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Abstract

Cross-talk among abnormal pathways widely occurs in human cancer and generally leads to insensitivity to cancer
treatment. Moreover, alterations in the abnormal pathways are not limited to single molecular level. Therefore, we proposed
a strategy that integrates a large number of biological sources at multiple levels for systematic identification of cross-talk
among risk pathways in cancer by random walk on protein interaction network. We applied the method to multi-Omics
breast cancer data from The Cancer Genome Atlas (TCGA), including somatic mutation, DNA copy number, DNA
methylation and gene expression profiles. We identified close cross-talk among many known cancer-related pathways with
complex change patterns. Furthermore, we identified key genes (linkers) bridging these cross-talks and showed that these
genes carried out consistent biological functions with the linked cross-talking pathways. Through identification of leader
genes in each pathway, the architecture of cross-talking pathways was built. Notably, we observed that linkers cooperated
with leaders to form the fundamentation of cross-talk of pathways which play core roles in deterioration of breast cancer. As
an example, we observed that KRAS showed a direct connection to numerous cancer-related pathways, such as MAPK
signaling pathway, suggesting that it may be a central communication hub. In summary, we offer an effective way to
characterize complex cross-talk among disease pathways, which can be applied to other diseases and provide useful
information for the treatment of cancer.

Citation: Wang L, Xiao Y, Ping Y, Li J, Zhao H, et al. (2014) Integrating Multi-Omics for Uncovering the Architecture of Cross-Talking Pathways in Breast
Cancer. PLoS ONE 9(8): e104282. doi:10.1371/journal.pone.0104282

Editor: John D. Minna, Univesity of Texas Southwestern Medical Center at Dallas, United States of America

Received February 17, 2014; Accepted July 7, 2014; Published August 19, 2014

Copyright: � 2014 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by the National High Technology Research and Development Program of China [863 Program, Grant
Nos. 2014AA021102], the National Program on Key Basic Research Project [973 Program, Grant Nos. 2014CB910504], the National Natural Science Foundation of
China [Grant Nos. 91129710, 61073136, 31200997, 61170154, and 81070946], the National Science Foundation of Heilongjiang Province (Grant Nos. C201207 and
H0906), Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education and the Undergraduate Innovation Funds of
Harbin Medical University [Grant Nos. YJSCX2012-210HLJ]. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: jwtian2004@yahoo.com.cn (JT); lixia@hrbmu.edu.cn (XL)

. These authors contributed equally to this work.

Introduction

During the last decade, researchers have witnessed the

complexity and redundancy of molecular mechanisms in mam-

malian cells [1,2]. Such complexity and redundancy are mostly

attributed to the cross-talk among various biological pathways [3].

Cross-talking pathways can communicate with each other in

diverse regulatory ways, such as feedback circuits, to produce

complex physiological reactions to maintain normal operation of

stable biological systems [4,5]. Importantly, the development of

cancer is also dependent on complex cross-talk among abnormal

biological pathways, which extremely increase the difficulty of

cancer treatment, since their complexity and redundancy. The

inhibition of only one or a few target genes cannot restore the

abnormal cross-talk of pathways and thus cannot achieve the

desired treatment outcomes [4]. It is therefore important to

systematically understand the complex pathogenesis underlying

human cancers through considering cross-talk of risk pathways.

Recent studies have begun to reveal the cross-talk between various

biological pathways; however, these represent only the tip of the

iceberg.

Complicatedly, cancerogenesis is generally related to molecular

changes at multiple levels, including genomics [6], DNA

methylomics [7], and transcriptomics [8]. Somatic mutation and

copy number aberrations (CNAs), as hallmarks of cancer, play an

important role in the development, progression and prognosis of

cancer by deregulating gene expression and increasing chromo-

somal instability [9,10]. DNA methylation provides new insight

into the pathogenesis of cancer and is considered as an emerging

biomarker for cancer detection, diagnosis and treatment [11,12].

Aberrant DNA methylation in promoters of oncogenes or tumor

suppressor genes has been observed in multiple cancer types

[13,14]. In addition, extensive expression changes in cancer have

been widely characterized. It is thus insufficient to dissect the

pathogenesis of cancer only from single molecular levels.

