

size. We use a template image with 101 manually labeled ROIs, and compute average GM

and WM tissue densities at ROIs as the image features.
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MKL classification

For the purpose of integrating imaging and clinical evaluations we use one kernel for

imaging features, and another kernel for the respective clinical evaluations. We use the

publicly available implementation of ℓ2-norm MKL [17], and consider Gaussian kernels

with σi and σc representing kernel widths for imaging features and clinical measures,

respectively.

4 Results

4.1 Materials and evaluation

Dataset—We analyzed a population of 127 healthy individuals from the Baltimore

Longitudinal Study of Aging (BLSA) [15] which has been following a set of older adults

with annual and semi-annual imaging and clinical evaluations. In this paper we focus on

MRI evaluations of the BLSA as the imaging component of our analysis. In conjunction

with each imaging evaluation, every individual’s cognitive performance was evaluated on

tests of mental status and memory. We selected the following three measures for our

analysis: the immediate free recall score (sum of five immediate recall trials) on the

California Verbal Learning Test (CVLT) [5], the total number of errors from the Benton

Visual Retention Test (BVRT) [1], and the total score from the Mini-Mental State Exam

(MMSE) [8].

Defining cognitively stable and declining groups—While the individual cognitive

evaluations are often noisy and unreliable, one can identify trends of cognitive decline by

considering rates of change in cognitive evaluations over time. We formed the cognitively

stable labeled subset from 25 subjects who had the highest slopes of CVLT, and 25 subjects

with the lowest CVLT slope values were assigned into the labeled cognitively declining

subset. The slope of the CVLT score represents the rate of cognitive decline, and lower

slopes of the score indicate higher rates of decline. The remaining 77 subjects were

unlabeled.

Evaluation—In order to assess the classification performance of our approach, we adopted

a leave-one-out (LOO) evaluation scheme (Figure 2). At each run of the LOO evaluation we

removed one subject from the labeled set as the test subject. The remaining subjects formed

the training set and the classifier was trained on the training data. The free parameters of the

classifier (e.g., C, kernel widths) were identified as the ones that yielded the highest LOO

classification accuracy on the training set. After the classifier was trained on the training set,

it was applied to the test subject to obtain the subject’s test label.

4.2 Classification of single-visit evaluations

In our first experiment, we classified baseline (i.e., first-visit) evaluations following the

leave-one-out scheme in Figure 2. The distributions of age in cognitively stable and

cognitively declining subpopulations had means 65.8 ± 6.3 years and 70.4 ± 7.0 years,

respectively, with the age of cognitively declining individuals being slightly higher than in

the stable subjects (p = 0.02). The MKL classifier with a single kernel is equivalent to the

SVM classifier, and yielded classification LOO accuracy of 58.0% when using only the MRI
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information, and 66.0% when using only CVLT at baseline. At the same time, by integrating

MRI and CVLT at baseline, we were able to achieve classification accuracy of 74.0%. Table

1 summarizes the classification performance at baseline using imaging evaluations,

cognitive evaluations, and the combination of both. The subkernel weights β estimated by

MKL using all labeled subjects were 0.884 and 0.467 for the MRI and CVLT kernels,

respectively.

Similarly, we assessed the ability of our approach to detect cognitive decline using last-visit

evaluations. The mean ages in cognitively stable and cognitively declined populations

during the last visits were 73.4±7.6 and 78.2±6.4, respectively, with age in cognitively

declining individuals being slightly higher than in the stable subjects (p = 0.02). Table 2

summarizes the classification performance for last-visit evaluations. The CVLT-only

classifier at last visits performed on a par with the MKL classifier that integrated MRI and

CVLT. The subkernel weights estimated by MKL using the last-visit evaluations of all

labeled subjects were 0.162 and 0.987 for the MRI and CVLT kernels, respectively.

As expected, the performance of the MKL classifier in the task of discriminating cognitively

stable and cognitively declining individuals was significantly better for relatively older

individuals (i.e., 88.0% during last visits vs. 74.0% during first visits).

4.3 Biomarker of cognitive decline

Next, we investigated whether the classifier trained on the last visit scans can predict

cognitive decline during earlier evaluations. For a given test subject with a set of

longitudinal evaluations x1,…,xt, and the MKL classifier estimated from the last visit

evaluations of the training subjects, we obtained the values of the classification function

ℱ(x1),…,ℱ(xt), where . The value of the classification

function for the subject’s evaluation x reflects the presence of brain phenotypic as well as

cognitive pattern inherent to cognitive decline, with larger values of the classification

function indicating higher similarity with “imaging-cognitive” pattern of decline. The plot in

Figure 3 shows sensitivity and specificity of the classifier tested at every given year of

evaluation, where the year of evaluation for an individual is defined relative to the year of

the individual’s first visit. Note, that not all subjects may have underwent evaluation at any

given year. Indeed, apart from the first and the third year of evaluation, none of the

evaluation years witnessed evaluations performed for all 50 labeled subjects. Moreover,

some subjects had as few as four evaluations, while some had as many as eleven.