The accumulating genome-wide data at multiple molecular

levels have been generated using a variety of high-throughput

technologies, such as SNP array, DNA methylation and expression

microarrays, especially from the same samples. Integration of
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multi-omics data has been applied to a variety of human diseases

[15–18], such as breast cancer [19–21], leukemia [22], and

glioblastoma [23], for revealing their potential mechanisms. Setty

et al. proposed a regularized regression to identify important

regulators in the expression of glioblastoma by integrating

multidimensional data [24]. Multiple concerted disruption

(MCD) analysis was used to calculate the explaining variance of

different factors in the differential gene expression and identify

cancer-associated genes and pathways [21]. Therefore, the

molecular dysfunctions of cancer at multiple levels should be

combined to systematically identify the cross-talk among the risk

pathways in cancer.

In this study, we present a computational strategy for

constructing a pathway cross-talk network based on random walk

of candidate genes in a protein–protein interaction network by

integrating multidimensional genome data (Figure 1). By applica-

tion of our method to multi-omics data of breast cancer from

TCGA, we identified risk pathways by considering different

combinations of molecular changes at different levels, and then

built the pathway cross-talk network associated with breast cancer.

Our results showed numerous cross-talks between known cancer-

related pathways and identified linkers by network topological

analyses. Then we constructed the architecture of cross-talking

pathways that was composed of linkers and leaders, and revealed

how these linkers and leaders mediate the cross-talk among

different pathways.

Materials and Methods

Multi-dimensional breast cancer genomic data
The multi-dimensional breast cancer associated datasets con-

taining 304 human breast cancer samples and 18 non-tumor

samples with mRNA expression data, DNA methylation, DNA

copy number, and somatic mutation, which were collected from

the public database TCGA (available at https://tcga-data.nci.nih.

gov/docs/publications/brca_2012/). The level 3 data of gene

expression profile, detected by Agilent 244K, contained 17815

genes. The level 3 data of DNA methylation data were obtained

by using the Infinium HumanMethylation27 BeadChip kit, which

detected the methylation levels of 27,578 CpG sites in the

promoters of 14,475 genes. The methylation level of each CpG site

was calculated as the ratio of the signal of methylated probes

relative to the sum of methylated and unmethylated probes, which

ranged continuously from 0 (unmethylated) to 1 (fully methylated).

For a CNA array data (SNP 6.0), the segmentations were

identified using the circular binary segmentation method based

copy numbers estimated by calculation of normalized log2-

tranformed ratios (level 3) [25]. We also extracted a somatic

mutation data (level 2) from TCGA. Through removing silent

mutations, a total of 8543 somatic mutation genes were obtained.

The common genes detected by gene expression, DNA methyl-

ation, copy number and somatic mutation profiles were used for

subsequent analysis.

The protein–protein interaction network was downloaded from

the Human Protein Reference Database (HPRD), which includes

9219 genes and 36900 interactions among those genes. We

retrieved the largest connected component of the protein-protein

interaction network for subsequent analysis.

Identification of candidate genes with alterations at
multiple levels

Considering the asymmetric cancer and control samples, we

performed 1000 random sampling to identify significantly

differentially expressed genes and significantly differentially

methylated genes. For each sampling, we identified a set of

differentially expressed genes by comparing the expression profiles

of 18 randomly selected cancer samples from 304 cancer samples

with 18 normal samples using t-test (Benjamini-Hochberg adjusted

FDR,0.001, fold change.2). Next, for each gene, we computed

the frequency of significant difference in 1000 random sampling.

The gene with the frequency greater than 10% was regarded as a

significantly differentially expressed gene in breast cancer. As for

DNA copy number data, we applied the GISTIC (version 2) to

identify genes with genomic amplification and deletion in breast

cancer with default parameters.

Identification of risk pathways
By combination of dysregulation at different molecular levels,

we identified three groups of candidate genes: (i) genes with

differential expression and differential methylation (i.e. overex-

pression and loss of DNA methylation, underexpression and gain

of DNA methylation); (ii) genes with differential expression and

copy number alteration (i.e. overexpression and amplification,

underexpression and deletion); and (iii) genes with differential

expression and somatic mutation. Finally, we used these three

gene sets to identify subpathways which were key regions impacted

by candidate genes within all human pathways from KEGG, with

Benjamini-Hochberg adjusted FDR,0.05, using an R package

iSubPathwayMiner (version 3.0, available at http://cran.r-project.

org/web/packages/iSubpathwayMiner/) [26]. Briefly, the sub-

pathway recognition procedure consists of three steps. (i)

Candidate genes were mapped to all pathways; (ii) Subpathways

within pathways were located according to candidate genes. In this

step, we firstly computed the shortest path between candidate

genes for each pathway, and merge candidate genes and other

genes based on their shortest path n. Subsequently, we extracted

the corresponding subgraph according to gene sets and deleted the

subgraphs in which the number of genes is less than s. (iii) The

statistical significance of subpathways was evaluated. These

significantly enriched subpathways were termed as ‘‘risk path-

ways’’.

Construction of pathway cross-talk network based on
protein interaction network by random walk

To detect the cross-talk among risk pathways, we used the

human protein interaction network, which provides a possible way

to reveal the functional information flow among biological

pathways. To globally consider the topological structure of the

protein interaction network, we used random walk with restart

(RWR) [27], in which the information flow has a certain

probability to get back to the information source at every walk

step, to measure the strength of cross-talk between any pairs of risk

pathways.

For each pair of risk pathways, we considered the risk genes in

one pathway as the information source (i.e., source nodes) and

those in the other pathway as the information target (i.e., target

nodes). The information flow starting from the set of source nodes

iteratively and randomly walk through the protein interaction

network by transmitting to their neighbors with a probability that

is proportional to their topological features. At each step, the

information flow can return to the source nodes with some

probability. The mean steady state probability that the source

nodes will finally stay at the target nodes is calculated to reflect the

strength of cross-talk between the two paired pathways. Random

walk with restart is a recursive procedure, which can be

represented as follows:

The Architecture of Cross-Talking Pathways
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Ptz1~(1{r)APtzrP0

where P0 is the initial probability of functional information for all

nodes in the protein interaction network; Pt and Pt+1 are the

probability of functional information for all nodes at the t-th and

(t+1)-th steps, respectively; A represents the column-normalized

adjacency matrix corresponding to the protein interaction

network, in which the sum of each column is 1; and r is the

restart probability, which indicates the chances of information flow

back to the seed nodes.

To address the significance of the strength of cross-talk from the

source nodes to the target nodes, 1000 random networks were

generated from the protein interaction network by keeping the

degree of nodes unchanged. We recalculated the strength of cross-

talk between the pathways in the 1000 random networks using

random walk and obtained 1000 scores. The p values that

consider the number of random values that were greater than the

observed statistics were then computed. Statistically significant

cross-talk was established at p,0.05, which was corrected for

multiple hypothesis testing by applying a Benjamini-Hochberg

correction using the p.adjust function in the R stats package.

Finally, we collected the significant cross-talks between pathway

pairs and then to assemble them into an undirected pathway cross-

talk network by reasonable optimization.

Linkers and leaders in cross-talking pathways
Given two cross-talking pathways A and B, candidate genes GA

and GB are respectively involved in these two pathways. We

mapped these dysfunctional genes GA and GB into protein

interaction networks and then identified the linkers and leaders.

The identification of linkers and leaders were based on cross-talk

between risk pathways. Linkers are defined as genes that show

significant alteration for at least one molecular level and can

mediate two cross-talking risk pathways. Leaders are defined as

Figure 1. The workflow of identifying cross-talk among risk pathways. Step 1: Integration of genomic, DNA methylomic, and transcriptomic
data for identification of candidate genes; Step 2: Identification of risk pathways by using candidate genes based on pathway enrichment analysis;
Step 3: Identification of cross-talk among risk pathways by mapping candidate genes onto the human protein interaction network based on the
random walk with restart method.
doi:10.1371/journal.pone.0104282.g001
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candidate genes in risk pathways that can directly connect the

linkers. For each cross-talking pathway pair, the linkers and

leaders showed in three situations: (i) Genes that show alteration at

single molecular level and are not members of risk pathways

directly connect candidate genes in the risk pathways, which are

termed linker genes. These connected candidate genes are termed

leader genes; (ii) Candidate genes in the cross-talking risk pathways

directly connecting each other are considered as both linker and

leader genes; (iii) In the case of cross-talking pathway pairs with an

overlap of candidate genes, these overlapping candidate genes are

recognized as both linker and leader genes (Figure 2).