Consequently, classification results shown in the plot in Figure 3 were obtained for different,

although overlapping, sets of subjects. For example, only 34 subjects had evaluation during

their 8-th year. As a result, the classification performance of the classifier trained on the last-

visit evaluations of the training subjects and applied to all evaluations of the test subject may

not be directly comparable for any two years of evaluation. Nonetheless, the trends in Figure

3 suggest that the classification performance of the classifier noticeably improves with

subjects’ age. The performance of the MKL classifier trained on the last-visit evaluations

and applied to the very early evaluations is somewhat surprising. In particular, the sensitivity

and specificity of the classifier trained on the last-visit evaluations is very low when applied

to the first-visit evaluations (i.e., sensitivity and specificity at year one in Figure 3(a,b)). At
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the same time, the results in Section 4.2 show that the classifier that is specifically trained on

the first-visit evaluations can predict cognitive decline based on first-visit evaluations with

significantly higher accuracy. This may suggest that different classifiers may be needed for

prediction of cognitive decline from the evaluations of different age groups.

4.4 Analysis of individuals with uncertain trends of decline

As we described in the Materials, the trends of cognitive decline in 77 out of 127 individuals

were not clear, and the subjects could not have been reliably assigned into one of the two

labeled groups. We analyzed the ability of the MKL classifier trained on the last-visit

evaluations of the labeled subjects to detect cognitive decline in the subjects with weak

trends of decline. After the MKL classifier was trained on the last-visit evaluations to

discriminate between cognitively stable and cognitively declining labeled sets, we obtained

values of the classification function for every evaluation of the 77 unlabeled individuals.

Figure 4(a) shows correlation between the classification values and the rate of change in

CVLT for different years of evaluation In general, correlation between the classification

values and rate of change in cognitive performance increases with age, which is expected

given that the MKL classifier was trained on the last-visit evaluations of the labeled

individuals. Additionally, Figures 4(b) and 4(c) show evolution of correlation between the

classification values and BVRT and MMSE, respectively. While the increase in correlation

with BVRT is evident, increase in correlation with MMSE during later evaluations is less

obvious, which reects the fact that MMSE is typically more noisy than CVLT and BVRT.

5 Conclusion

In this paper, we presented a pattern classification framework for integration of imaging and

non-imaging evaluations. Our method involves an image preprocessing and feature

extraction protocol, and employs MKL methodology to integrate imaging and non-imaging

features. The application focus of our approach was in prediction of cognitive decline in

healthy older adults, where we used MKL to integrate single-visit structural neuroimaging

and cognitive evaluations. Our results suggest that, while neither MRI nor CVLT

individually carry sufficient information to predict cognitive decline based on a single

evaluation, they allow us to achieve promising prediction accuracy when considered jointly.

Our proposed approach is general and can potentially be used for integration of other types

of neuroimaging and non-imaging data. In particular, we are planning to further explore the

problem of predicting cognitive decline in older adults by integrating structural MRI, PET,

and other cognitive, as well as genetic, evaluations.
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Fig. 1.
Diagram of our approach (example of integrating structural MRI and cognitive evaluations).

The main steps include tissue density estimation, ROI features extraction, and integration of

imaging and cognitive evaluations via MKL.
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Fig. 2.
LOO evaluation scheme (example of integrating structural MRI and CVLT).
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Fig. 3.
Sensitivity (a) and specificity (b) of the classifier trained on last-visit evaluations and

applied to earlier visits.
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Fig. 4.
Correlation between the value of the classification function and the rate of change in

cognitive evaluations for specific evaluation years. (Lower values of CVLT and MMSE, as

well as higher values of BVRT, indicate worse cognitive performance.)
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Table 1

Classification of first-visit evaluations

Kernels Accuracy Sensitivity Specificity

MRI 58.0% 52.0% 64.0%

CVLT 66.0% 68.0% 64.0%

MRI+CVLT 74.0% 76.0% 72.0%
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Table 2

Classification of last-visit evaluations

Kernels Accuracy Sensitivity Specificity

MRI 70.0% 76.0% 64.0%

CVLT 88.0% 88.0% 88.0%

MRI+CVLT 88.0% 88.0% 88.0%
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