Results

Identifying abnormal genes in breast cancer at
multi-levels

We obtained gene expression, DNA methylation, DNA copy

number, and somatic mutation data on 304 human breast cancer

samples and 18 normal samples, from TCGA. Comparing the

tumor samples with normal samples, we identified 1488 differen-

tially expressed genes and 1337 differentially methylated genes

(Table S1 and S2). Also, 3348 genes showing significantly

recurrent copy number alterations were identified by GIS-

TICv2.0. Consistent with previous findings [21], only a few genes

showed abnormalities at the multi-levels. We compared the

dysregulated genes and found complex patterns of molecular

abnormalities at different levels. We thus categorized these genes

into three dysregulated groups (Figure 3A): (i) 35 genes that show

overexpression and hypomethylation; and 76 genes that show

underexpression and hypermethylation; (ii) 30 genes that show

overexpression and copy number amplification; and 89 genes that

show underexpression and copy number loss; (iii) 497 genes with

somatic mutation and differential expression (138 overexpression

and 359 underexpression). The complex patterns suggested that

there may exist a mass of key genes which change at different

molecular levels together to form the molecular mechanisms

underlying cancer [28].

Figure 2. Linkers and leaders in cross-talking pathways. For cross-talking pathway pairs, the linker and leader genes show three situations.
The black circles with different color represent the linker and/or leader genes with the alteration in different levels.
doi:10.1371/journal.pone.0104282.g002
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Establishing candidate genes by combining information
from multiple levels

We performed pathway enrichment analyses on those genes in

the three dysregulated groups respectively, and identified signif-

icantly enriched pathways at p value,0.01 (Figure 3B). We found

that genes in each dysregulated groups were involved in many

important cancer-related pathways, such as the ‘‘MAPK signaling

pathway’’, ‘‘RIG–I–like receptor signaling pathway’’ and ‘‘path-

ways in cancer’’. It is interesting to note that significantly enriched

pathways in different groups showed low consistency. This

suggested that genes dysregulated at single molecular levels could

only capture parts of the whole cancer-related molecular network

and that integration of genes with changes at different levels is

necessary to understand the complex mechanisms of cancer

[18,29,30]. Therefore, we selected all of the 730 genes in the three

dysregulated groups as the candidate genes.

Of these candidate genes, we found HOXA2, HOXA4,

HOXA5, HOXA7, and HOXA9 showing underexpression with

hypermethylation. Aberrations in members of HOX genes have

been reported in abnormal development and malignancy,

indicating that altered expression have tumorigenic potential and

thus, are often defined as ‘cancer genes’ [31], which consistent

with our result. CHL1, a potential tumor suppressor gene, was

found to be downregulated in expression and to show hyper-

methylation, in line with a recent report of its high association with

early preinvasive growth of breast cancer through facilitating

tumor growth [32]. Moreover, we revealed the copy number

amplification and mRNA overexpression of ARF1, suppression of

Figure 3. Integrative information of candidate genes with alterations at multiple levels and risk pathways. (A) Venn diagram showing
the dysregulated groups between mRNA expression and another molecular level such as DNA methylation,DNA copy number and somatic mutation.
(B) Comparisons among pathways enriched by potential candidate genes derived from different dysregulated groups. (C) The alteration patterns of
candidate genes in at least two levels. (D) The significantly enriched risk pathways by candidate genes (FDR,0.05).
doi:10.1371/journal.pone.0104282.g003
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which could result in the inhibition of breast cancer cell migration

and proliferation [33] (Figure 3C).

Constructing the network of cross-talking pathways in
breast cancer

We analyzed 730 candidate genes using iSubpathwayMiner 3.0

with the parameters s = 5 and n = 5 and then identified the risk

subpathways in breast cancer at Benjamini-Hochberg adjusted

FDR,0.05 (Table S3). We set s = 5 because previous studies

reported that subpathways (s$5) were associated with disease and

considered to represent a pathway. Our previous study revealed

that 85% of disease genes was with shortest path ,5 to its nearest

disease gene suggesting a value of n = 5 seems to represent the

closeness of candidate genes [26].

In total, twenty eight biological pathways were identified, such

as ‘‘Focal adhesion’’, ‘‘Pathways in cancer’’, ‘‘Complement and

coagulation cascades’’, ‘‘MAPK signaling pathway’’, and ‘‘Hedge-

hog signaling pathway’’ (Figure 3D). We found significantly

enriched many important pathways such as ‘‘Pathways in cancer’’,

‘‘Cell adhesion molecules (CAMs)’’, and ‘‘Toll-like receptor

signaling pathway’’ which play a core role in the activation of

immune responses emerged as attractive targets for therapeutics in

cancer [34,35]. These pathway showed complex abnormal

patterns at different molecular levels, including somatic mutation,

DNA methylation and copy number alterations. Notably, ‘‘Toll-

like receptor signaling pathway’’ was identified by combination of

these three sets of candidate genes indicating the importance of

integrations of multi-level information.

To identify the cross-talk between two risk pathways, we used

the protein interaction network to evaluate whether the candidate

genes in the two pathways have close connections within the

network. We attempted to construct a directed pathway cross-talk

network among 28 risk pathways. Using RWR, the cross-talk

scores of 378 pairs of pathways from among the 28 pathways were

computed. Based on those scores from 1000 randomly permutated

networks,15 significant cross-talk pairs of pathways were deter-

mined at Benjamini-Hochberg adjusted FDR,0.05 (Table S4).

The 15 cross-talk pairs involved 17 risk pathways. To further

investigate genes mediating the cross-talk among the risk

pathways, we mapped the candidate genes from the cross-talk

pathways onto the protein interaction network and selected the

common direct neighbors of candidate genes in each pathway pair

in the PPI network (Figure 4).

Linkers mediating cross-talking pathways
For these 15 cross-talking pathway pairs, we identified 73 linkers

and 46 leaders. The number of linkers in each cross-talking pair is

from 1 to 18, with an average of 4. And the number of leaders in

each pair is from 2 to 12, with an average of 3 (Table S5). For

example, a linker gene JUN connecting two leader genes FOS and

ETS2 (FOS/JUN/ETS2) mediates cross-talk between ‘‘MAPK

signaling pathway’’ and ‘‘Dorso-ventral axis formation’’ (Figure

S1). It has been verified that JUN can interact with FOS as a

complex which subsequently interacts with ETS2 to form the

stable heterotrimeric FOS/JUN/ETS2. The FOS/JUN/ETS2

plays important roles in tumor invasion and metastasis [36].

Figure 4. The network of cross-talking pathways. The cross-talking pathways with the alteration patterns of candidate genes in each risk
pathway and linkers mediating cross-talk of pathway pairs are shown. Each square node represents the risk pathway and the circle made of linkers.
The different colors of linkers represent the change in different molecular level.
doi:10.1371/journal.pone.0104282.g004
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The linkers act as key genes and play important roles in

mediating cross-talk between risk subpathways. We performed

survival analysis for each differentially expressed linker and

evaluated the significance of correlations between these linkers

and overall survival using univariate cox regression analyses. We

found that two linker genes COL4A6 (p = 0.01) and PLK1

(p = 0.07) whose expressions are weakly associated with the

survival of breast cancer patients. Then, we divided the patients

into two different groups based on the median expression of

COL4A6 and PLK1, respectively. Kaplan-Meier curves of

different groups suggest the low expression of COL4A6 and high

expression of PLK1 are both associated with poor survival (p,0.1

for both COL4A6 and PLK1, log-rank test) (Figure S2). COL4A6,

a major component of the basement membrane, plays an

important role in confinement of the tumor microenvironment

[37]. The down-regulated expression of COL4A6 has been

certified in breast cancer [38]. PLK1 acts as a proto-oncogene

through driving cell cycle progression. Lee et al. [39] reported that

PLK1 might alter BRCA2 function by phosphorylating BRCA2 in

breast cancer, which could subsequently lead to genetic instability.

It may provide a possible functional explanation that overexpres-

sion of PLK1 are associated with poor survival in breast cancer,

suggesting a role for PLK1 as a potential prognostic marker.

Further, for each pair of cross-talking pathways, we identified

the biological processes significantly enriched by the candidate

genes in each pathway and linkers respectively (Figure S3). We

observed the same or similar biological processes between each

pathway pairs and linkers. For example, the linkers (MLLT4 and

ACTA1) mediated the cross-talk of ‘‘Tight junction’’ with

‘‘Adherens junction’’ through regulating important cell functions

in cancer, such as ‘‘cell motility/migration [40]’’, ‘‘cell adhesion

[41]’’ and ‘‘cell junction assembly [42]’’. The function consistence

between cross-talking pathways and linkers supported the

connection of the linkers with the cross-talking pathways, which

provide implications that the close cross-talks of risk pathways are

crucial to the cancer progression.

Discovering the architecture of cross-talking pathways
Based on function connection of linkers and their mediating

cross-talking pathways, we identified the architecture of cross-

talking pathways which presented a blueprint of the potential

pathogenesis of breast cancer (Figure 5).

As expected, we found that significantly enriched subpathways

from the same pathway of close cross-talking, such as subpathways

Meosis I and Meosis II in the pathway Oocyte meiosis shared a

common gene PLK1, which showed overexpression and somatic

mutation. Consistently, overexpression of PLK1 and knockdown

of its linker TP53 can enhance the stability of CEP55 which could

regulates breast cancer progression and metastasis [36]. Notably,

we observed that subpathways from the same pathway contributed

to specific biological processes by cross-talking with different

pathways. The subpathways ‘‘Pathway in cancer_1’’ and ‘‘Path-

Figure 5. The architecture of cross-talking pathways. The blue squares represent risk pathways in the network of cross-talking pathways and
the lightly grey circles with different color asterisks represent the leaders with the alteration in different levels.
doi:10.1371/journal.pone.0104282.g005
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way in cancer_2’’ from the same pathway had no connection, but

linked to two distinct risk pathways (including ‘‘Complement and

coagulation cascades and Hedgehog signaling pathway), respec-

tively. The pathway ‘‘Complement and coagulation cascades’’

cross-talk with ‘‘Pathway in cancer_1’’ through the interaction of

leaders (A2M and PDGFRA) with linkers (PDGFA), and

ultimately result in sustained angiogenesis (Figure 6A). Both

A2M and PDGFRA with underexpression and somatic mutation

can lead to the cancer development [43,44]. Also, PDGFA was

more frequently expressed in breast tumors [45]. Analogously,

‘‘Hedgehog signaling pathway’’ cross-talk with ‘‘Pathway in

cancer_2’’ to promote proliferation by shared dysfunctional linkers

and leaders such as PTCH1, BMP2 and GLI1 all of which show

under-expression and mutation. Meanwhile, another two leaders

(TFP1,C3) in ‘‘Complement and coagulation cascades’’ showed

the highest degree linked with different pathways (including

‘‘Leukocyte transendothelial migration’’, ‘‘Cell adhesion molecules

(CAM)s’’, and ‘‘Tight junction’’). Consistently, previous studies

have validated that ‘‘Complement and coagulation cascades’’

interacts with several cancer associated pathways and then affect

pathway function. These findings suggested that the leader in

‘‘Complement and coagulation cascades’’ pathway may be a

communication hub into other pathways, which play an important

role in breast cancer [46,47].Some dysfunctional genes (including

KRAS, F11R, JAM3 and PDGFRA) with different molecular

alterations have participated in multiple pathways (such as

‘‘MAPK signaling pathway’’, ‘‘Cell adhesion molecules (CAMs)

and Pathways in cancer’’), which suggests that these leaders serve

as exchange centers for the cross-talk among the pathways. In

particular, KRAS, a known oncogene [48], was found to be

involved in 6 of the 17 risk pathways. Our result showed that the

dysfunction of KRAS through mutation mediated the cross-talk of

‘‘Axon guidance’’ with ‘‘MAPK signaling pathway’’ (Figure 6B).

We further found that dysfunction of KRAS may result in up-

regulation of its downstream target ELK1 to promote proliferation

and differentiation, consistent with previous findings [49].

Notably, JAM3, which participates in cell-cell adhesion, and

may also be utilized by cancer cells to promote tumour progression

or survival [38,50], showed not only hypermethylation but also

copy number loss accompanied by under-expression.

Discussion

The accumulation of high-throughput, multidimensional, ge-

nome-wide data provides an opportunity to characterize the

complex molecular mechanisms underlying cancers. In our study,

we proposed a systematic strategy that integrates genomic,

methylomic, and transcriptomic data to identify the cross-talk

among risk pathways based on alterations of genes at different

molecular levels through random walk in the protein–protein

interaction network. We applied our method to a large scale of

breast cancer samples, referring to multi-Omics data including

gene expression profiles, DNA methylation, DNA copy number

and somatic mutation, for constructing the network of cross-

talking pathways in breast cancer. Our approach successfully

identified many known cross-talks between cancer-related path-

ways. Furthermore, using the network of cross-talking pathways,

we determined many linkers bridging these cross-talks and leaders

in the architecture of cross-talking pathways. For example, KRAS

showed a close association with many risk pathways and appeared

to function as an inter-hub among pathways, mediating cooper-

ation between different risk pathways.

Figure 6. Integrative pathways from different cross-talking pathway pairs. (A) ‘‘Complement and coagulation cascades’’ and ‘‘Pathway in
cancer_1’’, ‘‘Hedgehog signaling pathway’’ and ‘‘Pathway in cancer_2’’; (B) ‘‘Axon guidance’’ and ‘‘MAPK signaling pathway’’. Each ellipse represents a
gene in KEGG pathway or ppi network. For a given gene, the ellipse is divided into four parts (from left to right) corresponding to different molecular
level with abnormal states (red) in mRNA expression, (green) DNA methylation, (yellow) copy number and blue (somatic mutation), respectively.
doi:10.1371/journal.pone.0104282.g006
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Our method focused on the cross-talk among multiple risk

pathways rather than among only a few genes or pathways at

single molecular levels. Such multilevel-based integration strategies

can provide more information about the pathogenesis mechanism

of cancer and thus can be helpful in distinguishing driver genes

from passengers. A number of studies have shown the power of

integration of information from multiple molecular levels

[21,24,51]. Our results strongly show that different change

patterns occur in many known cancer-related pathways, which

in turn form tight cross-talks among these pathways, further

supporting the necessity of integrative analysis.

Our method not only integrated multidimensional genomic

data but also considered the topological structure of candidate

genes in the protein interaction network. The protein interaction

network reflects the functional association among genes. Genes

located close to each other tend to show similar functions, thus

providing a reliable resource to reveal the cross-talk among

pathways. To consider the functional similarity of genes from the

topological perspective, we used random walk with restart to

quantify the cross-talk between pairs of pathways. Previous studies

have shown that random walk approaches individually outperform

other methods, such as neighborhood approaches, in the

prediction of gene–disease associations based on the protein

interaction network [52,53]. This might be attributed to the fact

that the random walk method offers the advantage of combining

candidate genes with functional network topology by tracing the

flow of functional information in the protein interaction network.

In conclusion, the identification of cross-talk between risk

pathways using multidimensional genomic data is useful in

characterizing the potential mechanism of human cancer. With

the increasing availability of multidimensional genomic data, our

method can integrate information from more levels and detect

novel and important leader genes and linkers that mediate the

cross-talk between risk pathways, which will provide useful

information on target treatment of cancer.

Supporting Information

Figure S1 The function network of cross-talking path-
ways. Based on the structure of cross-talking pathways, the

significantly enriched biological functions were identified using the

candidate genes in each pathway and linkers mediating cross-talk

of pathways.

(TIF)

Figure S2 The survival analysis of two linkers COL4A6
and PLK1. Two linker genes COL4A6 (p = 0.01) and PLK1

(p = 0.07) were weakly associated with the survival of breast cancer

patient.

(TIF)

Figure S3 An instance of the linker mediating cross-
talking pathways. A linker gene JUN connected leader genes

FOS and ETS2 (FOS/JUN/ETS2), mediating cross-talk between

‘‘MAPK signaling pathway’’ and ‘‘Dorso-ventral axis formation’’.

Each ellipse represents a gene in KEGG pathway or ppi network.

For a given gene, the ellipse is divided into four parts (from left to

right) corresponding to different molecular level with abnormal

states (red) in mRNA expression, (green) DNA methylation,

(yellow) copy number and blue (somatic mutation), respectively.

(TIF)

Table S1 A list of differentially expressed genes.
(XLS)

Table S2 A list of differentially methylated genes.

(XLS)

Table S3 A list of risk pathways.
(XLS)

Table S4 A list of cross-talking pathways.
(XLS)

Table S5 Linker and leader genes in each cross-talking
pathway pair.
(XLS)
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